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Abstract
In the absence of their cognate ligand, dependence receptors
trigger programmed cell death. This function is the defining
feature of dependence receptors, which include members of
several different protein families. The integrins are a family
of heterodimeric receptors for extracellular matrix (ECM)
proteins, mediating cell anchorage and migration. Integrins
share characteristics with dependence receptors, and
integrin binding to substrate ECM ligands is essential for
cell survival. Although integrins do not conform in all
characteristics to the established definitions of dependence
receptors, alterations in the expression of integrins and their
ligands during physiological and pathological events, such as
wound healing, angiogenesis and tumorigenesis, do regulate
cell fate in a ligand-dependent manner. This biosensory
function of integrins fits well with our current concept of
dependence receptor action, and thus integrins may rightly be
considered to comprise a distinct subclass of dependence
receptor.
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Introduction

Cell survival is governed by a diverse array of stimuli that
converge on common signaling pathways. These signals
regulate cytosolic and nuclear events in a coordinated, cell-
specific manner. Signaling events have been considered to
act through cell surface receptors to transduce cytosolic
signals via the actions of tyrosine and serine/threonine

kinases, or by eliciting ‘second messengers’ such as Caþ 2

and cAMP.1–3 However, a relatively new concept termed
‘dependence’ has been applied to a growing number of
receptors.4 Dependence receptors, generally, maintain the
capacity to elicit cell signaling events similar to the ‘classic’
receptors, but also maintain a capacity to signal ‘negatively’ in
the absence of their cognate ligand.
In the absence of ligand, ‘classical’ signaling receptors tend

to be relatively inert, demonstrating no signaling function.
When overexpressed, these receptors may promote signaling
events even in the absence of their ligand.5,6 Deletion or
inhibition of these receptors will often eliminate a cell’s
capacity to respond to the receptor’s ligand(s). In contrast,
dependence receptors have been shown to promote pro-
grammed cell death in the absence of their appropriate ligand.
This creates the cellular state from which they draw their
name4 (i.e., the cells are ‘dependent’ upon the presence of a
trophic ligand to survive). Accordingly, de novo expression (or
overexpression) of dependence receptors, in the absence of
appropriate ligands, promotes cell death.7,8 In the presence
of ligand, signaling and/or cell differentiation is observed.
Ablation of dependence receptor expression will generally
eliminate the requirement for ligand, and similarly promote
cell survival (if not differentiation). However, increased cell
survival can disrupt tissue homeostasis and may have
significant pathological consequences, such as neoplasia.
Well-studied examples of dependence receptors include

the neurotrophin receptor (p75NTR), the netrin receptors DCC
(deleted in colon cancer) and UNC5H (uncoordinated-5
homolog) proteins, as well as RET (rearranged during
transfection), a receptor for glial-derived neurotrophic factor
(GDNF).4 These receptors (and other putative dependence
receptors) typically belong to different protein families, but are
functionally linked by their capacity to regulate cell survival in
response to a trophic factor, governing cellular homeostasis
and preserving the integrity of specific tissues. This appears to
be a control mechanism used by vertebrate cells to regulate
developmental processes and tissue homeostasis, as recep-
tor homologs in invertebrates do not appear to share these
functions.4,8 Despite this basic initial understanding of
dependence, the nuances of dependence receptor signaling
continue to be uncovered. As our understanding of this
process increases, new variations on the central theme of
‘dependence receptors’ continue to be described.

The integrins

In this respect, the integrin family of cell adhesion receptors
appear to have many properties in common with dependence
receptors.4 The 18 a and 8 b integrin subunits form at least 24
heterodimeric (a/b) receptors (Table 1), each of which binds to
its own limited subset of extracellular matrix (ECM) and/or
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cell-surface ligands.9 These include structural ECM proteins,
such as collagens, fibronectins, and laminins, as well as
provisional ECM proteins that are deposited during tissue
remodeling and thrombotic events, such as fibrin, vitronectin,
tenascin and osteopontin. While integrins are expressed on
essentially all tissues, the repertoire10 and ligand-binding
activity11 of a specific (a/b) integrin heterodimer is regulated
by the tissue and individual cell type that express it. Indeed,
no cell expresses all integrins. Rather, cells tend to express
integrins that are matched to the ECM ligands present within
their local microenvironment.12 This matched expression of
adhesion receptor and ECM ligand is also observed during
developmental13,14 and tissue remodeling events.15 In these
cases, the repertoire of specific integrins expressed on a
given cell type is altered to adjust to concurrent changeswithin
the local ECM.16 It is important to note that these alterations in
the expression of specific integrin heterodimers have been
implicated in the regulation of cell survival during tissue
remodeling events in development and disease.13,17,18 Since
the changing composition of the ECM dictates which integrins
can be ligated, the local ECM functions as a trophic factor.
Interestingly, a number of other trophic factors are also
sequestered within the ECM, using binding sites distinct from
those mediating cell anchorage.19–22 Given this central role of
the ECM, it is perhaps not surprising that disruption of integrin
interaction with the ECM (i.e., ligand deprivation) compro-
mises cell survival.

Anoikis: apoptosis due to the lack of integrin-
mediated survival signals

In their role as the principle cellular receptors for the ECM,
integrins serve to mediate cell anchorage to the underlying
ECM substrate, and to regulate cell morphology.23 The most
extreme case of integrin ‘ligand-deprivation’ occurs after
complete loss of cell contact with the substrate, and results
in programmed cell death.24 Early studies by Frisch and
Francis25 termed the form of programmed cell death resulting
from complete loss of substrate ECMcontact ‘anoikis’.Anoikis
was suppressed in some cells by direct stimulation with the
cytokine Scatter Factor, or via surrogate activation of growth
factor receptor signaling pathways with oncogenes such
as v-Src or ha-Ras. Anoikis could also be suppressed by

integrin-mediated attachment to Arg-Gly-Asp (RGD)-contain-
ing ligands, but not by soluble RGD peptides. These studies
agreed well with those of Meredith et al.,26 who had shown
that substrate attachment without integrin engagement
resulted in programmed cell death, while integrin-mediated
attachment rescued cell survival. Although integrins possess
no intrinsic kinase activity, tyrosine kinase activity was
implicated as a critical factor in ECM-mediated survival.
However, integrin binding to substrate ECM elicits signaling
via associated nonreceptor tyrosine kinases, including mem-
bers of the focal adhesion kinase (FAK, PYK2) and Src
kinase families,27 thus providing a mechanism to explain
how integrins regulate cell survival.
While these studies agree with our current concept of

integrin-mediated signaling, it is now appreciated that integrin
ligation initiates several parallel, but interconnected, signaling
cascades. Ligation of immobilized ECM by integrins promotes
signaling via the Akt, Erk1/2 and JNK pathways (Figure 1),
each of which have several well-documented roles in the
regulation of cell survival and proliferation, as well as cell
migration. Interestingly, however, similar cell types often
respond differently to the deprivation of ECM substrate, and
tend to undergo programmed cell death with varying kinetics
via differing mechanisms.24,28 These studies suggested that
the phenomenon was not actually a single death signal, but
rather was a collection of different apoptotic cascades that
were coordinately induced. Thus, anoikis occurs in any
particular cell type in a manner dependent upon which
apoptotic cascade is dominant in that cell. There is logic to
anoikis for this reason; if only a single death pathway was
responsible for inducing apoptosis after loss of substrate
adhesion, then the loss of anchorage dependence by
transformed cells might be acquired far more easily, with dire
consequences for the host.
The requirement for ligation by an appropriate ligand

(substrate ECM) and the capacity to mediate cell signaling
and differentiation are characteristics of a dependence
receptor.19 However, death triggered via anoikis occurs as
the consequence of ‘missing’ survival signals (a passive
event), while dependence receptors actively trigger apoptosis
selectively in response to the absence of their trophic factor,
irrespective of other changes in the cell. Moreover, anoikis is
induced by widespread changes in cell infrastructure that
disrupt a number of different biochemical signaling pathways.

Table 1 ECM Ligands and their integrin receptors

Ligand Integrins Notes

Collagens a1b1, a2b1, a10b1, a11b1 Principally receptors for collagens, integrins a1b1 and
a2b1 may bind other ligands with a lesser affinity.

Laminins a3b1, a6b1, a6b4, a7b1 Principally receptors for laminins, integrin a3b1 may
bind other ligands with a lesser affinity.

‘RGD’-containing proteins a5b1, a8b1, aIIbb3, avb1, avb3, avb5, avb6, avb8 Each integrin binds its own subset of the RGD-
containing ligands (which include fibronectin, fibrin and
vitronectin). Some bind additional ligands in an RGD-
independent manner.

Immunoglobulin
superfamily proteins

aDb2, aEb7, aLb2, aMb2, aXb2, a4b1, a4b7, a9b1 In addition to specific IGSF ligands (VCAM, ICAMs),
many of these integrins bind additional ligands. For
example, integrin a4b1 binds to fibronectin in an RGD-
independent manner, while aMb2 and aXb2 bind fibrin.
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By contrast, dependence receptors promote cell death
selectively in response to withdrawal of a specific cognate
ligand, and initiate apoptosis via a defined mechanism. Thus,
one might question whether the induction of ‘anoikis’ fits well
with the current concept of dependence receptor action.

Integrins and the ECM as trophic survival factors

Integrins regulate cell survival in additional ways. Lack of
expression of a given integrin (or integrins) can simply prevent
attachment to a given ECM substrate. Since each integrin
heterodimer binds only a limited subset of ECM ligands,
attachment to any given ECM component typically requires
expression of at least one type of integrin heterodimer
appropriate for that ECM protein. For example, integrin
a3b1, a6b1, a6b4 and a7b1 are the major laminin-binding
integrins, and are commonly found on cells in contact with
laminin in vivo. Three of these laminin-binding integrins are
present on epidermal epithelial cells adjacent to (laminin-rich)
basal lamina. Loss of expression of these integrins is
associated with keratinocyte displacement from the lamina,
differentiation and cell death.18 Given the importance of
substrate attachment in cell survival discussed above, it is
perhaps not surprising to find that the repertoire of integrin

heterodimers expressed on a cell is matched to the ligands
present in the local microenvironment.
Nevertheless, the regulation of integrin-mediated cell

survival is more complex than a simple model of ‘ligand-
binding or not’ might indicate. Integrin ligation promotes
downstream changes in the cell that are essential for ‘integrin-
specific’ signaling and survival effects. A global event
triggered by integrin ligation is the process of ‘cell spreading,’
in which a spheroid cells flattens to increase surface area
with underlying substrate ECM. Spreading is dependent on
signaling from Rho family GTPases to the actin cytoskeleton,
eliciting the extension of lamellapodia and pseudopodia.29 In
pioneering studies, Ingber and co-workers documented
the critical role of these downstream events in regulating cell
survival. In an elegant series of investigations using micro-
printed patterns of ECM ligands, it was shown that the ligation
of integrins by substrate ligands was insufficient, per se, to
maintain cell viability.23 Cells were observed to undergo
apoptosis when they were geometrically constrained on a
small surface area, yet survived and proliferated when
allowed to spread. Interestingly, these events occurred
despite a similar overall quantity of available ligand for the
integrins in each case. Thus, cell spreading and cell geometry
contribute to regulating cell viability. Both elements are
downstream of integrin signaling.
This capacity to attach and spread on ECM has a general

positive impact on cell survival, increasing cell resistance to a
variety of proapoptotic insults. In fact, cell attachment to ECM
proteins has been associated with increased survival among
cells exposed to radiation and chemotherapeutic agents,30

death receptor agonists31–33 and even among cells following
withdrawal of growth factors.34,35 These studies indicate that
while integrin ligation alone is insufficient to ensure cell
survival, integrin ligation with a substrate ECM triggers critical
secondary events that generally inhibit the induction of
apoptosis. Thus, cellular interaction with the ECM provides
critical information to the cell regarding the nature of its
microenvironment. The cellular interpretation of this informa-
tion then influences the propensity for a cell to survive or
undergo apoptosis, as appropriate.

General signaling events initiated by integrins

Initially recognized as simple ECM-binding proteins,36 integ-
rins are now appreciated to elicit several cell signaling events.
The canonical integrin-activated signaling pathway involves
activation of an apical nonreceptor tyrosine kinase such as
FAK37 or a Src-family kinase,38 which in turn promote
activation of small GTPases of the Ras and Rho families,
leading to the downstream activation of MAPK (mitogen-
activated proteins kinase) cascades39 (Figure 1). Aside from
immediate effects on cytosolic and cytoskeletal elements,
these signaling cascades also regulate transcription events
in the cell nucleus,40 and have profound effects upon cell
viability. Integrin-mediated signaling has been linked to a
number of factors directly governing cell resistance to
apoptosis, including cell cycle progression10 and p53 activa-
tion,35 Bcl-2 family protein expression,34 death receptor and
death ligand expression41,42 and regulation of the PI3K/Akt/
GSKb axis.43 Moreover, these signaling events also influence

Figure 1 Integrin ligation initiates several signaling pathways. The integrins,
depicted as a/b heterodimers, induce a number of cell signaling events when
ligated to a substrate ECM. Integrin signaling via the Akt and two mitogen-
activated protein kinase cascades (to ERK and JNK) is depicted. These signals
collaborate to govern cellular proliferation, migration and survival. (ILK, integrin-
linked kinases, PI3K, phosphoinnositide 30kinase, Cas, crk-associated substrate,
ERK, extracellular-regulated kinase, JNK, Jun amino terminal kinase, PDK, P21-
dependent kinase)
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cellular production of extracellular proteins, such as osteo-
pontin44 and intracellular adaptors, such as osteoprotegerin45

and c-flip,42 which themselves act directly or indirectly to
regulate cell survival.
As mentioned above, the small GTPases of the Rho family

are critical for the cytoskeletal remodeling events that occur
during substrate-ECM binding.29 Cdc42, rac and rho play
prominent roles in governing the extension of cellular
processes46 as well as regulating the application of mecha-
nical tension to assist in anchoring, or moving, the cell.47

Protein phosphorylation events are maximal during cytoske-
letal rearrangements such as pseudopod extension48 and cell
spreading,49 and fall to low, or in some cases undetectable,
levels in fully spread cells. Apical kinases such as FAK
regulate the turnover of cell-substrate contacts (focal adhe-
sions), which appear to initiate the small GTPAse cascades.
Interestingly, FAK phosphorylation is maximal after ECM
attachment but concomitant with the onset of cell spreading.50

This turnover of focal contacts is common to both cell
spreading and migration, and is important in cell motility in
response to motogenic factors.27 Interestingly, at least in
some cases, the onset of the motility response is coupled with
cell resistance to apoptosis.51

Integrins coordinate ‘classic’ receptor-
signaling pathways

Many motogenic growth factors act in an integrin-dependent
fashion. 26 Thus, growth factors such as epidermal growth
factor, vascular endothelial cell growth factor and platelet-
derived growth factor require integrin–substrate ligation to
effect signaling.10 Interestingly, nonmigratory cells exposed to
the growth factors present in tissue culture medium appear
to undergo continuous rearrangement of focal adhesions,
despite remaining in place.52 Since the receptors for these
growth factors have been shown to physically associate with
integrins,53,54 it is tempting to speculate that integrins may
function as ‘coreceptors’ for these growth factors. Ironically
then, these growth factor receptors, which have been
suggested to function via ‘classic’ on/off signaling mecha-
nisms, are actually integrin-dependent. Integrins, in turn, are
dependent upon the composition of the substrate ECM.
This ‘dependence’ of growth factors upon integrins has

been logically extended to the concept that integrin anta-
gonism disrupts the signaling of the integrin-associated
growth factor,55,56 which impacts cell survival. Disruption of
growth factor signaling would seem most likely if the target
integrin to be antagonized was so critical as to compromise
the capacity of the cell to remain in contact with its ECM
substrate, since loss of attachment promotes anoikis.24 It is
worth noting, however, that the ECM present in tissues in vivo
is typically complex, consisting of a number of distinct proteins
bound by several different integrins. Moreover, cells often
express more than one integrin that can bind a given ECM
component. Therefore, the antagonism of a single type of
integrin heterodimer does not necessarily compromise sub-
strate attachment, or signaling events, that are mediated by
other integrins. For example, integrin avb3 has been
described to associate laterally with VEGF receptor 2 in

endothelial cells.53 Nevertheless, endothelial cells express at
least eight different integrin heterodimers,16 and antagonists
of integrin avb3 do not influence cell attachment to ligands of
other integrins present on the cell. Collagen is bound
principally by integrin a2b1 in endothelial cells. Antagonism
of avb3 does not prevent responsiveness to VEGF among
collagen-adherent cells.57 However, among endothelial cells
bound to fibrin, antagonism of integrin avb3 influences with
both adhesion and signaling events.55 The requirement for a
particular integrin to promote signaling events in response to a
growth factor is therefore likely to be influenced by the ECM
composition of the local microenvironment.
Cell responsiveness to growth factors in an ECM-depen-

dent context provides one ‘mechanistic’ explanation for the
general observation that integrin expression is matched to the
local ECM environment for a given cell. Moreover, it provides
a rationale for the transient alterations in integrin expression
observed during tissue remodeling events, concurrent with
the presence of stimulatory growth factors and the dynamic
turnover and deposition of newECM. All of these observations
seem to fit the concept of a ‘dependence’ receptor.4

Antagonized integrins promote apoptosis of
adherent cells

If integrins act as dependence receptors, it follows that the
expression of unligated integrins should promote apoptosis,
independent of macroscopic changes in cell morphology,
such as detachment. In vivo, this would be expected to occur
only if the repertoire of integrin heterodimers expressed on a
given cell was poorly matched to the local ECM environment.
Alternatively, appropriate integrins might be prevented from
binding the ECM by other means, such as by the presence of
soluble integrin antagonists. In fact, apoptosis does occur
under these circumstances.15,58–60 Cell surface expression of
integrins in the antagonized60 or unligated state58 can
promote apoptosis among otherwise attached and ‘spread’
cells.
Using the example presented in the previous section,

endothelial cells expressing integrins a2b1 and avb3 can
readily attach to, and spread on, a collagen gel. Collagen
provides a ligand for a2b1 (but not avb3), permitting signaling
events and cell spreading to occur. However, the endothelial
cells will nonetheless undergo apoptosis on this matrix. This
process, which we termed IMD (integrin-mediated death), can
be initiated by unligated or antagonized integrin b (b3 and b1)
subunits. The unligated avb3 receptors appear to form
clusters on the surface of the cells that colocalize with
caspase activity.58 Unligated or antagonized avb3 integrins
associate with caspase 8.58,61 Indeed, in many cases in vivo,
antagonism or nonligation of integrins promote caspase 8-
dependent apoptosis.62,63 These observations suggest that at
least a subgroup of integrins may ‘require’ ligation to maintain
cell viability, thus functioning as ‘dependence’ receptors.
An apparent mechanistic difference between integrins and

canonical dependence receptors, however, is that integrins
are associated with the cytoskeleton and act as ‘mechanically’
coupled receptors.64 Integrins require an immobilized sub-
strate ligand (or other tensional force) to promote sustained
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signaling and cytoskeletal remodeling. Thus, although the
presence of a soluble netrin may be sufficient to promote
survival of cells expressing the dependence receptor DCC,65

soluble integrin ligands are generally insufficient to maintain
cell survival, and instead tend to act as antagonists which
prevent engagement of substrate ligands, thus promoting
integrin-mediated death.
A subtle difference may also be indicated by the observa-

tion that during IMD, unligated integrins, or ‘unligatable’
integrin fusion proteins, have been observed to accumulate
and form clusters on the surface of dying cells (or possibly
on endosomes just below the cell surface).58 It is not clear
whether this clustering facilitates apoptosis, or whether it is
simply a byproduct of the programmed cell death pathway,
although clustering of cell-surface integrins with antibody
results in caspase 8 recruitment.58 If clustering is required for
initiation, then this presents another subtle difference between
integrins and DCC-type dependence receptors, which are not
proapoptotic when clustered.

Unligated integrins recruit caspase 8

Unligated or antagonized integrins, like dependence recep-
tors, recruit caspases,58 and this recruitment is critical to
trigger programmed cell death. Unlike DCC, UNC5Hs and
RET, which promote apoptosis via direct association with
caspase 9 and subsequent cleavage and liberation of a
cytoslolic addiction/dependence domain, unligated integrins
initiate a caspase 8-dependent pathway.61,63,66–68 The
colocalization and coprecipitation of caspase 8 with unligated
integrins has been shown.58,61 However, pull-down type
studies using recombinant GST-integrin cytosolic domains
suggest that this interaction is not a simple 1 : 1 stoichiometric
binding, or alternatively results from an indirect interaction
with a third protein in the integrin-associated complex
(unpublished observations). In either case, integrins differs
from the known Netrin/NTF/GDNF type of canonical depen-
dence receptors, which induce apoptosis in a caspase 9-

depedent manner and with apparently simple stoichiometry.4

However, integrin-mediated death is similar to apoptosis
induced by the b-amyloid precursor protein (APP), a
dependence receptor which initiates apoptosis via activation
of caspase 869 and also happens to associate with integrins at
sites of ECM contact.70 Interestingly, substrate-ECM contact
may also prevent apoptosis induced by APP.

Proteolytic cleavage of the integrin cytosolic
domain

Unlike DCC, RET and other dependence receptors, the
b-integrins and APP bear relatively short cytosolic domains.
Both also contain a cytosolic NPXY motif, and lack traditional
cytosolic addiction/dependence domains (ADD) described
in other dependence receptors.4 Both APP and b-integrins
are processed via cytosolic proteases; caspases in the case
of APP and APP-like proteins, and calpain in the case of
integrins.71 However, there is a significant difference between
the two at this point. In the case of APP, the protease-liberated
cytosolic peptide is proapoptotic,69 while in the case of the
integrin, expression of the free cytosolic domain of integrin
does not. In fact, the cytosolic domain of integrin requires
membrane localization to promote apoptosis,58 and it is
possible that calpain-mediated cleavage of the b-integrin
cytosolic domain observed in ECM-deprived cells may even
act to delay apoptosis by preventing IMD.72 Despite these
differences, the parallels between the APP and integrin
systems are compelling, and the functional colocalization of
the receptors leaves open the possibility that these elements
may act coordinately to regulate the same ‘dependence
pathway.’ A comparison of integrins and canonical depen-
dence receptors is shown in Table 2.

Integrins as ‘modular’ receptors

There is an additional matter to consider when one compares
integrins to classical dependence receptors. The short

Table 2 A comparison of integrins with canonical dependence receptors

Integrins Canonical dependence receptors

Signaling
Activate MAPK Yes Yes (DCC, RET)
Suppress p53 activity Yes (avb3) Yes (UNC5H)
Cooperative signaling with growth factors Yes Yes (APP)
ERK-feedback regulates receptor activity Yes Yes (APP)
Activation of small GTPase-mediated actin remodeling Yes Yes (DCC)
Requires a substrate-immobilized ligand Yes No

Apoptosis
Proapoptotic when unligated or antagonized Yes (avb3, a5b1, a3b1) Yes
Requires cytosolic domain Yes Yes
Cleavage of cytosolic domain for apoptosis No Yes
Receptor clustering prevents apoptosis No Yes
Soluble ligand prevents apoptosis Noa Yes
Apoptosis via caspase 8 Yes Yes (APP)
Apoptosis via caspase 9 Yesb Yes (DCC, UNC5H, RET)

aTypically, a true soluble ligand acts as an antagonist, and promotes apoptosis. Nevertheless, there have been reports in transformed cells where the presence of a
soluble ligand can promote survival. bUnligated and antagonized integrins typically activate caspase 8 triggering integrin-mediated death. However, caspase 9 is often
activated downstream of caspase 8, amplifying the death signal, and can be eventually activated in response to cumulative cell stress due to a lack of ‘survival signals’
(via anoikis) in cells in which the caspase 8 pathway is inoperative.
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cytosolic domains of the integrins initially lead investigators to
search for cytosolic adaptors or kinases that might associate
with integrins, and thusmediate the signaling events observed
following ligation of substrate ECM. The prototype kinase
discovered in the early studies, FAK,37 was only the tip of an
expanding number of signaling proteins that colocalize with
integrins at focal adhesion sites.43,49,73–75 In fact, many of
these proteins associate with integrins located outside the
context of a focal adhesion complex, or in the absence of
ligand.73

It would not be unreasonable to view these integrin-
associated proteins as ‘surrogate’ cytosolic domains, similar
in function to the large kinase and/or adaptor domains that
comprise the cytosolic peptides of many signaling receptors,
including dependence receptors.4 Thus, while integrins
themselves do not bear caspase-liberated ‘addiction/depen-
dence domains,’ caspases do specifically and selectively
cleave a number of cytosolic, integrin-associated proteins,
including FAK,76,77 p130 CAS,78 tensin,79 paxillin and
talin80,81 among others. Cleavage of these proteins has been
observed during programmed cell death in response to a
variety of apoptotic stimuli.
It is worth noting that the products of these cleavage events

are themselves often proapoptotic. Much like an addiction/
dependence domain, the expression of recombinant frag-
ments of these integrin-associated proteins can induce
apoptosis when expressed independently in cells. Therefore,
while integrin cytosolic domains themselves do not appear
to be cleaved directly by caspases, the cleavage of these
cytosolic, integrin-associated proteins may act analogously
to the cleavage of true addiction/dependence domains in
canonical dependence receptors.

Signaling cascades and the integrin
rheostat

The expression of dependence receptors in the absence
of an appropriate ligand initiates programmed cell death.
It is not yet evident whether the induction of programmed
cell death by dependence receptors in the absence of
ligand may be suppressed by other cell signals, although
it seems that direct inhibition of the apoptotic signaling
cascades should act to relieve dependence. In the case
of integrins, cells can survive with cell surface integrins
unligated (or apparently unligated) under a number of
conditions.
The most obvious example of nonadherent cell populations

are those which are blood-borne, including platelets and
cells of the innate and adaptive immune response, as well
as stem-cell-like ‘precursor cell populations.’ These cells
are often metabolically quiescent, and tend to regulate
their integrins to exist in a low affinity state, as shown by
protein conformation and ligand-binding investigations.82–85

These conformational changes exist in the extracellular
ligand-binding domains and the cytoplasmic domain,86 which
may influence the capacity to influence apoptosis and
cell survival. However, the expression of hematopoietic cell-
specific proteins, as well as the quiescent metabolism of these

cells, likely also contributes to cell survival in the absence of a
substrate ligand.
All cells appear to tolerate some level of unligated integrins

without committing to undergo apoptosis.10 Important
variables would appear to include which specific integrins
are ligated by the ECM34 and how rigid the substrate
ECM is.87 Integrins are mechanoreceptors, able to sense
substrate rigidity via periodic contraction of the integrin-
associated cytoskeleton.88 This results in the recruitment
of additional cytoskeletal elements to strengthen the interac-
tion,89 which themselves are sensitive to the presence of
mechanical force.90 Lack of tensional forcesmay compromise
the ability of integrins to mediate productive signaling into the
cell, particularly among signaling events that are dependent
upon the cytoskeleton. By contrast, signaling via Src kinases
does not appear to require significant matrix rigidity.91

Therefore, integrins which are potent activators of src kinases,
such as avb3, may permit cellular invasion of less rigid
matrices.92

These observations go a long way towards explaining why
tissue culture plastic provides an excellent foil to counter
proapoptotic stimuli; It sustains integrin–cytoskeletal interac-
tion and signaling. Indeed, the cytoskeletal focal complexes
observed on cells cultured upon a two-dimensional rigid
surface is significantly larger than those observed among cells
interacting with a three-dimensional matrix.93

The signals arising from these complexes impact the cell’s
propensity to undergo apoptosis, as described above.
Downstream of FAK/Src Family kinases, integrins mediate
activation of the small GTPase Ras.39 The Ras pathway
bifurcates, activating both the MAPK signaling pathway and
the PI3K/Akt signaling pathways, each of which potentiates
cell survival.94 The activation of MAPKs has been linked to
integrin-dependent survival in a number of cases.40,51,57,67,95

Nevertheless, the activation of PI3K/Akt may be more
important at regulating cell viability in the presence of
unligated integrins, since constitutively active Akt prevents
apoptosis induced via death receptors96–100 or active forms of
caspase 8.101 It is possible that Akt may phosphorylate a
peptide loop on caspase 8 proximal to the catalytic site.102

Akt activity also compensates for the absence of integrin
ligation during cell stresses such as growth factor with-
drawal, which results in the activation of caspase 9,
implicating Akt as a major mechanism of regulating cell fate
(Figure 2). In this respect, inactivation of PTEN, the major
phosphatase controlling PI3K/Akt signaling, is commonly
observed in tumors, and contributes to the anchorage
independence of these cells.103,104 Activation of Akt via
overexpression of integrin-linked kinase has a similar
effect.105 While this discussion in not comprehensive,
these interactions along the Akt signaling axis provide a
mechanism to explain how ligated integrins can mediate
signaling events which oppose cell death induced by a
variety of proapoptotic stimuli, including unligated
integrins. Thus, integrins can be viewed to function as a
rheostat. Ligated integrins sense both the composition
and relative rigidity of the local ECM, and transmit appro-
priate signals to the cell. This, in turn, influences the
cell’s ability to suppress or escalate proapoptotic signaling
events.
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Physiological roles for cellular
‘dependence’ on the ECM

The collective data support a function for integrin-mediated
cell anchorage in the regulation of tissue homeostasis. The
fact that integrins are actin-coupled mechanoreceptors
permits them to sense not only the composition but also the
relative integrity of the local ECM. These factors may act to
ensure that aberrant cells, or cells which become ‘misplaced,’
fail to thrive. In this context, a cell may be considered
misplaced if the ECM surrounding it changes, and the cell
does not successfully adapt to the new environment via
alterations in integrin expression. This might also occur if the
cell migrates into a neighboring tissue with a distinct ECM
composition. This biosensor function of integrins acts to
regulate routine physiological events, such as epithelial
differentiation,18 immune cell functions,106,107 wound healing
events17 and angiogenesis.16 During these tissue remodeling
events, extensive ECM remodeling can occur, and cell
survival is influenced not only by the simple presence or
absence of ligand but also by the specific forms of a given
integrin ligand that are present. In particular, proteolytic
cleavage of pre-existing matrix proteins can alter the integrity
(and physical rigidity) of the local microenvironment and

provide soluble ECM fragments which can antagonize
integrin binding to substrate ECM.108 When one considers
the capacity of integrin-mediated adhesion to modulate both
apoptotic and growth factor signaling, the sequential altera-
tions to the ECM that occur during tissue remodeling provide
an elegant mechanism to attune the responses of individual
cells based on the status of a particular cell’s immediate
microenvironment.
These same mechanisms that regulate cell survival during

physiological tissue remodeling events may also act as first
line of defense against tumorigenesis. Cells that sponta-
neously engage in motile behavior may invade a region of
incompatible ECM, or alternatively may modify their local
ECM through the production of proteases to produce an
incompatible microenvironment.109 In either case, the default
pathway induced is apoptosis. However, tumors that establish
themselves in vivo often find a mechanism to avoid these
pitfalls. Many tumors recruit stromal fibroblasts, which both
secrete ECM components and apply mechanical tension to
the secreted ECM.17,110 Some tumors that express an integrin
inappropriate to their local ECM simply secrete a required
ECM component that permits ligation of the integrin.111,112

In others, tumors may activate cytosolic signaling pathways
downstream of integrins that regulate apoptosis. As

Figure 2 The regulation of cell survival by integrins. The integrins, depicted as a/b heterodimers, induce signaling events which impact cell viability as a general event.
The right panel indicates integrin interactions that influence apoptosis induced via the intrinsic, or stress pathway, in response to cell stresses such as genotoxic agents or
growth factor withdrawal. Integrin-mediated activation of Akt and the ERK pathway via the intermediate Ras-activated protein Raf are shown. Mitochondrial integrity is
typically compromised in response to cellular cues activated by cell stresses via the recruitment of BH3 proteins (such as Bad) to the membrane. The release of
cytochrome c and other factors permits the formation of the apoptosome, activating caspase 9, and in turn the executioner caspases. Akt and Raf can act directly on BH3
proteins, and in some cases on caspase 9, preventing the activation of this pathway. Sustained Erk activation (and NFkB activation) induced alterations in cell
transcription that result in the production of endogenous inhibitors of this pathway (cIAPs, Bcl-2), including protective Bcl2 family proteins (which maintain mitochondrial
integrity) and cellular inhibitors of apoptosis (which inhibit caspase 9 and executioner caspases). The left panel depicts the inhibition of apoptosis via the extrinsic
pathway triggered by death receptors and unligated integrins. Again, Akt directly inhibits apoptosis induced by caspase 8, regardless of the mechanism by which it is
recruited to the membrane (integrins, death receptor or targeted construct). In addition, transcriptional events lead to the expression of c-Flip, which can inhibit
precaspase 8 recruitment to ligated death receptor complex, as well as cIAPS, which may ameliorate caspase 8-dependent activation of the mitochondrial pathway (via
caspase 9) or the action of the executioner caspases. Note that the ligated and unligated integrins function rheostatically – not only do the unligated integrins fail to
transmit survival signals (thereby increasing the cellular propensity to undergo apoptosis) but they also promote the recruitment and activation of caspase 8 at the cell
membrane, directly triggering apoptosis
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previously mentioned, the Akt pathway can be activated by a
number of mechanisms, including loss of the phosphatase
PTEN.74 Finally, tumors often simply lose or suppress the
expression of genes that are required to induce apoptosis. In
the case of disseminated neuroendocrine tumors, such as
small-cell carcinoma and neuroblastoma, the loss of caspase
8 is associated with malignant disease.113,114 Importantly, the
frequency with which these events are observed in estab-
lished tumors suggests that the requirement for integrin
ligation by the local ECM imposes an important hurdle that
must be overcome during oncogenesis (Figure 3).

Conclusions

While the concept of ‘anchorage dependence’ is more than
five decades old, the cellular and extracellular protein
constituents mediating these events have only been char-
acterized within the last two decades or so. The dependence
receptor hypothesis holds that dependence receptors are
double-edged swords, mediating positive signaling in the
presence of a ligand and negative signaling (leading to cell
death) in the absence of an appropriate signal. In this regard,
integrins clearly satisfy the requirements of a dependence
receptor. However, integrins are intimately tied to one the
most basic elements of the cell, the actin cytoskeleton, and
thus impact life and death pathways through different
mechanisms than many of the canonical dependence
receptors. It will be interesting to determine in future studies
how integrins interact with the dependence receptors, and to
determine whether signaling pathways that alleviate cellular
‘dependence’ on the ECM via integrins can also impact cell
fate governed by dependence on other trophic factors.
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