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Top-down controls on bacterial community

structure: microbial network analysis of bacteria,

T4-like viruses and protists

Cheryl-Emiliane T Chow, Diane Y Kim, Rohan Sachdeva, David A Caron and
Jed A Fuhrman
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Characterizing ecological relationships between viruses, bacteria and protists in the ocean are
critical to understanding ecosystem function, yet these relationships are infrequently investigated
together. We evaluated these relationships through microbial association network analysis of
samples collected approximately monthly from March 2008 to January 2011 in the surface ocean
(0-5m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan
communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal
restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and
18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar
timing of responses to environmental and biological parameters. We linked T4-like myoviral,
bacterial and protistan operational taxonomic units by local similarity correlations, which were then
visualized as association networks. Network links (correlations) potentially represent synergistic
and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We
found that virus—bacteria relationships were more cross-linked than protist-bacteria relationships,
suggestive of increased taxonomic specificity in virus—bacteria relationships. We also found that
80% of bacterial-protist and 74% of bacterial-viral correlations were positive, with the latter
suggesting that at monthly and seasonal timescales, viruses may be following their hosts more
often than controlling host abundance.

The ISME Journal (2014) 8, 816—829; doi:10.1038/ismej.2013.199; published online 7 November 2013
Subject Category: Microbial population and community ecology

Keywords: microbial network; top-down controls; virus—host interaction; grazing; microbial ecology

Introduction

Bacterial activity in the ocean is a key driver of
biogeochemical cycles; this activity is mediated
by bottom-up controls (for example, resource
availability and competition), top-down controls
(for example, predation and viral lysis) and also
bacteria—bacteria interactions (for example, allelo-
pathy or living in consortia). The microbial loop
thus links bacteria, protists and viruses, creating a
complex microbial community where the bacteria
consume organic carbon produced by other organ-
isms following natural death, grazing by protists or
viral infection (Azam et al., 1983; Sherr and Sherr,
1988; Fuhrman and Suttle, 1993; Bratbak et al.,
1994; Fuhrman, 1999). The dominant top-down
controls, or sources of bacterial mortality, in the
open ocean are thought to be viral lysis and
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protistan grazing. Although widely accepted as
important, the relative contribution of each control
remains a subject of debate and no doubt differs
based on location, time, physiological status or
identity of the bacteria.

Many studies have sought to quantify grazing and
viral lysis to determine the impact of top-down
or bottom-up controls on structuring microbial
communities (Fuhrman and Noble, 1995; Strom,
2000; Simek et al., 2001; Sherr and Sherr, 2002;
Evans et al., 2003; Weinbauer et al., 2003, 2007;
Zhang et al., 2007; Baudoux and Veldhuis, 2008;
Longnecker et al., 2010; Staniewski et al., 2012).
Most studies enriched or removed grazers and
viruses to investigate short-term or episodic impacts
from which long-term influences were inferred.
For example, reduction in grazer activity affected
bacterial diversity of active cells, but removal of
viruses only affected rates of activity and not
diversity of the active cells (Longnecker et al.,
2010). Another study similarly suggested that
viruses may help control the abundance of rare
organisms through selective mortality (Bouvier and
del Giorgio, 2007), although the net influence of
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viruses on bacterial communities has been report-
edly mixed (Schwalbach et al., 2004; Hewson and
Fuhrman, 2006). Bottom-up controls also affect
bacterial diversity yet the net effects may still
depend upon viral or protistan activity (Moebus,
1996; Middelboe, 2000; Gasol et al., 2002; Corno and
Jiirgens, 2008; Sandaa et al., 2009; Ory et al., 2010;
Bouvy et al., 2011). These investigations collectively
revealed close couplings between viruses, bacteria
and protists, but questions remain in our under-
standing of how ‘top’ communities of viruses and
protists affect bacteria at natural concentrations
over long timescales.

Ecological networks of trophic interactions have
historically been used to characterize complex food
webs by the positive and negative interactions
within (Sole and Montoya, 2001; Dunne, 2002;
Montoya et al., 2006; Olesen et al., 2011). Network
analysis has only recently been applied to microbes,
and our ability to interpret these networks is
still under development (Fuhrman and Steele,
2008; Chaffron et al., 2010; Steele et al., 2011;
Eiler et al., 2012; Gilbert et al., 2012). Positive
correlations may suggest co-occurrence due to
(1) similar preferred conditions, (2) commensalism
or (3) a mutualistic relationship between organisms
cooperating within the same niche. Indirect rela-
tionships, where a third party benefits from an
interaction between two others, are potentially
common (Miki and Jacquet, 2008, 2010) and may
also be detected as a correlated set of three or more.
Indirect relationships may also appear as a single
correlated pair if the indirect partner is rare or only
weakly correlated. Negative correlations, or time-
lagged positive ones, may suggest the presence of
predation (protist—protist, protist-bacteria and
bacteria—bacteria), viral lysis (virus—bacteria) and
competition (any two taxa). Time-shifted correla-
tions between viruses and bacteria could represent a
succession of taxa perhaps resulting from a lysis
event, whereas correlations of bacteria to environ-
mental, viral or protistan parameters could indicate
to what extent the environment, viral pressure or
grazing activity drives bacterial abundance and
community structure.

Here, we queried a seasonally variable, semi-
oligotrophic, surface ocean bacterial community
monthly over 3 years to determine the links between
protistan, viral and environmental factors using
culture-independent community fingerprinting
methods, community similarity metrics, local
similarity analysis (LSA) and construction of asso-
ciation networks. Past research at the San Pedro
Ocean Time series (SPOT) has investigated correla-
tions among the smallest plankton, specifically
bacteria, protists and archaea over time (Fuhrman
et al., 2006; Fuhrman and Steele, 2008; Steele et al.,
2011). In this study, association networks (built from
LS correlations between individual bacterial,
protistan, T4-like myoviral and environmental
parameters, including possible time lags) revealed
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clusters of operational taxonomic units (OTUs) that
likely reflect ecologically relevant interactions. We
focused specifically on the T4-like myovirus family
in lieu of the entire viral community; T4-like viruses
are diverse, abundant, detectable through cultiva-
tion-independent methods and include bacterio-
phages of marine cyanobacteria and SAR11/
Pelagibacter (Filée et al., 2005; Comeau and
Krisch, 2008; Clokie et al., 2010; Chow and
Fuhrman, 2012; Zhao et al., 2013). Over this time
series, our observations on correlated OTUs
revealed: (1) many T4-like virus OTUs significantly
correlated to individual bacterial OTUs (reflective of
bacterial hosts susceptible to multiple viruses), (2)
single viral OTUs significantly correlated with
multiple bacterial OTUs (suggestive of a virus’
capability to infect multiple hosts), (3) protistan
OTUs significantly correlated with multiple bacter-
ial OTUs (as evidence of non-selective grazing in the
case of a phagotroph or broad bacterial use of
nutrients released from phototrophs) and (4) proti-
stan OTUs significantly correlated with a single
bacterial OTU or taxonomic group (due to selective
grazing or nutrient transfer). Finally, inter-correlated
clusters of parameters emerged that detailed poten-
tial ecological niches and microbial guilds worth
further investigation.

Materials and methods

Sample collection

Seawater (~201) was collected approximately
monthly at 0 or 5m at the University of Southern
California’s Microbial Observatory at SPOT (33’ 33°
N, 118’ 24° W) and filtered for free-living protistan
(0.7—20 um), bacterial (0.22—1 pm) and viral (30 kDa—
0.22 ym) community DNA from March 2008 to
January 2011, as previously described (Countway
et al., 2005; Fuhrman et al., 2006; Vigil et al., 2009;
Countway et al., 2010; Steele et al., 2011; Chow and
Fuhrman, 2012; Kim et al., 2012; Chow et al., 2013).
Molecular data was unavailable for October 2008
(virus), January 2009 (all), March 2009 (bacteria),
October—November 2009 (bacteria) and January 2011
(protist). Bulk seawater samples were also collected
and analyzed for bacterial and viral abundance by
SYBR green epifluorescence microscopy, bacterial
production by thymidine and leucine incorporation,
and nutrient concentrations using colorimetric
methods (Chow et al., 2013).

Fingerprinting microbial communities

Bacteria and  viruses. Bacterial community
composition was determined by Automated Riboso-
mal Intergenic Spacer Analysis (ARISA) (Fisher
and Triplett, 1999; Brown et al., 2005; Chow et al.,
2013; Needham et al., 2013). T4-like myovirus
communities were analyzed by terminal restriction
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fragment length polymorphism (TRFLP) of g23,
which encodes the major capsid protein (Chow
and Fuhrman, 2012). Viral fingerprints were
obtained from both terminal fragments (5’ and 3').
ARISA and g23-TRFLP products were run in
duplicate on non-adjacent lanes on an ABI377 by
slab gel electrophoresis with internal size standards
(Bioventures, Murfreesboro, TN, USA) every 25bp
(50-900bp) or 50bp (900-1400bp). Peaks were
identified in DAx (van Mierlo, Inc, Eindhoven,
The Netherlands). Fragments, 400—1210 bp (ARISA)
and 50-500bp (g23-TRFLP), were rounded to the
nearest 0.1 bp and dynamically binned (Ruan, et al.,
2006b; Chow and Fuhrman, 2012). The resulting
bins were manually curated to merge bins <0.1bp
wide with the nearest neighbor; each assay was
binned independently. ARISA OTUs were assigned
an identity by matching ARISA lengths with known
sequences and their ARISA products (Chow et al.,
2013; Needham et al., 2013); terminal fragments
from in silico analysis of publicly available T4-like
viral genomes were used to assign identities to
environmental g23-TRFLP OTUs.

Protists. Dominant taxa within protistan assem-
blages were characterized by 18S rDNA-based
TRFLP using Euk-A and Euk570-R primers for PCR
and Haelll for digestion (Countway et al., 2005; Vigil
et al., 2009); fragments were analyzed on a Beckman
CEQ 8000 (Brea, CA, USA). Fragments from Ostreo-
coccus sp. and Phaeocystis globosa cultures were
used as positive controls for calibrating and verify-
ing fragment sizes. Protistan OTUs were identified
from in silico digestion of 1341 18S rRNA gene
sequences from October 2001 at SPOT (Kim et al.,
2012).

Peak analysis for all communities. Unique
fragment lengths were considered as individual
OTUs. Relative abundance of each OTU was
calculated by dividing a peak’s area by the total
area within the monthly fingerprint. Bacterial and
viral OTUs <0.1% of the community and protistan
OTUs <0.5% of the community were removed from
further analysis, and the remaining peaks were
normalized by sample to determine relative abun-
dance per month; each community thus totaled
to 100%.

Data analysis

Community similarity. Bray—Curtis similarity was
determined for each microbial community indepen-
dently for all monthly pairwise comparisons in
PRIMER-E v6 (Clarke and Gorley, 2006). Bray—Curtis
resemblance matrices were compared using RELATE
(PRIMER-E), a Mantel-type test, with a Spearman
correlation and 999 permutations. Correlations
of Bray—Curtis similarities for adjacent month
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comparisons only were calculated by Pearson-
product-moment (Sigmaplot11, San Jose, CA, USA).

Co-correspondence  analysis  and  canonical
correspondence analysis. Determination of covar-
iance of microbial community data by co-correspon-
dence analysis was completed with coccorresp in R
(Braak and Schaffers, 2004; Simpson, 2009) on
log-transformed relative abundance data for months
where all three microbial community data sets were
available (n=28). Any OTU present in <5 months
was excluded. Significance testing was completed
by cross-validation with the ‘leave-one-out’ method
and permutation tests (n=99). Covariance of com-
munities with environmental parameters was deter-
mined in R using cca with a stepwise model from
the vegan package v2.0.2 (Oksanen et al., 2011);
models were validated by analysis of variance.
Estimates for chlorophyll-a concentrations and
primary production were downloaded for the grid
area surrounding SPOT from National Oceano-
graphic and Atmospheric Administration (NOAA)
Coastwatch: (a) SeaWiF§S, 0.04167 degrees, West US
Science Quality for Chlorophyll-a and (b) SeaWiFS
and Pathfinder, 0.1 degrees, Global, Experimental
data sets for primary productivity (Hooker and
McClain, 2000). Environmental data were trans-
formed as follows: log(value) for bacterial produc-
tion by thymidine and leucine incorporation,
calculated turnover time, chlorophyll-a (bottle) and
satellite-based chlorophyll-a; log(value +0.01) for
NO,, NO; and PO,; square-root for bacterial and
viral abundance and the virus:bacteria ratio; no
transformation for salinity, temperature, sea surface
height differential, primary production (satellite),
day length and monthly change in day length.
Missing environmental data were filled with the
overall mean of the transformed data; all data were
then normalized to a common scale (subtracted
means and divided by s.d.) to account for differ-
ences in units before completing canonical corre-
spondence analysis analyses.

LSA and network analysis. We determined
LS correlations (ranked Pearson’s correlations) by
LS analysis (eLSA) using a linear interpolation for
missing values and a delay up to 1 month (Ruan
et al., 2006a; Steele et al., 2011; Xia et al., 2011,
2013). Any OTU or environmental parameter that
occurred in <5 months was excluded, resulting in
227 bacterial OTUs, 376 T4-like viral OTUs (3": 171,
5t 205), 70 protistan OTUs and 30 environmental
parameters. P-values were determined using statis-
tical approximation followed by permutation testing
to reduce computing time while ensuring accuracy
(eLSA option: pmix (Xia et al., 2013)). First, P-values
were determined for all vs all pairwise relationships
using Feller’s theoretical approximation based on
the approximate tail distribution of the maximum
partial sum of independent identically distributed
random variables (pueo); second, for any pairwise



relationship with py,.,<0.05, the more robust yet
more intensive, permutation-based (n=2000)
P-value (pyerm) was determined. Only local similarity
(LS) correlations with g-value <0.10 and
DPperm <0.0015 were retained for further analysis.
The g-value (or false-discovery rate) was the more
stringent criteria and led to the specified P-value
cutoff; by employing q<0.10, no more than 10% of
all remaining ‘statistically significant’ LS correla-
tions may be due to error. These remaining LS
correlations were visualized in Cytoscape v2.8.2
(Shannon, 2003; Cline et al., 2007; Smoot et al.,
2011). Example networks were selected by taxo-
nomic OTU identification (for example, cyanobac-
teria) or edge type (or example, correlations between
specific OTUs). Random undirected networks of
equal size by number of nodes and edges were
calculated by the Erdés—Rényi model using the
Random Network plugin in Cytoscape. Network
statistics were calculated with Network Analyzer
as undirected networks using the defaults (Assenov
et al., 2008).

Results

Monthly covariance in microbial communities
and the environment
T4-like virus community structure varied less
than bacterial or protistan communities, whether
compared between all months (Figure 1a) or
between adjacent months only (Figure 1b). Month-
to-month shifts in viral, bacterial and protistan
communities occurred concurrently over the 3-year
period (Figure 1b). Protistan similarity patterns were
significantly correlated with the bacterial commu-
nity when comparing across all months, although
not for communities 1 month apart (Table 1).
Protistan community similarity between adjacent
months (1 month lag only) was positively correlated
with primary production estimates (r=0.579,
P=0.004) and negatively correlated to sea surface
temperature (r= -—0.434, P<0.05). Shifts in com-
munity composition of T4-like viruses and bacteria
between adjacent months and across all months
(any length lag) were also positively correlated;
in addition, the 5’ (5H) and 3’ (3H) TRFLP assays
for the T4-like viruses were highly correlated as
expected, given that they are two related measures
(Table 1). Bray—Curtis similarities for bacterial
community composition between adjacent months
were also negatively correlated to sea surface
temperature (r= —0.491, P=0.024) such that
communities were more similar from month-to-
month during colder months. Bray—Curtis simila-
rities between adjacent months for T4-like viral
communities were significantly correlated to bacter-
ial abundance (Figure 1c) and bacterial Bray—Curtis
similarities between adjacent months (Figure 1d).
Co-correspondence analysis (Braak and Schaffers,
2004) uncovered covariance of communities
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Figure 1 Month-to-month shifts in Bray—Curtis similarity within
microbial communities. (a) Average similarity within each
community, observed approximately monthly, over 3 years. ‘All’
indicates the average similarity of all communities (that is,
bacteria, viral and protistan) combined into one meta-community.
Line, average similarity; box, 25th and 75th percentiles; and error
bars, 10th and 90th percentiles. (b) Bray—Curtis similarity
between adjacent months for each microbial group, plotted
according to the earliest month (that is, March 2008 for comparing
March 2008—April 2008). (c) Correlation of bacterial abundance (y
axis) and (d) shifts in bacterial Bray—Curtis similarity between
adjacent months (y axis) to viral Bray—Curtis similarity (x axis).

Table 1 Correlation of variability patterns between microbial
communities based on Bray—Curtis similarities

Bacteria Virus Virus Protist
(3'H) (5'H)
Bacteria r=0.546 r=0.532 r=0.113
P=0.01 P=0.01 P=NS.
T4-like virus r=0.21 r=0.884 r=0.154
(3'-Hincll) P=0.022 P<0.001 P=NS
T4-like virus r=0.178 r=0.771 r=0.088
(5’-Hincll) P=0.046 P=0.001 P=NS
Protist r=20.238 r=0.046 r=0.118
P=0.018 P=NS P=NS

Abbreviation: NS, not significant.

Correlations between Bray—Curtis resemblance matrices comparing
all months are shown in lower left triangle and between communities
from adjacent months are shown in upper right triangle. Bold text
indicates statistically significant correlations.

from the relative abundance of each measured
OTU (Supplementary Table S1). In our analysis,
one microbial data set was considered as an
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independent data set (the predictor), while the
predictability of variance in a second (the response)
was determined. 47% of variance of one T4-like
virus TRFLP assay (3H) was predictable by the other
(5H), and 20% of T4-like (3H) variability was due
to changes in bacterial community composition.
No T4-like community variance was significantly
predictable by protistan community composition.
However, protistan community variance was
significantly predictable (P<0.05) by T4-like viral
community variance (5H, 9.2% and 3H, 8.4%)
and not by bacterial community composition.
Co-correspondence analyses were unable to estimate
bacterial community variance from T4-like or
protistan community data, despite overall correla-
tion in Bray—Curtis community similarities.

Microbial communities were predicted by up
to five environmental parameters at P<0.05 using
canonical correspondence analysis when compared
with the null model (Supplementary Table S1).
Bacterial variation (12%) could be explained
by chlorophyll-a concentration (bottle data) and
salinity, and protistan community variance (11.6%)
by day length and bacterial abundance. Day length,
change in day length, salinity and temperature
explained 28.3% of T4-like viruses (3H); viral
abundance, ENSO index, day length, change in
day length and temperature explained up to 33.5%
of variability observed within the T4-like viral
community (5H).

Correlations between individual bacterial, viral and
protistan taxa in association networks

Many significant LS correlations were observed
between viral, bacterial and protistan OTUs and
environmental parameters (Table 2). After signifi-
cance testing by permutation tests and screening by
P-values and false-discovery estimates (g-values),

4365 of 223446 (2%) possible pairwise LS values
were statistically significant (Supplementary Figure
S1) and formed one global network (Supplementary
Figure S2). Most non-significant LS values ranged
from —0.5 to 0.5 (that is, relatively weak correla-
tions). LS correlations for both viral assays had
largely similar distributions (Table 2). For simplicity,
only LS correlations with the 3" TRFLP (3H) viral
OTUs were included in the following network
figures (Figures 3-5, Supplementary Figures S3
and S4). We focused on 3H as month-to-month
shifts in Bray—Curtis similarity, and similarities
across all months between the 3H-viral and bacterial
communities were significantly correlated.

Positive and negative interactions were observed
between OTUs (that is, bacteria—bacteria, protist—
bacteria and virus—bacteria) with co-occurring (not
delayed) or time-shifted (delayed by 1 month) LS
correlations. Figure 2 depicts simple networks that
occurred within the whole community and the
underlying relative abundance data. In Network A,
a bacterial OTU and a protistan OTU were positively
correlated—potentially indicative of co-occurrence,
mutualism or predator-prey interaction. In Network
B, the positive time-shifted LS correlation observed
between one bacterial OTU and one viral OTU might
reflect a lytic relationship. Negative and delayed
correlations (not shown) between two viral OTUs
could indicate a competitive relationship for hosts,
whereas a negative correlation between OTUs may
indicate lysis (virus—bacteria) or grazing (protist—
bacteria). Pearson’s correlation coefficients were
close to LS values unless the optimal LS correlations
were time-shifted (Table 3).

Bacteria—virus interactions and bacteria—protist
interactions differed remarkably in their intercon-
nectivity (Figure 3) despite each network having 18
unique components (unconnected subnetworks).
The number of significant correlations between

Table 2 Distribution of significant LS correlations (edges) between all microbial OTUs and environmental parameters (P<0.0015,

q<0.10)
Nodes Bacteria Virus (3'-H) Virus (5'-H) Protist Bio+ Chem Phys

Bacteria 220 791

24090
T4-like virus (3'-HinclI) 168 428 462

36 960 14028
T4-like virus (5’-HinclI) 199 353 979 529

43780 33432 19701
Protist 61 82 97 116 39

13420 10 248 12139 1830
Biological or chemical 15 62 68 70 5 12

3300 2520 2985 915 105
Physical 6 46 93 94 9 10 9

1320 1008 1194 366 90 15

Abbreviations: Bio +chem, biological and chemical; Phys, physical.
‘Nodes’ indicates the number of OTUs or other parameters in the global network; the remaining columns indicate the number of significant

pairwise correlations in bold above the total number of possible correlations between node types. ‘Biological and chemical’ includes: bacterial
and viral abundances, nutrient concentrations, chlorophyll-a and so on; ‘Physical’ includes: salinity, temperature, day length, monthly change in

day length and so on.
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bacterial and T4-like virus OTUs (3H: 1.15% of all

a C _ 358
zz_ A [ ProHL()_828.8 _22 1 possible; 5H: 0.8%) outnumbered bacterial-
8E —=— Ciliate_590 e o protistan correlations (0.6%), although this may be
8E 0] | .08  because of the higher number of viral OTUs
;:g 154 15 & observed  (Table 2). The  protist-bacteria
38 10 n 10§ network (Figure 3a, Supplementary Figure S3)
5 I | 2 . . .
g 5+ '\ / \ 05 < differed from the  virus-bacteria  network
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the internal structure (that is, number of nodes and
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Figure 2 Two mini networks and the relative abundance of each
OTU over time. Each mini network (a and b) depicts microbial
OTUs as shapes (bacteria, circles; protists, diamonds; viruses,
v-shapes). Lines represent statistically significant LS correlations
with LS values shown: solid lines are positive correlations and
arrows are delayed correlations, pointing toward lagging OTU.
Relative abundance of each node is shown as a percent of each
microbial community from March 2008-December 2010 for each
network (c and d). Bacterial abundance is shown by the bar graph,
whereas the protistan (c) and viral (d) OTU relative abundance is
indicated by the line graph. * denotes the time-shifted viral OTU,

lengths (number of nodes needed to link individual
nodes) and a high clustering coefficient ratio such
that many nodes are connected to other nodes in
close-knit groups—more so than expected by chance
alone. Although an OTU in the protist-bacteria
network had 1.7 connections on average as opposed
to 3.5 connections in the virus—bacteria network,
these numbers are identical to those observed
in random networks of equal size and far fewer
than observed in the global network. However, net-

as described in Table 3. work density (normalized parameter for the
Table 3 Description of LS correlations displayed in Figure 2

Network OTU (x) OTU (y) Int. LS Xs Ys Length PCC Ppce
A Pro_HL(I)_828.8 Ciliate 590 pu 0.607 1 1 32 0.655 P<0.005
B 3H_296.9* Formos/SAR92_762.8" pdl 0.652 3 4 31 0.543 P<0.005

Abbreviations: Int., interactions ; LS, local similarity; OTU, operational taxonomic unit; PCC and Pycc are the Pearson’s Correlation Coefficient
with no delays and the associated P-value, respectively for the OTUs listed.

Interactions (Int.) indicate if correlations were positive with no time lags (pu) or positive with time lag (pdl). Xs and Ys note the month in which
the LS correlation begins, and ‘Length,” indicates the length of the LS correlation in months (of 34 maximum).

*denotes which OTU’s relative abundance was shifted by 1 month in Figure 2D.

bindicates which OTU’s relative abundance was ‘fixed’ in time.

No. of Edges

vvv?vvzzvvvvv
boo0b0 0 66666

Figure 3 Broad overview of interactions between (a) protists and bacteria only, and (b) T4-like viruses and bacteria only. Microbial
nodes are bacteria, circles; protists, diamonds; viruses, v-shapes. Node color indicates its number of edges according to the scale shown
in the upper right. Solid lines are positive correlations with no delay; dashed lines, negative correlations with no delay; sine-wave lines,
negative-delayed correlations; and forward-slashed lines, positive-delayed correlations. Arrows point toward the lagging OTU. Note that
correlations between similar taxa (for example, bacteria—bacteria, protist—protist and virus—virus) were omitted.
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Figure 4 Top five bacterial OTUs differentially correlate to bacterial, viral and protistan OTUs. Top five bacterial OTUs are highlighted
as white circles. All other nodes are bacteria, circles; protists, diamonds; viruses, v-shapes; abiotic, hexagon. Node labels indicate an
abbreviated identity (where available) and fragment length. Note that SAR11_S1 indicates SAR11 Surface Clade 1. Solid lines
are positive correlations with no delay; dashed lines, negative correlations with no delay; sine-wave lines, negative-delayed correlations;
and forward-slashed lines, positive-delayed correlations. Arrows point toward the lagging OTU.

average connectivity) was slightly higher in
the protist-bacteria network than virus—bacteria
network. Each bacterial OTU was typically
associated with a single protistan out, whereas a
protistan OTU was often correlated to several
bacterial OTUs to form small cliques. A viral OTU
was often correlated to multiple bacterial OTUs,
which were also correlated to two or more viral
OTUs, and resulted in one large interconnected
cluster. However, more correlated pairs of one viral
to one bacterial OTU were observed than pairs of
one protist to one bacterial OTU, which could skew
the network density calculations when looking at
average correlations per node overall. Network
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heterogeneity (unevenness of the number of con-
nections per node) is lower in protist-bacteria as
compared with a random network of equal size, but
higher in virus-bacteria, which would confirm a
higher skew in the distribution of connections per
viral OTU as opposed to protistan OTU. If secondary
connections between OTUs of the same type (that is,
bacteria—bacteria, protist—protist and virus—virus)
were also shown, many small clusters would be
connected although subgroups remained apparent.
We examined significant correlations for the five
most abundant surface ocean bacterial OTUs. These
four putative SAR11 and one Actinobacterium
(OCS155_435.5) were significantly correlated to
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Table 4 Global and local network statistics for microbial association networks

Parameters Bacteria, protist, Bacteria, protist, Protist Virus (3H)
and virus (3H and 5H) and virus (3H only) to bacteria only to bacteria only
Nodes 669 465 94 248
Edges 4365 2224 82 428
Positive edges (%) 3094 (70.9%) 1652 (74.3) 66 (80.5%) 317 (74.1%)
Negative edges (%) 1274 (29.1%) 572 (25.7%) 16 (19.5%) 111 (25.9%)
No. of components 1 1 18 18
No. of components, random 1 1 25 9
Diameter (radius) 10 (5) 9 (1) 8 (1) 14 (1)
Diameter (radius), random 4 (4) 5 (4) 10 (1) 11 (1)
Connectivity
Average number of neighbors 13.0 9.6 1.7 3.5
Network density 0.02 0.021 0.019 0.014
Likelihood for uneven distribution of edges
Network heterogeneity 0.958 0.94 0.591 0.953
Network heterogeneity, random 0.287 0.310 0.873 0.532
Centralization 0.114 0.092 0.036 0.051
Centralization, random 0.019 0.023 0.058 0.023
Identifying small-world properties
Average clustering coefficient (Cl) 0.241 0.227 ND ND
Clustering coefficient, random (Cl,) 0.02 0.022 ND ND
Ratio of Cl/Cl, 12.05 10.32 ND ND
Characteristic path length (L) 3 3.523 ND ND
Characteristic path length, random (L,) 2.797 2.957 ND ND
Log response ratio: Cl/Cl, 1.08 1.01 ND ND
Log response ratio: L/L, 0.03 0.08 ND ND

Abbreviation: ND, not determined.

Parameters were calculated for global networks of all microbial OTUs and environmental parameters with both (3H and 5H) and only one (3H)
viral data set (network shown in Supplementary Figure S2). Local parameters are presented for the protist-bacteria and virus—bacteria sub-

networks (seen in Figure 3 and Supplementary Figures S3 and S4).

several other viral, bacterial and protistan OTUs
(Figure 4). This network comprised 66 nodes and 67
edges. OCS155_435.5 was negatively correlated to
bacterial OTUs only. The four SAR11 OTUs were
correlated to bacterial and viral OTUs, with several
delayed correlations (1 month lag); SAR11_S1_666.4
was correlated to the El Nifio Southern Oscillation
Index (MEI). Four protistan OTUs, identified
as Ostreococcus_259, Ichtyosporea_593, Strameno-
pile_598 and Unknown_280, were correlated with
delay to two of the dominant SAR11 OTUs. The fifth
protistan OTU, Unknown_127, was negatively
correlated with no delay to SAR11_686.9.

Case study: cyanobacteria, possible grazers and viruses
Potential top-down relationships were determined
from cyanobacterial, protistan and viral OTUs;
this network of cyanobacterial OTUs and their
correlated partners has 65 nodes with 66 correla-
tions (Figure 5). Some cyanobacterial OTUs were
connected to multiple viral OTUs and others
were connected primarily to protistan or other
bacterial OTUs; many virus—bacteria correlations
were delayed. A non-simple path (a.k.a. a ring
structure or cycle) that also included internal rings
was identified for a series of correlations between
cyanobacterial OTUs, other bacterial OTUs and
one viral OTU. Three viral OTUs had TRFLP

patterns consistent with cultured isolates by
in silico analysis of g23 genes: (1) 3H_408.9:
S-SM2 isolated from Synechococcus WH8017;
(2) 3H_413.5: Syn9 or Syn19 isolated from Synecho-
coccus WH8012 and WH8109, respectively; and
(3) 3H_415.5: S-SSM7 isolated from Synechococcus
WH8109 (Sullivan et al., 2003, 2010; Weigele et al.,
2007). Protistan OTUs included two potential
cyanobacterial grazers: (1) dinoflagellate or Lingulo-
dinium-relative (though possibly a phototroph or
mixotroph) and (2) a ciliate. Salinity and tempera-
ture were correlated to a potentially low-light
Prochloroccus (OTU 907.8).

Discussion

Potential bottom-up controls on bacterial, protistan
and viral communities

We undertook an integrated assessment of bacterial,
protistan and T4-like viral communities over
3 years to address microbe—microbe interactions
in the surface ocean and their relationship to
environmental conditions. ARISA and 18S TRFLP
both surveyed the entire domain of bacteria and
protists, respectively, whereas g23-TRFLP focused
on a specific viral family, the T4-like viruses.
ARISA resolved organisms near the species-level
(Brown and Fuhrman, 2005; Brown et al., 2005) and

823

The ISME Journal



Top-down controls on bacterial communities
C-ET Chow et al

Owenw| 116_654.9

3%“ o8 Pis@psa.s
v
0.61 0.64
N
Pro. )_912.5

063 T o6

ot@ise  -gss 3&%&1

0.6

Pro @1)782
%

0.63

PI; 61.8

1993.6 SA‘679.4

Dinofl ) ate/Lingulo
ultdre_336
0.82

Figure 5 Cyanobacterial OTU correlations to other microbial OTUs reveal potential lytic virus—host relationships, grazing and temporal
trends. Cyanobacteria OTUs are noted as white circles and labeled as Prochlorococcus (Pro) or Synechococcus (Syn), followed by
ecotype designation (HL: high light; LL: low light; A/B: Synechococcus group). All other nodes are bacteria, circles; protists, diamonds;
viruses, v-shapes; abiotic, hexagons. Node labels indicate an abbreviated identity (where available) and fragment length. Solid lines are
positive correlations with no delay; dashed lines, negative correlations with no delay; sine-wave lines, negative-delayed correlations; and
forward-slashed lines, positive-delayed correlations. Arrows point toward the lagging OTU.

detected OTUs >0.1%; g23-TRFLP detected >100
T4-like virus OTUs each month on average, each
representing >0.1% of the total T4-like community
(Chow and Fuhrman, 2012) and 18S rDNA TRFLP
revealed dominant members (>0.5%) of the
protistan community (Kim et al., 2012).
Community variability was predictable by
environmental factors, but only to a limited extent;
each microbial community was discerned by a
unique set of environmental factors. The proportion
of predictable variability within the T4-like viral
community (28.1%) was higher than within both
protists (11.6%) and bacteria (11.9%). Bacterial
variance was related to chlorophyll-a and salinity,
whereas protistan variance was related to day length
and bacterial abundance. Day length may have
largely influenced the composition of the auto-
trophic (and mixotrophic) community, whereas prey
availability (as indicated by bacterial abundance)
may have been a major factor in shaping the
heterotrophic (and mixotrophic) community.
T4-like virus community shifts were predicted by
day length, change in day length (distinguishes
seasons), salinity and temperature—all of which
relate to abiotic controls on abundance and physio-
logical status of potential hosts. We were unable to
significantly predict overall bacterial community
structure from T4-like myoviral or protistan com-
munity structure. This likely reflects the complex
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ecology of virus—bacteria—protist interactions, and
that bacterial communities can be acted upon by a
variety of viral types, not just the T4-likes targeted in
this study. However, bacterial, protistan and T4-like
viral communities were significantly correlated with
one another at the community level, suggesting
similar timing of responses to one another or the
environment (Table 1; Figure 1).

Inference of ecological interactions from LS correlation
networks

Monthly variation of community structure was
apparent and the detailed inquiry that follows
revealed underlying relationships between OTUs.
Numerous statistically significant correlations
between microbial OTUs were observed that poten-
tially represent common, stable relationships in the
surface ocean (Table 2). The structure of correlations
between protistan and bacterial as compared with
viral and bacterial OTUs (Figure 3, Supplementary
Figures S3 and S4; Table 4) suggests increased
specificity in virus—bacteria interactions. A relation-
ship that switches partners (at a fine taxonomic
resolution) often or at random is less likely to result
in a significant correlation over a 3-year time series.
Network statistics were likely heavily influenced
by the presence of one large interconnected
subnetwork between viral and bacterial OTUs with
at least three apparent hubs in contrast to several



smaller hubs of protistan to bacterial OTUs. This is
not unexpected. As such, grazing and viral lysis
can be selective processes that result in different
outcomes (Miki and Jacquet, 2008). For example,
grazing can be more influenced by size rather than
taxonomy of the prey (Gonzalez et al., 1990; Monger
and Landry, 1992; Simek and Chrzanowski,
1992; Hahn and Hoéfle, 1999). Taxonomically selec-
tive grazing is still thought to occur and may be
represented by a protistan OTU linked to one or only
a few bacterial OTUs (Figure 3a, Supplementary
Figure S3). Protist-bacteria interactions could
also represent associations where bacteria obtain
nutrients indirectly from particular protists, for
example, phytoplankton, and such potential posi-
tive (one-way) interactions could be inferred from
known protistan phytoplankton (for example,
Ostreococcus). Similarly, a virus’ host range may
be indicated by the number of bacteria ‘host’” OTUs
correlated to a virus OTU such that more connec-
tions would suggest a broader host range (Figure 3b,
Supplementary Figure S4). Note that the character-
ized T4-like viruses include several that are known
to have a relatively broad host range, compared
with other virus families (Sullivan et al., 2003).
The large number of correlations between viruses
and bacteria supports our observation on the
correlated community-level shifts between these
two groups.

Gross changes in viral abundance and community
structure may have a partitioned, rather than
universal impact on the bacterial community.
Virus—bacteria interactions were not evenly
dispersed throughout the community, as specific
bacterial OTUs or clusters were more highly con-
nected than others. Investigation into the five most
abundant bacterial OTUs in the surface ocean at
SPOT over a 10-year period suggests that three
SAR11 OTUs may be equally influenced by interac-
tions with viruses and other bacteria. Recently, a
T4-like virus infecting SAR11 was discovered
(Zhao et al., 2013); the primers used in this study
would result in an uncut fragment of 332 bp based
on in silico analysis. Of the potential viral OTUs
observed near this length, none were correlated with
any individual SAR11 OTUs in this analysis. These
viral OTUs were correlated to Flavobacteria OTUs,
other Alphaproteobacteria, Ichtyosporea (protist)
and other viral OTUs; they were present in 16
months of our study ranging from 6% to 65.7% (3H)
and in 28 months ranging from 22.4% to 60.9%
(5H). The viral OTUs that did correlate with SAR11
may then represent other unknown pelagiphages.
The remaining two most abundant bacteria (Actino-
bacteria 435 and SAR11_S1 666.4) were correlated
to several bacteria, suggesting that bacteria—bacteria
interactions may be more crucial to their success
(Figure 4). Thus, virus—bacterial interactions
defined some niches of our most dominant bacterial
OTUs, whereas others were bound more by protistan
or bacterial interactions.
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Case study: connections between cyanobacteria,
co-occurring microbes and the environment

Our network analysis revealed specific virus—
cyanobacteria—protist interactions (Figure 5), which
suggested that cyanobacteria were differentially
responsive to top-down controls similar to their
response to environmental pressures. Prochlo-
rococcus and Synechococcus, two marine genera of
cyanobacteria, are integral to marine ecosystems as
key autotrophs in the microbial loop (Chisholm
et al., 1988, 1992; Li, 1994; Campbell et al., 1997;
Liu et al., 1997; Partensky et al., 1999; DuRand et al.,
2001; Giovannoni and Vergin, 2012). It has been
suggested that spatial, temporal and vertical differ-
ences in the distribution of specific ecotypes reflect
physiological capabilities, adaptation to nutrient
utilization and differential mortality (Moore et al.,
1998; Martiny et al., 2009; Malmstrom et al., 2010;
Partensky and Garczarek, 2010), which was seen in
the observed correlations between cyanobacteria
OTUs to salinity and temperature.

Ciliates and nanoflagellates are thought to be the
predominant grazers of cyanobacteria, and newly
identified groups such as lineages of marine
stramenopiles are now considered as important
bacterivores too (Christaki et al., 1999; Worden and
Binder, 2003; Christaki et al., 2005; Massana et al.,
2006; Frias-Lopez et al., 2009; Lin et al., 2012).
A ciliate (OTU 590) and a dinoflagellate/Lingulodi-
nium sp. OTU were correlated to a high-light
Prochlorococcus OTU (828.8) and a Synechococcus
(group A-V) OTU, potentially indicative of common
grazing controls in the ocean. However, we cannot
rule out that this dinoflagellate OTU may be a
phytoplankton whose preferred conditions parallel
to those of the Synechococcus OTU.

Cyanophage-host systems are some of the best-
characterized host—virus models from the ocean.
Stable, and seasonally variant, co-existing popula-
tions of viruses and their hosts have been observed
in the field (Waterbury and Valois, 1993; Suttle and
Chan, 1994; Marston and Sallee, 2003; Miihling
et al., 2005; Sandaa and Larsen, 2006; Wang et al.,
2011); isolate-based laboratory experiments have
provided information on the genetic regulation of
these interactions (Sullivan et al., 2003; Lindell
et al., 2005; Zinser et al., 2009; Weinbauer et al.,
2011). The correlations of 3H 415.5 (S-SSM7) and
3H_413.5 (Syn9 or Syn19) to Syn_A.I_1056.1 likely
represent known host—virus interactions. The corre-
lated bacterial OTU was a putative Synechococcus;
specifically, Synechococcus WH 8109 (original
host for Syn19 and S-SSM7) has an empirical
ARISA length of 1055bp, which falls within the
OTU-labeled Syn_A.1_1056.1. Other Synechococ-
cus spp. yield ARISA fragments of similar lengths.
Both Syn9 and Syn19 have wide host ranges and are
capable of infecting Prochlorococcus and Synecho-
coccus (Sullivan et al., 2003). Host range data on
S-SSM7 (3H_415.5) and S-SM2 (3H_408.9), to our
knowledge, is unavailable, although both were
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isolated from Synechococcus sp. isolates (Sullivan
et al., 2010). With that knowledge, we posit that
these specific correlations between viral and
putative Synechococcus WH8109-like OTUs 1053
and 1056 represent detection of an ongoing lytic
relationship in the surface ocean.

Each cyanobacterial OTU in this network
was correlated to at least one other bacterial
(non-cyanobacterial) OTU, many of which were
known heterotrophs. Prior studies reported that
growth rates of Synechococcus are positively
affected by lysis of co-occurring heterotrophic
bacteria (Weinbauer et al., 2011), and the presence
of heterotrophic bacteria in culture with Prochlor-
ococcus either significantly improved or inhibited
growth depending on the co-cultured taxa (Sher
et al., 2011). The network’s ring structure between
these OTUs highlights potential redundancy within
the cyanobacterial niches. The main ring includes a
series of positively correlated cyanobacterial OTUs
with and without delays, potentially illustrating a
succession of cyanobacteria. All correlations
point toward a positively correlated inner ring of
three Prochlorococcus, one Synechococcus and
three other heterotrophic bacterial OTUs (high-
lighted in Figure 5), suggesting that this group forms
a guild or clique that follows Synechococcus (upper
right) or other Prochlorococcus OTUs (from the left).
Thus, these bacteria—bacteria links may identify
which bacteria help form unique cyanobacterial
cliques, alongside the established environmental
features.

Conclusions

Monthly microbial community analysis at SPOT
provided a mechanism for exploring relationships
between individual bacterial, protistan and viral
taxa that influence the seasonal variability in the
surface ocean. Ecological relationships in the ocean
are complex and the association networks presented
here likely represent stable relationships between
microbes observed in situ. eLSA has been applied to
determine potential interactions that may represent
boom-bust relationships over shorter daily time-
scales (Needham et al., 2013), and others that may
occur consistently and have particular ecological
significance over longer monthly timescales were
shown here. Connectivity of OTUs and observation
of independent interconnected clusters indicated
that microbial communities are full of potential
niches that warrant further investigation. Protistan—
bacterial associations were far fewer than virus—
bacteria associations, and their connectivity may
reflect relative non-selective or size-selective inter-
actions as compared with the web of virus-bacteria
interactions that may reflect a virus’ host range. The
dominance of positive over negative correlations
suggests that on this monthly and seasonal
timescale, viral OTUs may be primarily controlled
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by host availability (that is, viruses following the
hosts). The microbial association networks identi-
fied factors that were highly correlated to specific
OTUs, such as cyanobacteria, and the persistence of
those relationships over time. Our association
networks support the paradigm that microbes are
regulated by both bottom-up and top-down controls,
and our findings add another layer of complexity to
the bacterial response to changing microbial coun-
terparts and environmental conditions.
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