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Establishment of a standardized system to perform
population structure analyses with limited sample size
or with different sets of SNP genotypes

Natsuhiko Kumasaka1, Yumi Yamaguchi-Kabata1, Atsushi Takahashi1, Michiaki Kubo2, Yusuke Nakamura3,
Naoyuki Kamatani1

Recent studies have demonstrated that principal component analysis (PCA) can detect the presence of population mixture and

admixture in a sample and thus can be used to correct population stratification in genome-wide association studies (GWAS).

We propose a complementary approach to PCA that compensates for potential weaknesses associated with PCA, so that one can

perform population structure analyses using limited numbers of subjects and single-nucleotide polymorphisms (SNPs). Our

method first requires a PCA of the largest reference sample from a population to standardize the system. Once the system is

established, it can perform PCA for each individual with a much smaller number of SNPs drawn from the same population. This

is because of the introduction of the probabilistic PCA, so that the prediction of the principal components (PCs) is performed

under a rigorous probabilistic framework. The subsequent linear discriminant analysis also helps to understand from which

ancestries or subpopulations a given individual is more likely to derive, in terms of posterior probabilities given the predicted

PCs. A real-world prototype of the system for the Japanese population is developed based on 19260 subjects, which illustrates

the potential usefulness of the system as an aid in the detection of population structures in validation samples, or to help with

the correction of population stratification in GWAS.
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INTRODUCTION

The examination of population stratification, by analyzing genetic
relationships between individuals, is indispensable to avoiding con-
founding and spurious associations in genome-wide association
studies (GWAS). A method based on principal component analysis
(PCA)1 is now becoming one of the most frequently used methods for
several genome-wide single-nucleotide polymorphism (SNP) markers,
and a series of population structure analyses have been reported in
European,2–4 European American,5 Asian6–9 and worldwide popula-
tions.10,11

However, PCA is not applicable for one subject, and, even if
applicable, it lacks sufficient power to detect population structure
for samples of a few hundred subjects, and so the number of subjects
included in the analysis is crucial. Especially when the population is
subtly structured, it is necessary to include thousands of subjects in the
analysis.9 Although it is desirable to include a sufficient number of
subjects to examine the population structure, the majority of labora-
tories conduct analyses with much smaller numbers of subjects.
For example, a clinical trial of side effects for drug responses may

be conducted with only dozens of subjects because a very common
polymorphism in a population occasionally leads to quite large
effects.12

It is also sometimes the case that different samples, drawn from the
same population but genotyped at different SNP sets, may have to be
analyzed because of platform differences. In such a case, the results of
PCA are usually difficult to compare with other results, as the metric
space for constructing principal components (PCs) might have
changed. Although imputation methods13,14 may help to combine
multiple different samples into one, it may be computationally
expensive and also technically challenging to avoid such imputation
bias. Replication studies of GWAS are subject to a similar problem, as
the genome-wide SNP set is usually narrowed down so that it is more
likely to be disease susceptible. In practice, we often find that a
standard PCA with smaller numbers of SNPs in the second stage of
GWAS fails to detect the population stratification (Supplementary
Figure 1).
Therefore, it is desirable to establish a standardized system to

perform population structure analyses with smaller numbers of
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SNPs and subjects. In this paper, we propose a method to develop
such a system, and we also develop a prototype of the system with the
largest sample from the Japanese population to assess its potential
usefulness in practice.

MATERIALS AND METHODS
Figure 1 shows a schematic of the protocol to develop and utilize our

standardized system for population structure analyses. Let us consider a target

population with a stable population structure. The term ‘stable’ here means

that the population is sufficiently large, and the structure does not dramatically

change due to recent migrations and other genetic and evolutionary forces,

such as random genetic drifts, positive selections and so on. In other words, it is

sufficiently predictable.

Our method requires a large sample, preferably drawn at random from the

population, called the reference sample, whose genome-wide SNPs should be

genotyped as much as possible. The standard PCA of the SNP data is carried

out to extract the majority of the population structure in the reference sample.

Here we assume that the structure bears a notable resemblance to that of the

target population, so that the population structure of an incoming sample

drawn from the same population, called a validation sample, can be inferred by

using the PCA results.

The eigenvalues and SNP loadings (the weights for the SNPs with which

each PC is constructed), along with the sample allele frequencies of the

reference sample, are provided to the standardized system. Then, the PCs for

each individual in the validation sample are predicted using the probabilistic

PCA15 (PPCA). The predicted PCs are readily compared with those for

different samples, or can be superimposed onto the PCs of the reference

sample in the same metric space.

The PCs for the reference sample are mainly used in the subsequent Fisher’s

linear discriminant analysis16 (LDA), along with additional ancestral informa-

tion. As is often the case, the reference sample includes previous ancestral

information that may roughly classify individuals into different ancestries or

subpopulations, such as distinct geographical regions from where the blood

samples were taken,9 parents’ birth places,17 language differences,6 and so on.

We explicitly incorporate such ancestral information for further population

structure analyses, because the two-dimensional PC display may not be helpful

if (1) a point for an individual lies in the middle of several large clusters, or (2)

several clusters of different ancestries are tightly overlapping because of subtle

population structure, and it is difficult to determine to which of the clusters the

individual is more likely to belong.

In such cases, the LDA of the ancestral information on PCs gives insight into

the population structure from a probabilistic point of view. That is, the LDA

can systematically assign posterior probabilities from which an individual has

descended from each of several ancestries. In fact, the normal distribution is

fitted to the PCs of the reference sample for each ancestral group, and the

means and within-group variances can then be estimated. The results are added

to the standardized system, so that the posterior probabilities can be inferred

from the predicted PCs in the PPCA framework. As a result, we can confirm

which of the ancestries is most likely to be that of the individual in the

validation sample, even if the ancestral information is not supplied to the

validation sample. The following subsections describe each step of our methods

in detail.

Standard PCA for the reference sample
Suppose the reference sample consists of N individuals drawn at random from

the target population. Let ~X ¼ ð~xij; 1pipN; 1pjpLÞ be normalized SNP

genotype data for the individual i on the SNP locus j, obtained from the

reference sample. Here the SNP genotypes, expressed by 0, 1 and 2 correspond-

ing to the number of copies of the minor allele, are normalized by the sample

allele frequencies obtained from the reference sample (see Supplementary Notes

for details). Then they are decomposed into ~X ¼ UDVT by using the standard

PCA algorithm (for example, Patterson et al.1), where D ¼ diag ðd1; . . . ; dN Þ
indicates a diagonal matrix with singular values (d1X � � �XdNX0), and

U¼ (u1,y, uN) and V¼(v1,y, vN) are column orthonormal matrices, whose

columns indicate PCs and SNP loadings, respectively. The eigenvalues are

obtained from the singular values, li¼di
2 for i¼1,y, N.

Figure 1 A schematic of the standardized prediction system, in which a target population is considered and samples are drawn at random from the

population. The largest sample of the population is called the reference sample and others can be validation samples. The PCA of multiple SNP genotypes is

performed to the reference sample, and principal components (PCs), eigenvalues and SNP loadings are calculated. The eigenvalues and SNP loadings are
then provided to the standardized system so that the PCs of an individual from a validation sample are predicted in the PPCA framework. The PCs obtained

from the reference sample along with previous information of ancestry are used in the subsequent LDA. The Normal distribution is fitted on the PCs of each

ancestry group, and the means and the within-group variance are provided in the standardized system so that the posterior probabilities of the individual

being descended from the ancestries are estimated from the predicted PCs.
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Note that the PCA algorithm returns a part of the columns of U. The SNP

loadings have to be recovered as vi ¼ ~X
T
ui=di, for i¼1,y, p. Here p{N

denotes the sufficient number of PCs for population structure analysis, which

strongly depends on the target population. Therefore, the issue of the number

of PCs that is necessary and sufficient for our standardized system is not

discussed here.

Prediction of PCs
The prediction of PCs is straightforward in the PPCA framework. Let

x¼(x1,y, xL)
T be the L-dimensional genotype vector and n¼(x1,y, xp)T be

the first p-PCs. As PPCA can provide the conditional probability of the first

p-PCs given x, say p(n|x), the conditional expectation n̂ ¼ E½njx� is a point

estimate of the predicted PCs.

Suppose that the (N+1)th individual is drawn from the target population

and is in the validation sample, whose genotype vector x is normalized by the

sample allele frequencies of the reference sample, the point estimate of the

predicted PCs for the individual is given by

n̂ ¼ M̂
�1
Ŵ

T
x; ð1Þ

with Ŵ ¼ VpðLp � ŝ2IpÞ1=2; ŝ2 ¼
PN

i¼p+1 li=ðL� pÞ and M̂ ¼
ðŴT

Ŵ+ŝ2IpÞ, where Lp ¼ diag ðl1; . . . ; lpÞ and Vp ¼ ðv1; . . . ; vpÞ were

obtained from the results of standard PCA (for further details, see Supple-

mentary Notes). Moreover, PPCA can easily generate a prediction of the PCs

for an incomplete data vector x1 of the complete data vector x ¼ ðxT1 ; xT2 Þ
T,

where x2 is assumed to be unobserved (for example, the genotyping

platform difference). It follows from the conditional distribution

pðnjx1Þ ¼
R
pðnjxÞpðx2jx1Þdx2, which can be obtained analytically without

any iterative algorithm such as the EM18 (see Supplementary Notes for details).

The point estimate of the prediction is then given by

n̂1 ¼ M̂
�1

1 Ŵ
T

1 x1; ð2Þ

where Ŵ
T ¼ ðŴT

1 ; Ŵ
T

2 Þ is partitioned along xT ¼ ðxT1 ; xT2 Þ, and

M̂1 ¼ ðŴT

1 Ŵ 1+ŝ2IpÞ. Here it may seem that the dependency between x1
and x2 is simply ignored because the value n̂1 depends only on x1. However,

the dependency between x1 and x2 is accurately taken into account in the

conditional distribution pðx2jx1Þ 6¼ pðx2Þ, so that pðnjx1Þ 6¼
R
pðnjxÞpðx2Þdx2.

This also implies that the unobserved data is NOT replaced as x2¼0,

as pðnjx1Þ 6¼ pðnjx1; x2 ¼ 0Þ.
It is obvious that the accuracy of the prediction does not suffer from the

number of subjects in the validation sample, as the prediction is carried out one

subject at a time according to equation (2). Therefore, the number of SNPs

overlapping between the reference and validation samples only affects the

accuracy of the prediction. This can be assessed using the (1�a)�100%

prediction interval in which the true PC n0 for the (N+1)th individual lies.

As the predicted PCs follow a multivariate normal distribution with mean

vector n̂1 and covariance matrix ŝ2M̂
�1

1 , the prediction interval comprises the

p-dimensional ellipsoid

n 2 Rpj gðp=2; d
2=2Þ

Gðp=2Þ p1� a
� �

; ð3Þ

where gð�; �Þ and Gð�Þ denote the incomplete gamma and the gamma functions,

respectively, and d2 ¼ ŝ�2ðn� n̂1ÞTM̂1ðn� n̂1Þ denotes the square of the

Mahalanobis distance from n̂1 to n in the metric space defined by ŝ2M̂
�1

1 .

This also implies that the square of the Mahalanobis distance between the point

estimator n̂1 and the true PCs n0 follows a w2 distribution with P degrees of

freedom, because the probability specified by the incomplete gamma and the

gamma functions in equation (3) is identical to the cumulative distribution

function of the w2 distribution.
Note that the above discussion is based on the values of Ŵ and ŝ2, which

have been estimated without standard errors. In practice, those estimators are

variable in given a finite sample size N for the reference sample, and the

standard errors should be treated properly in the statistical framework.

However, here we have simply assumed that N is sufficiently large that such

errors are much smaller than the variability of the predicted PCs themselves

(equation 3) and thus negligible. This implies that there is no confidence

interval for Ŵand ŝ2, and thus the retrospective prediction interval of PCs for

the reference sample and the prospective prediction interval of n̂1 for the

validation sample are identical if the SNP set is identical (see Supplementary

Notes for details).

LDA of ancestral information on PCs of reference sample
If we assume that p-PCs n obtained from the reference sample reflect the

majority of the population structure in the target population, these compo-

nents possess the power to discriminate individuals into several different

ancestral groups or subpopulations.

Let us consider a random variable C, which takes as its value one of k

ancestries. We first explore a discriminant rule to classify subjects in the

reference sample into the k ancestries. In LDA, the posterior probability of C

given n is obtained by

pðCjnÞ / pðnjlC ; SÞpðCÞ; ð4Þ

where n is assumed to be normally distributed with the mean vector lC given C

and a common covariance matrix R independent of C. Here the mean vector

indicates a cluster center of the PCs for each ancestry C, and R specifies the

diversity of PCs within a cluster.

In practice, we use a set of PCs n̂
ðiÞ
; i ¼ 1; . . . ;N obtained from the reference

sample to replace lC with the sample mean

l̂C ¼
X
i2IC

1

#IC
n̂
ðiÞ

for each ancestry C, where IC � f1; . . . ; Ngð[IC ¼ f1; . . . ; Ng and

IC \ IC0 ¼ f) is an index set of the subjects who belong to the ancestral group

C. The common covariance matrix R is also replaced with the maximum

likelihood estimator within the group variance

Ŝ ¼ 1

N

X
C

X
i2IC

ðn̂ðiÞ � l̂CÞðn̂
ðiÞ � l̂CÞ

T :

Note that, the within-group variance estimator (the sum of squared deviations

divided by N rather than N�k) is known to be biased, but we would rather use

it for the consistency of the maximum likelihood framework, and in practice,

the result would not change if k{N. The prior probability p(C) is also replaced

by the sample frequency

p̂C ¼ 1

N
#IC

by using the reference sample. Again we assume that the reference sample

size N is sufficiently large that those estimators are obtained without standard

errors.

To classify individuals into several ancestral groups or subpopulations, there

are many related techniques, such as multinomial logistic regressions,19

classification trees,16 neural networks16 and so on, we prefer to use LDA for

simplicity and familiarity. One of the technical issues with LDA here is that it

cannot be applied directly to the genotype data because of the large number of

genome-wide SNPs. The number of SNPs is usually 102–104 times larger than

the number of subjects. This leads to the combination of PCA with LDA, and

the results may seem statistically extraordinary. However, similar ideas, in

which PCA extracts the major variation of the multivariate data, which is

further used to classify subjects into finite categories, are used, for example, in

the disease-association study under linkage disequilibrium20 or the copy-

number variation detection.21 For the direct analysis of associations between

ancestry information and SNP genotypes, the sparse LDA22 may be a possible

technique that is directly applicable to the SNP genotype data in spite of the

obstruction of huge dimensionality.

Prediction of ancestry
The goal of LDA is to estimate the posterior probabilities with which the

(N+1)th individual in the validation sample is descended from each of the k

ancestries. In this regard, the predicted PCs for the individual obtained by

PPCA may still retain relevant ancestral information. As was mentioned, the

predicted PCs n̂1 exhibit their own variability (equation (3)) that should be

treated appropriately in conjunction with the posterior probability distribution

given in equation (4).
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When we assume the conditional independence between x and C given n, we

see that

pðCjxÞ ¼
Z

pðC; njxÞdn ¼
Z

pðnjxÞpðCjnÞdn; ð5Þ

where the first conditional probability p(n|x) in the right hand side of equation

(5) is given by PPCA, whereas the second conditional probability p(C|n) is

given by LDA. By integrating out n from the right hand side of equation (5), the

posterior probability of the (N+1)th individual of ancestry C with normalized

genotype data vector x is given by

pðCjxÞ ¼ fCðxÞp̂CP
C

fCðxÞp̂C
; ð6Þ

where

fCðxÞ ¼ exp½�ðx � Ŵ l̂CÞ
TG�1ðx � Ŵ l̂CÞ=2�

and G ¼ Ŵ ŜŴ
T
+ŝ2IL. Note that the integration in equation (5) can be

calculated analytically as the conditional distributions are both Gaussian (see

Supplementary Notes for details).

Samples and SNP genotypes
In the Results and discussion section, we introduced three real data sets, one for

the reference sample and the other two for the validation sample sets. Our

reference sample included 19 170 self-identified Japanese patients obtained

from BioBank Japan Project23 along with 45 Japanese individuals living in

Tokyo (referred to as JPT) and 45 individuals of Han Chinese from Beijing

(referred to as CHB) as a reference sample of the continental populations from

the International HapMap Project.24 We refer to the mixture of total 19 260

subjects as the reference sample. Our validation samples include an additional

29 104 subjects with 28 diseases in the BioBank Japan Project (referred to as

Affymetrix sample), as well as 6915 subjects with 35 diseases that had been

included in the previous report9 (this mixture of the 6915 subjects and the 90

HapMap JPT and CHB subjects was referred to as the Perlegen sample). There

were only 25 subjects in common between the reference sample and the

Perlegen sample except for the 90 HapMap subjects.

The BioBank Japan Project collected human genomic DNA after the patients

provided written informed consent to participate in this project. The blood

samples in the BioBank Japan Project had been obtained from the hospitals in

seven geographical regions: (1) Hokkaido, (2) Tohoku, (3) Kanto-Koshinetsu,

(4) Tokai-Hokuriku, (5) Kinki, (6) Kyushu and (7) Okinawa (see also the map

in Supplementary Figure 2). This project was approved by the ethics commit-

tees at The Institute of Medical Science, The University of Tokyo, and at the

Center for Genomic Medicine, Institutes of Physical and Chemical Research

(RIKEN).

Subjects in the reference sample, except HapMap subjects, were genotyped

using the Illumina HumanHap 550K and 610K commercial platforms, and

388 591 SNPs incorporated in the 550K platform were analyzed following

quality controls. For the Affymetrix sample, around 10K genome-wide SNPs

were selected for each disease for the second stage of GWAS, and genotyping

was independently performed for each study using Affymetrix custom arrays.

Therefore, the SNP sets of the 28 different diseases shared only small propor-

tions of SNPs (Supplementary Table 3).

Softwares
We used EigenSoft (http://genepath.med.harvard.edu/~reich/Software.htm) as

a standard PCA algorithm. The prototype of our standardized system for the

Japanese population, written in JAVA language is also available online (http://

genome-analysis.src.riken.jp/PCP/).

RESULTS AND DISCUSSION

PCA and LDA of Japanese reference sample
To assess the power of the standardized system in practice, we used
our reference sample (see Materials and methods for details) to
construct a system for the Japanese population. We performed the

standard PCA for the reference sample and observed the first 20 PCs
with their corresponding SNP loadings (data not shown). We used
EigenSoft (http://genepath.med.harvard.edu/reich/Software.htm)
without the outlier removal option. By checking the results, we
identified two PCs (Supplementary Figure 2), which show the
population structure in the Japanese population. The other PCs
were related with strong local linkage disequilibriums, which had to
be excluded in the population structure analysis. Supplementary
Figure 2 clearly shows that CHB subjects formed a distinct cluster
(referred to as the CHB cluster) on the top left, whereas almost all the
subjects in the mainland of Japan (Hondo) formed a large cluster in
the middle right (referred to as the Hondo cluster) and those in
Okinawa formed another cluster on the bottom left (referred to as the
Ryukyu cluster) of the figure. As the graphical pattern of the PCs was
quite similar to that of those previously reported,9 we concluded that
only two PCs (P¼2) would be sufficient to explain the majority of the
population structure in our target population.
The subsequent LDA was then performed using the additional

ancestral information and the resulting PCs. Note here that our
ancestral information consists of eight distinct geographical regions
where blood samples had been taken (see Materials and methods for
details). The result of LDA was acceptable, the total concordance rate
of the classification was 61.7% (Supplementary Table 1), much higher
than the noninformation prior probability 1/8¼12.5% at which an
individual is drawn at random from one of the eight distinct
geographical regions, or even higher than the maximum empirical
prior probability of 52.4% for the Kanto-Koshinetsu region (Supple-
mentary Table 2). The likelihood ratio test also demonstrated that it is
quite significant, with a P-value of 2.9�10�275. Moreover, the con-
cordance rates for CHB and Okinawa subjects (Supplementary Table
2) were much higher than the total concordance rate. This suggested
that LDA could classify subjects from three major clusters (CHB,
Hondo and Ryukyu) with almost perfect accuracy.
However, the other geographical regions, except Kanto, indicated

weaker classification rates than the total concordance rate. One
possible reason is that the subjects in Hondo are subtly structured.
In light of the posterior probabilities given by equation (6), there
might be no genetic difference among subjects in Hokkaido, Kanto
and Tokai regions, although there are subtle differences among those
in Kanto, Tohoku, Kinki and Kyushu regions (Supplementary Figure
3). The other reason is that some of the individuals may be recent
migrants from other regions and should be relabeled (Supplementary
Figure 3). This implies that our ancestry information, from the
distinct geographical regions where blood samples were obtained,
may be less informative for classifying subjects into several ancestries.
Much more robust information would be desirable, such as the
parents’ birthplaces.17

Predictions for validation sample sets
The results of the PCA and LDA for the reference sample above were
used to construct the standardized system for our Japanese population
structure analysis. We first introduced the Perlegen sample (see
Materials and methods for details) used in a previous study9 as a
validation sample to assess the developed system. The predicted PCs
for the Perlegen sample were obtained and compared with those for
the reference sample (Figure 2a). The three distinct clusters, namely,
the CHB, Hondo and Ryukyu clusters, were completely recovered on
the top left, middle right and bottom center of the figure.
Then the ancestry prediction by LDAwas performed and compared

with the observed ancestral information from the Perlegen sample
(Table 1). The results were fairly similar to those of the reference
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sample, in which 93.2% of Okinawa subjects were correctly classified
into the Okinawa region, 100% for CHB subjects, and the total
concordance rate was 61.1%, although the observed ancestry informa-
tion for the Perlegen sample had not been used in constructing the

system. The likelihood ratio test also demonstrated that it is quite
significant, with a P-value of 8.5�10�173. The posterior probability
pattern also exhibited a notable resemblance to that of the reference
sample (Figure 3a).

Figure 2 Two-dimensional graphs of the predicted PCs for Perlegen and Affymetrix samples. The vertical axis shows the first PC and the horizontal axis

shows the second PC. (a) Components for Perlegen sample (red points) are superimposed on those of the reference sample (gray points). (b) Components for

Affymetrix sample (red points) are superimposed on those of the reference sample (gray points).

Table 1 LDA of ancestries for the Perlegen sample

Predicted geographical regions

Region Hokkaido Tohoku Kanto Tokai Kinki Kyushu Okinawa CHB Total (% concordance)

Hokkaido 0 3 483 0 19 0 3 0 508 (0.0)

Tohoku 0 46 406 0 4 0 0 0 456 (10.1)

Kanto 0 4 3730 0 203 17 23 6 3983 (93.6)

Tokai 0 0 333 0 18 0 0 0 351 (0.0)

Kinki 0 0 563 0 297 17 22 0 899 (33.0)

Kyushu 0 1 456 0 82 24 53 0 616 (3.9)

Okinawa 0 0 7 0 1 2 137 0 147 (93.2)

CHB 0 0 0 0 0 0 0 45 45 (100.0)

Total 0 54 5978 0 624 60 238 51 7005

Abbreviations: CHB, Han Chinese from Beijing; LDA, linear discriminant analysis.
Total concordance rate¼4279/7005¼61.1% (likelihood ratio test P-value¼8.49�10�173).
The region with the highest posterior probability obtained by LDA was selected as the most likely region and compared with the observed geographical region.

Figure 3 Multiple stacked barchart shows posterior probabilities of eight distinct geographical regions for all subjects in the validation samples: (a) Perlegen

sample and (b) Affymetrix sample. The vertical bar for each subject is colored according to the proportion of the posterior probabilities. Subjects in the same

distinct geographical region were clustered and each geographical region is demarcated by white line. The regions are arranged from north to south, and CHB

at the rightmost for Perlegen sample.
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Note here that our system can classify HapMap CHB subjects in the
Perlegen sample with 100% accuracy. This seems trivial because the
same subjects are included in the reference sample used to construct
the system. However, the Perlegen sample was genotyped by Perlegen
platforms (140 387 SNPs), whereas the reference sample was geno-
typed by the Illumina platforms (388 591 SNPs), and only 41 050 SNPs
were common among these platforms. The prediction for the CHB
subjects was also carried out by using such common SNPs. Therefore,
it is not trivial to calculate the concordance rate even if the CHB
subjects are already included in the reference sample.
We also applied our system to the Affymetrix sample, which

composed of the second-stage GWAS of 28 diseases (see Materials
and methods in detail). As the SNP sets for each disease were different
from each other, the standard PCA was not applicable for the whole
sample set and a comparison of the PCA data for different diseases was
also not possible. Besides, as fewer than 11K SNPs were genotyped for
each study (Supplementary Table 3), it would have been impossible to
create an accurate clustering of the subjects. In fact, we performed the
standard PCA for the diseases one by one, but we failed to identify the
underlying population structure (Supplementary Figure 1). In such a
case, our system could work much better than the standard PCA, and
the existence of a population structure within Affymetrix sample
could be successfully uncovered. We could confirm two distinct
clusters (the Hondo and Ryukyu clusters) from predicted PCs
(Figure 2b), although these clusters were not exactly superimposed
on those of the reference sample.
Table 2 also supported the claim that ancestry prediction by LDA

still worked very well to classify subjects into two major clusters
(Hondo and Ryukyu). Altogether, 86.8% of the subjects in the
Okinawa region were correctly classified, and the total concordance
rate was still 58.8% even in this case. The likelihood ratio test also
proved that it was quite significant, with a P-value of 8.5�10�168. As
expected from the predicted PCs, however, the posterior probability
pattern (Figure 3b) among different regions, except Okinawa, was
unclear compared with those of the reference sample and the Perlegen
sample.

Impact of the numbers of subjects and SNPs in validation samples
As mentioned earlier, our system does not suffer from the small
number of subjects in the validation sample. It can predict the PCs
and the posterior probabilities even from one subject, and the result is
unchanged even if the validation sample size has been increased. The

comparisons between our method and the standard PCA by the
use of subsamples of the reference sample have clearly shown
that our method yields a better clustering of subjects, especially for
smaller samples (Supplementary Figure 4). Therefore, the major
concern here is the effectiveness of the number of SNPs in the
validation sample, say L1, is necessary and sufficient to detect
that the population structure is the same as the reference sample.
Empirically, we have already seen that the L1¼41 050 SNPs (Perlegen
sample) would be sufficient, but the L1¼2B11K SNPs (Affymetrix
sample) may be less powerful to detect the population structure using
our system.
A systematic approach to estimate the number of effective SNPs L1

would be to assess the prediction interval of PPCA in equation (3).
The interval in our case (P¼2) becomes an ellipse defined by

n 2 R2j1� exp � 1

2
ŝ�2ðn� n̂1ÞTM̂1ðn� n̂1Þ

� �
p1� a

� �
;

in which the true PCs n0 should exist with probability 1�a. We
calculated the predicted PCs fn̂ðiÞ1 , i¼1,y, 19260} for the reference
sample with L1{L SNPs randomly selected from the entire chromo-
somes, and compared them with the PCs fn̂ðiÞ, i¼ 1,y,19260}
obtained from the all L SNPs. We found that, if the effective number
of SNPs (L1) is greater than 20K SNPs, the Mahalanobis distance

dðn̂; n̂1Þ ¼ ½ŝ�2ðn̂� n̂1ÞTM̂1ðn̂� n̂1Þ�1=2

between n̂ and n̂1 follows a wp distribution with P¼2 degrees of
freedom (Supplementary Figure 5). This is because, if L1{L, then the
prediction interval with L1 SNPs is much larger than that with the L
SNPs (that is, jM̂1j { jM̂j), which leads to n̂ � n0. Hence, the
stochastic framework driven by PPCA could work with L1X20K
SNPs in our case, and thus we could conclude that the prediction of
PCs should be reliable for L1X20K SNPs. Note that the different L1
SNPs will give us different predicted PCs in practice. However, here we
have simply assumed that the effect of population structure is
uniformly distributed on entire chromosomes, thereby we can assess
the impact of the number of SNPs for the prediction by selecting L1
SNPs randomly from entire chromosomes.
Here the great advantage of introducing the Mahalanobis distance

over other distances (for example, the Euclidean distance) is that the
distance can be transformed into probability in PPCA framework. For
example, let us consider an individual from the Kanto region, whose

Table 2 LDA of ancestries for Affymetrix sample

Predicted geographical regions

Region Hokkaido Tohoku Kanto Tokai Kinki Kyushu Okinawa CHB Total (% concordance)

Hokkaido 0 14 1205 0 86 3 8 0 1316 (0.0)

Tohoku 0 121 1725 0 31 3 3 1 1884 (6.4)

Kanto 0 416 15464 0 1059 113 81 30 17163 (90.1)

Tokai 0 20 1363 0 124 7 9 0 1523 (0.0)

Kinki 0 32 3266 0 907 33 65 14 4317 (21.0)

Kyushu 0 4 1623 0 174 75 387 2 2265 (3.3)

Okinawa 0 0 53 0 5 24 552 2 636 (86.8)

CHB 0 0 0 0 0 0 0 0 0 (—)

Total 0 607 24699 0 2386 258 1105 49 29104

Abbreviations: CHB, Han Chinese from Beijing; LDA, linear discriminant analysis.
Total concordance rate¼17119/29104¼58.8% (likelihood ratio test P-value¼2.31�10�168).
The region with the highest posterior probability obtained by LDA was selected as the most likely region and compared with the observed geographical region.

Standardized population structure analysis system
N Kumasaka et al

530

Journal of Human Genetics



true PC is located at the center of Kanto region, that is, n0 ¼ l̂Kanto,
and we obtain the predicted PCs n̂1 by using our system
with M̂1 obtained; for example, the 20K SNPs in Supplementary
Figure 5. Here the predicted PCs are stochastic rather than determi-
nistic, and so there exists a possibility that the individual from
the Kanto region is mixed up with the Okinawa region, that
is dðn̂1; l̂KantoÞ4dðn̂1; l̂OkinawaÞ. However this probability can be

systematically assessed by

Prfdðn̂1; l̂KantoÞ4dðn̂1; l̂OkinawaÞgoPr dðl̂Kanto; n̂1Þ4
dðl̂Kanto; l̂OkinawaÞ

2

� �
¼ 7:4�10�23;

as dðl̂Kanto; n̂1Þ ¼ dðn0; n̂1Þ � wp with P¼2 degrees of freedom (see
Supplementary Figure 6 for details). This result may prove the
significance of the prediction with the 20K SNPs in our system.

Figure 4 P–P plots of the �log10 P-values from the five simulated association studies with or without correction for population stratification, in which 1000

cases and 1000 controls were drawn at random from 7005 subjects in the Perlegen sample. The rows were rearranged according to the lGC values25 for the

original (uncorrected) studies so that the upper panels show the stronger population stratification effect. The columns correspond to the P–P plots of

P-values for (1) the original study, (2) PCA correction with the first two PCs, (3) fixed effect correction with observed geographical region, (4) PPCA

correction with the first two predicted PCs and (5) the fixed effect correction with the maximum likelihood geographical region by LDA.
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Population stratification correction in association studies
We performed simulated association studies to show that the pre-
dicted PCs, or the most likely ancestor as determined by LDA, can be
used to correct population stratification in GWAS. We randomly
chose 1000 cases and 1000 controls from 7005 subjects in the Perlegen
sample and performed case–control studies by using genome-wide
139 050 SNPs with or without correction for population stratification.
The degree of the population stratification effect was assessed by the
genomic inflation factor lGC,25 and distributions of association P-
values from the studies were visually confirmed using P–P plots
(Figure 4). The results suggest that the spurious associations between
cases and controls can be corrected by using the predicted PCs from
our system instead of the standard PCs (according to Price et al.26).
These results also suggest that the most likely region given by LDA
instead of the observed geographical regions may be useful for
correcting smaller effects (that is, lGCp1.1).

Mixing from unknown populations
Our method requires any new validation sample to be drawn from the
same population from which the reference sample was observed.
Therefore, once the system is standardized, a problem might arise if
a validation sample drawn from a totally different population has the
same characteristics as the reference samples.
For the Japanese population, one possibility to avoid this problem

would be to perform the standard PCA with HapMap samples (for
example, CEU, YRI and JPT+CHB) to remove individuals who deviate
from the Asian (JPT+CHB) cluster in advance. Regardless, the same
problem remains within Asian populations after this protocol, as the
Asian population is still very diverse.6

From an empirical perspective, the predicted PCs for the HapMap
11 populations (Supplementary Figure 7) suggested that the subjects
of Chinese ancestry living in Denver lie in the CHB cluster, whereas
subjects who have European or African ancestry lie in the middle of
the CHB and Ryukyu clusters. Some subjects of Mexican ancestry were
located near the Hondo cluster. There is a possibility that an admixed
population of Mexican and Japanese subjects may be misclassified as
Japanese, especially those of Kyushu ancestry, in our system.

Conclusion
In summary, we have proposed a standardized system to perform
population structure analyses with limited sample size or with
different sets of SNPs, and we have developed a prototype of this
system for the Japanese population by using our largest reference
sample of 19 260 Japanese subjects. As shown in the previous sections,
the developed system worked well to uncover the Japanese population
structure in the validation samples, and the predicted PCs or the most
likely ancestry according to LDA could also be used to avoid spurious
associations in GWAS.
The proposed method is a complementary approach to the stan-

dard PCA. It requires PCA for the reference sample of tens of
thousands of subjects. Then it utilizes the result to compensate for
the potential weaknesses of PCA. Hence, our method itself is not
realistic for any individual researcher, but may be feasible only for a
few large institutes or consortiums. However, the developed system
using our method should be publicly available, as it is unnecessary to
expose the raw SNP genotype data of the reference sample to the
public. The first several eigenvalues and corresponding SNP loadings
along with the sample allele frequencies for the reference sample are
only necessary to be public. This is a strong advantage that helps to
overcome the strict ethical issues in human genome studies, as, once
the standardized system has been established, any researcher can use

the results of the PCA of the largest reference sample into his/her own
research, even if he or she cannot access the raw SNP genotype data of
the reference sample. As a bonus, the system also works very rapidly as
the eigen decomposition has already been performed during the
system construction.
Here, the subjects in our reference sample have to be selected with

great care, as the reference sample is considered to be representative of
the target population as a whole. The existence of an unknown
subpopulation within the population is essentially unacceptable.
Therefore, detecting an outlier from an unknown subpopulation, or
even from another population, would be a technical challenge of great
interest. We leave this issue for further investigators.
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