
nature biotechnology volume 30 number 7 JULy 2012	 627

Po-Ru Loh, Michael Baym and Bonnie Berger
are in the Department of Mathematics and
Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA.
Michael Baym is also in the Department of
Systems Biology, Harvard Medical School,
Boston, Massachusetts, USA. P.-R.L. and M.B.
contributed equally to this work.
e-mail: bab@mit.edu or baym@mit.edu

Compressive genomics
Po-Ru Loh, Michael Baym & Bonnie Berger

Algorithms that compute directly on compressed genomic data allow analyses to keep pace with data generation.

In the past two decades, genomic sequencing
capabilities have increased exponentially1–3,

outstripping advances in computing power4–8.
Extracting new insights from the data sets cur-
rently being generated will require not only
faster computers, but also smarter algorithms.
However, most genomes currently sequenced
are highly similar to ones already collected9;
thus, the amount of new sequence information
is growing much more slowly.

Here we show that this redundancy can
be exploited by compressing sequence data
in such a way as to allow direct computation
on the compressed data using methods we
term ‘compressive’ algorithms. This approach
reduces the task of computing on many simi-
lar genomes to only slightly more than that of
operating on just one. Moreover, its relative
advantage over existing algorithms will grow
with the accumulation of genomic data. We
demonstrate this approach by implementing
compressive versions of both the Basic Local
Alignment Search Tool (BLAST)10 and the
BLAST-Like Alignment Tool (BLAT)11, and
we emphasize how compressive genomics will
enable biologists to keep pace with current
data.

A changing environment
Successive generations of sequencing technolo-
gies have increased the availability of genomic
data exponentially. In the decade since the pub-
lication of the first draft of the human genome

(a 10-year, $400-million effort1,2), technolo-
gies3 have been developed that can be used to
sequence a human genome in 1 week for less
than $10,000, and the 1000 Genomes Project
is well on its way to building a library of over
2,500 human genomes8.

These leaps in sequencing technology
promise to enable corresponding advances
in biology and medicine, but this will require
more efficient ways to store, access and analyze
large genomic data sets. Indeed, the scientific
community is becoming aware of the funda-
mental challenges in analyzing such data4–7.
Difficulties with large data sets arise in set-
tings in which one analyzes genomic sequence
libraries, including finding sequences similar
to a given query (e.g., from environmental
or medical samples) or finding signatures
of selection in large sets of closely related
genomes.

Currently, the total amount of available
genomic data is increasing approximately
tenfold every year, a rate much faster than
Moore’s Law for computational processing
power (Fig. 1). Any computational analysis,
such as sequence search, that runs on the full
genomic library—or even a constant fraction
thereof—scales at least linearly in time with
respect to the size of the library and therefore
effectively grows exponentially slower every
year. If we wish to use the full power of these
large genomic data sets, then we must develop
new algorithms that scale sublinearly with data
size (that is, those that reduce the effective size
of the data set or do not operate on redundant
data).

Sublinear analysis and compressed data
To achieve sublinear analysis, we must take
advantage of redundancy inherent in the data.
Intuitively, given two highly similar genomes,
any analysis based on sequence similarity
that is performed on one should have already
done much of the work toward the same

analysis on the other. We note that although
efficient algorithms, such as BLAST10, have
been developed for individual genomes, large
genomic libraries have additional structure:
they are highly redundant. For example, as
human genomes differ on average by only
0.1% (ref. 2), 1,000 human genomes con-
tain less than twice the unique information
of one genome. Thus, although individual
genomes are not very compressible12,13, col-
lections of related genomes are extremely
compressible14–17.

This redundancy among genomes can be
translated into computational acceleration by
storing genomes in a compressed format that
respects the structure of similarities and dif-
ferences important for analysis. Specifically,
these differences are the nucleotide substi-
tutions, insertions, deletions and rearrange-
ments introduced by evolution. Once such a
compressed library has been created, it can be
analyzed in an amount of time proportional
to its compressed size, rather than having to
reconstruct the full data set every time one
wishes to query it.

1996 1998 2000 2002 2004 2006 2008 2010

1012

1011

1010

109

109

108

107

106

105

104

103

102

101

108

107

106

105

104

Ba
se

s
pe

r d
ay

Year

1996 1998 2000 2002 2004 2006 2008 2010

M
illion instructions per second

Sequencing
Computing

Figure 1 Sequencing capabilities versus
computational power from 1996–2010.
Sequencing capabilities are doubling
approximately every four months, whereas
processing capabilities are doubling
approximately every eighteen. (Data adapted with
permission from Kahn4.)

commentary
np

g
©

 2
01

2
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

mailto:bab@mit.edu
mailto:baym@mit.edu

628	 volume 30 number 7 JULy 2012 nature biotechnology

the computational acceleration resulting
from compression decreases, although this is
to be expected, as these data are less mutu-
ally informative. Although our compressive
BLAST algorithm achieves over 99% sensitiv-
ity without substantial slowdown (Fig. 3 and
Supplementary Figs. 6,7), improvements in
sensitivity necessarily involve losses in speed.

There is also a trade-off between achieving
optimal data compression and accuracy of
analysis (Supplementary Fig. 6a). This trade-
off is fundamental to the problem of com-
pressive algorithms for biology: in genomic
analysis, one is interested in the probability of
similar sequences occurring by chance rather
than because of common ancestry, whereas
compression ratios depend only on the abso-
lute sequence similarity. For example, two
sequences of 50% identity for over 1,000 bases
are a strong BLAST hit, but admit no useful
compression because the overhead would
outweigh the savings. Although these two mea-
sures of sequence similarity are closely related,

general do not allow efficient recovery of the
similarity structure of the data set.

As proof of principle for the underlying idea of
compressive genomics, we present model com-
pressive algorithms that run BLAST and BLAT
in time proportional to the size of the nonre-
dundant data in a genomic library (Box 1, Fig. 2,
Supplementary Methods, Supplementary Figs.
1–5 and Supplementary Software). We chose
BLAST for a primary demonstration because
it is widely used and also the principal means
by which many other algorithms query large
genomic data sets; thus any improvement to
BLAST will immediately improve various analy-
ses on large genomic data sets. Furthermore, the
compressive architecture for sequence search we
introduce here is tied not only to BLAST but also
to many algorithms (particularly those based on
sequence similarity).

Challenges of compressive algorithms
There are trade-offs to this approach. As more
divergent genomes are added to a database,

Many algorithms exist for the compression
of genomic data sets purely to reduce the space
required for storage and transmission12–15,17,18.
Hsi-Yang Fritz et al.18 provide a particularly
instructive discussion of the concerns involved.
However, existing techniques require decom-
pression before computational analysis. Thus,
although these algorithms enable efficient data
storage, they do not mitigate the computational
bottleneck: the original uncompressed data set
must be reconstructed before it can be analyzed.

There have been efforts to accelerate exact
search through indexing techniques16,19,20.
Although algorithms—such as Maq21, Burrows-
Wheeler Aligner (BWA)22 and Bowtie23—
already can map short resequencing reads to a
few genomes quite well, compressive techniques
will be extremely useful in the case of match-
ing reads of unknown origin to a large database
(say, in a medical or forensic context). Search
acceleration becomes harder when one wishes
to perform an inexact search (e.g., BLAST10
and BLAT11) because compression schemes in

We describe versions of the widely used BLAST and BLAT algorithms
that illustrate the compressive genomics paradigm. BLAST and BLAT
search a genomic database to identify sequences that are similar
to a given sequence. Our compressive algorithms have two phases:
(i) compressing the database and (ii) searching the compressed
data (Supplementary Fig. 1). The compression phase can be
realized by various schemes. We used an approach based on edit
script compression. The search phase can be implemented using
nearly any existing search algorithm. We show the modularity of our
approach by implementing compressive BLAST and BLAT search
algorithms that can operate on the same compressed database.

Database compression. To compress data, we store only the
differences between similar sequence fragments, rather than the

complete, highly redundant sequences themselves. We implement
this approach by scanning the nucleotide database and identifying
sequence fragments sufficiently similar to previously seen fragments.
Once identified, each fragment is replaced with a link to the original
sequence and a compact list of differences. By default, we consider
only fragments 300 base pairs or longer with at least 85% identity
to previous fragments (Supplementary Methods). The initial data-
compression phase only needs to be done once, and the compressed
database can be updated incrementally if new data are added.
This approach substantially reduces the storage required for many
genomes (Fig. 2a).

The exact output of compression is dependent on the order in
which the uncompressed data are examined; however, changing

the order in which genomes are
added to the library does not
substantially affect the database
size, compression speed, search
speed or search accuracy (data
not shown). For example, using
our compressive BLAST algorithm,
accuracy to hits in the first
genome added to the database was
perfect, and the accuracy of all
subsequent hits was <1% lower.

Compressive BLAST. For the
search phase, we implemented
a two-step variant of BLAST.
First, the algorithm uses standard
BLAST to search the unique data
(that is, data not replaced by links
during compression) with a more
permissive hit threshold (E value).
Second, the algorithm traces

Figure 2 Results of compressive algorithms on up to 36 yeast genomes. (a) File sizes of the uncompressed,
compressed with links and edits, and unique sequence data sets with default parameters. (b) Run times of
BLAST, compressive BLAST and the coarse search step of compressive BLAST on the unique data (‘coarse
only’). Error bars, s.d. of five runs. Reported runtimes were on a set of 10,000 simulated queries. For queries
that generate very few hits, the coarse search time provides a lower bound on search time. (c) Run times of
BLAT, compressive BLAT and the coarse search step on the unique data (‘coarse only’) for 10,000 queries
(implementation details in Supplementary Methods). Error bars, s.d. of five runs. BLAST and BLAT were both
run with default parameters. The data shown represent differences between searches with 10,000 and 20,000
queries so as to remove the bias introduced by database construction time in BLAT. The anomalous decrease
in run time with more data at 8 uncompressed genomes or 21 compressed genomes is a repeatable feature of
BLAT with default parameters on these data.

5 10 15 20 25 30 35
0

100

200

300

400

500

Genomes

Fi
le

 s
iz

e
(m

eg
ab

yt
es

)

a

Uncompressed

Compressed

Unique

5 10 15 20 25 30 35
0

20

40

60

80

100

Genomes

R
un

 ti
m

e
(s

ec
on

ds
)

b

 BLAST

Compressive BLAST

Coarse only

5 10 15 20 25 30 35
0

2

4

6

8

10

Genomes

R
un

 ti
m

e
(s

ec
on

ds
)

c

BLAT

Compressive BLAT

Coarse only

Box 1 Compressive genomics using BLAST and BLAT

COMMENTARY
np

g
©

 2
01

2
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

nature biotechnology volume 30 number 7 JULy 2012	 629

BLAST and BLAT that we presented yield an
increase in computational speed and, more
importantly, in scaling, they are only a first
step. Many enhancements of our proof-of-
concept implementations are possible; for
example, hierarchical compression structures,
which respect the phylogeny underlying a set
of sequences, may yield additional long-term

compressive algorithms are useful for smaller
research groups in addition to large centers.

Conclusions
Compressive algorithms for genomics have
the great advantage of becoming propor-
tionately faster with the size of the available
data. Although the compression schemes for

the difference is at the root of these trade-offs.
However, sacrificing some accuracy of distant
matches helps to achieve a dramatic increase in
speed from compression.

As computing moves toward distributed and
multiprocessor architectures, one must con-
sider the ability of new algorithms to run in
parallel. Although we expect that the primary
method of parallelizing compressive genomic
search algorithms will be to run queries inde-
pendently, truly massive data sets will require
single queries to be executed in parallel as well.
In the algorithms presented in Box 1, queries
can be parallelized by dividing the compressed
library and link table among computer proces-
sors, although the exact gains from doing so
will depend on the topology of the link graph
on the uncompressed database.

To the extent that researchers restrict
their analyses to small data sets (e.g., what
could be generated in a single laboratory
as opposed to a large sequencing center),
existing noncompressive custom pipelines
may be sufficiently fast in the short term.
However, if one wishes to extend an analy-
sis to a much larger corpus of sequencing
data (perhaps several terabytes of raw data),
noncompressive approaches quickly become
computationally impractical. This is where

links to determine potential hit regions in the full database and
examines these potential hits with the original, stricter threshold.
The initial ‘coarse’ search runs on the compressed data without
decompression, yielding a run time proportional to the size of the
compressed database. The second ‘fine’ alignment is done by locally
decompressing only the potential hit regions until either a hit is
determined or the region can be ruled out.

As the coarse search has a relaxed threshold, searches that hit
repeat regions will result in many more coarse hits and thus burden the
full computation. In practice, we mitigate this issue by masking repeat
regions. For the results presented here, we used a coarse E value
threshold of 10–20, and always set the BLAST database size parameter
to the size of the uncompressed database (Supplementary Methods).

To determine whether compression yields acceleration, we
compressed 36 Saccharomyces sp. genomes24 (Fig. 2a), four
sets of bacterial genera and twelve Drosophila sp. fly genomes25.
We simulated queries by sampling from the data set and adding
mutations, producing a set of queries with many expected hits.

Compressive BLAST analysis of the yeast data set achieved a more
than fourfold increase in speed with respect to a BLAST analysis.
As expected, the advantage increased substantially with the number
of genomes (Fig. 2b). We found a similar increase in speed for the
microbial data sets (Supplementary Figs. 2–4). As our queries had
many hits, the majority of the computation time (~73% for yeast)
was spent on the fine search step, whereas for queries with few hits,
the coarse step alone would be a more accurate predictor of run
time. We expect that much faster fine search times can be achieved
with an optimized fine search algorithm; our implementation simply
runs BLAST a second time on potential hit regions.

For the fly species, although we achieved a large increase in
search speed for the closely related D. melanogaster, D. simulans
and D. sechellia genomes, the gains diminished as we included more
distant cousins (Supplementary Table 1). In general, the run time of
our compressive technique scales linearly with respect to the size of
the nonredundant component of the library (which we expect to be a
diminishing proportion), and linearly in the number of coarse hits.

Compressive BLAT. To implement a compressive version of the
faster BLAT algorithm, we substituted BLAT for BLAST in the
coarse search step and used BLAT’s local alignment algorithm
for the fine search to ensure comparable results. We tested
compressive BLAT on the same data as above using BLAT’s
minIdentity parameter for coarse and fine search thresholds
(minIdentity = 80 and 90, respectively).

Our compressive approach achieved acceleration over BLAT
comparable to our results from accelerating BLAST (Figs. 2c and
Supplementary Fig. 5). Although the coarse search step in BLAT
theoretically takes a constant amount of time, in practice the
running time of BLAT on a database of many genomes scales linearly
with database size owing to the existence of many more 10-mer seed
matches found during a search. Compression accelerates this step
by allowing BLAT to rule out families of spurious hits only once. The
hits produced by compressive BLAT analysis had an overall 96%
accuracy and 97% specificity with respect to a BLAT analysis. The
hits found by one algorithm and not the other were overwhelmingly
of weak similarity. Thus, although it did not produce precisely the
same hits as BLAT, compressive BLAT obtained coverage of true hits
similar to the performance of BLAT.

A
cc

el
er

at
io

n
ra

tio

F
in

al
 E

 v
al

ue

Accuracy (%) Coarse E value (initial search)

More exhaustive

A
ccuracy

7
10–10

10–10

10–20

10–20

10–30

10–30

1

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

NA

6.5

6

5.5

5
0.95 0.96 0.97 0.98 0.99 1

a b
Less compression

Figure 3 Trade-offs in compressive BLAST. (a) Speed versus accuracy as a function of the match
identity threshold in database compression. From left to right, the points represent thresholds of
70–90%, with points every 2%. E value thresholds of 10–20 (coarse) and 10–30 (fine) were used.
(b) Accuracy as a function of coarse and fine E value thresholds. Data presented are from runs on the
combined microbial data set (yeast genomes and those of four bacterial genera) with search queries
drawn randomly from the combined library and then mutated. NA, inapplicable parameter choices, as
the coarse E value should always be larger than the fine one.

Box 1 Compressive genomics using BLAST and BLAT (continued)

COMMENTARY
np

g
©

 2
01

2
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

630	 volume 30 number 7 JULy 2012 nature biotechnology

15.	Brandon, M.C., Wallace, D.C. & Baldi, P. Bioinformatics
25, 1731–1738 (2009).

16.	Mäkinen, V., Navarro, G., Sirén, J. & Välimäki, N. in
Research in Computational Molecular Biology, vol.
5541 of Lecture Notes in Computer Science (Batzoglou,
S., ed.) 121–137 (Springer Berlin/Heidelberg, 2009).

17.	Kozanitis, C., Saunders, C., Kruglyak, S., Bafna, V. &
Varghese, G. in Research in Computational Molecular
Biology, vol. 6044 of Lecture Notes in Computer
Science (Berger, B., ed.) 310–324 (Springer Berlin/
Heidelberg, 2010).

18.	Hsi-Yang Fritz, M., Leinonen, R., Cochrane, G. & Birney,
E. Genome Res. 21, 734–740 (2011).

19.	Mäkinen, V., Navarro, G., Sirén, J. & Välimäki, N. J.
Comput. Biol. 17, 281–308 (2010).

20.	Deorowicz, S. & Grabowski, S. Bioinformatics 27,
2979–2986 (2011).

21.	Li, H., Ruan, J. & Durbin, R. Genome Res. 18, 1851–
1858 (2008).

22.	Li, H. & Durbin, R. Bioinformatics 25, 1754–1760
(2009).

23.	Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.
Genome Biol. 10, R25 (2009).

24.	Carter, D.M. Saccharomyces genome resequencing
project. Wellcome Trust Sanger Institute <http://www.
sanger.ac.uk/Teams/Team118/sgrp/> (2005).

25.	Tweedie, S. et al. Nucleic Acids Res. 37, D555–D559
(2009).

Foundation Mathematical Sciences Postdoctoral
Research Fellowship.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

1.	 Lander, E.S. et al. Nature 409, 860–921 (2001).
2.	 Venter, J.C. et al. Science 291, 1304–1351 (2001).
3.	 Kircher, M. & Kelso, J. Bioessays 32, 524–536

(2010).
4.	 Kahn, S.D. Science 331, 728–729 (2011).
5.	 Gross, M. Curr. Biol. 21, R204–R206 (2011).
6.	 Huttenhower, C. & Hofmann, O. PLoS Comput. Biol.

6, e1000779 (2010).
7.	 Schatz, M., Langmead, B. & Salzberg, S. Nat.

Biotechnol. 28, 691–693 (2010).
8.	 1000 Genomes Project data available on Amazon

Cloud. NIH press release, 29 March 2012.
9.	 Stratton, M. Nat. Biotechnol. 26, 65–66 (2008).
10.	Altschul, S.F., Gish, W., Miller, W., Myers, E.W. &

Lipman, D.J. J. Mol. Biol. 215, 403–410 (1990).
11.	Kent, W.J. Genome Res. 12, 656–664 (2002).
12.	Grumbach, S. & Tahi, F. J. Inf. Process. Manag. 30,

875–886 (1994).
13.	Chen, X., Li, M., Ma, B. & Tromp, J. Bioinformatics 18,

1696–1698 (2002).
14.	Christley, S., Lu, Y., Li, C. & Xie, X. Bioinformatics 25,

274–275 (2009).

performance gains. Moreover, analyses of such
compressive structures will lead to insights as
well. As sequencing technologies continue to
improve, the compressive genomic paradigm
will become critical to fully realizing the poten-
tial of large-scale genomics.

Software is available at http://cast.csail.mit.
edu/.

Editor’s note: This article has been peer-reviewed.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2241.

ACKNOWLEDGMENTS
We thank J. Kelner, E. Demaine, G. Church, X.R.
Bao, M. Schnall-Levin, Z. Albertyn, M. Lipson and
E. Lieberman-Aiden for helpful discussions and
comments, and L. Gaffney for assistance improving
the figures. P.-R.L. acknowledges support from the
National Defense Science and Engineering Graduate
and US National Science Foundation Fellowships.
M.B. acknowledges support from the Fannie and
John Hertz Foundation and the National Science

COMMENTARY
np

g
©

 2
01

2
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

rig
ht

s
re

se
rv

ed
.

http://cast.csail.mit.edu/
http://cast.csail.mit.edu/
http://www.nature.com/doifinder/10.1038/nbt.2241.
http://www.nature.com/doifinder/10.1038/nbt.2241.

	Compressive genomics
	Acknowledgements
	Note
	References

