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Compressive genomics
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Algorithms that compute directly on compressed genomic data allow analyses to keep pace with data generation.

In the past two decades, genomic sequencing 
capabilities have increased exponentially1–3, 

outstripping advances in computing power4–8. 
Extracting new insights from the data sets cur-
rently being generated will require not only 
faster computers, but also smarter algorithms. 
However, most genomes currently sequenced 
are highly similar to ones already collected9; 
thus, the amount of new sequence information 
is growing much more slowly.

Here we show that this redundancy can 
be exploited by compressing sequence data 
in such a way as to allow direct computation 
on the compressed data using methods we 
term ‘compressive’ algorithms. This approach 
reduces the task of computing on many simi-
lar genomes to only slightly more than that of 
operating on just one. Moreover, its relative 
advantage over existing algorithms will grow 
with the accumulation of genomic data. We 
demonstrate this approach by implementing 
compressive versions of both the Basic Local 
Alignment Search Tool (BLAST)10 and the 
BLAST-Like Alignment Tool (BLAT)11, and 
we emphasize how compressive genomics will 
enable biologists to keep pace with current 
data.

A changing environment
Successive generations of sequencing technolo-
gies have increased the availability of genomic 
data exponentially. In the decade since the pub-
lication of the first draft of the human genome 

(a 10-year, $400-million effort1,2), technolo-
gies3 have been developed that can be used to 
sequence a human genome in 1 week for less 
than $10,000, and the 1000 Genomes Project 
is well on its way to building a library of over 
2,500 human genomes8.

These leaps in sequencing technology 
promise to enable corresponding advances 
in biology and medicine, but this will require 
more efficient ways to store, access and analyze 
large genomic data sets. Indeed, the scientific 
community is becoming aware of the funda-
mental challenges in analyzing such data4–7. 
Difficulties with large data sets arise in set-
tings in which one analyzes genomic sequence 
libraries, including finding sequences similar 
to a given query (e.g., from environmental 
or medical samples) or finding signatures 
of selection in large sets of closely related 
genomes.

Currently, the total amount of available 
genomic data is increasing approximately 
tenfold every year, a rate much faster than 
Moore’s Law for computational processing 
power (Fig. 1). Any computational analysis, 
such as sequence search, that runs on the full 
genomic library—or even a constant fraction 
thereof—scales at least linearly in time with 
respect to the size of the library and therefore 
effectively grows exponentially slower every 
year. If we wish to use the full power of these 
large genomic data sets, then we must develop 
new algorithms that scale sublinearly with data 
size (that is, those that reduce the effective size 
of the data set or do not operate on redundant 
data).

Sublinear analysis and compressed data
To achieve sublinear analysis, we must take 
advantage of redundancy inherent in the data. 
Intuitively, given two highly similar genomes, 
any analysis based on sequence similarity 
that is performed on one should have already 
done much of the work toward the same 

analysis on the other. We note that although 
efficient algorithms, such as BLAST10, have 
been developed for individual genomes, large 
genomic libraries have additional structure: 
they are highly redundant. For example, as 
human genomes differ on average by only 
0.1% (ref. 2), 1,000 human genomes con-
tain less than twice the unique information 
of one genome. Thus, although individual 
genomes are not very compressible12,13, col-
lections of related genomes are extremely  
compressible14–17.

This redundancy among genomes can be 
translated into computational acceleration by 
storing genomes in a compressed format that 
respects the structure of similarities and dif-
ferences important for analysis. Specifically, 
these differences are the nucleotide substi-
tutions, insertions, deletions and rearrange-
ments introduced by evolution. Once such a 
compressed library has been created, it can be 
analyzed in an amount of time proportional 
to its compressed size, rather than having to 
reconstruct the full data set every time one 
wishes to query it.
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Figure 1  Sequencing capabilities versus 
computational power from 1996–2010. 
Sequencing capabilities are doubling 
approximately every four months, whereas 
processing capabilities are doubling 
approximately every eighteen. (Data adapted with 
permission from Kahn4.)
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the computational acceleration resulting 
from compression decreases, although this is 
to be expected, as these data are less mutu-
ally informative. Although our compressive 
BLAST algorithm achieves over 99% sensitiv-
ity without substantial slowdown (Fig. 3 and 
Supplementary Figs. 6,7), improvements in 
sensitivity necessarily involve losses in speed.

There is also a trade-off between achieving 
optimal data compression and accuracy of 
analysis (Supplementary Fig. 6a). This trade-
off is fundamental to the problem of com-
pressive algorithms for biology: in genomic 
analysis, one is interested in the probability of 
similar sequences occurring by chance rather 
than because of common ancestry, whereas 
compression ratios depend only on the abso-
lute sequence similarity. For example, two 
sequences of 50% identity for over 1,000 bases 
are a strong BLAST hit, but admit no useful 
compression because the overhead would  
outweigh the savings. Although these two mea-
sures of sequence similarity are closely related, 

general do not allow efficient recovery of the 
similarity structure of the data set.

As proof of principle for the underlying idea of 
compressive genomics, we present model com-
pressive algorithms that run BLAST and BLAT 
in time proportional to the size of the nonre-
dundant data in a genomic library (Box 1, Fig. 2, 
Supplementary Methods, Supplementary Figs. 
1–5 and Supplementary Software). We chose 
BLAST for a primary demonstration because 
it is widely used and also the principal means 
by which many other algorithms query large 
genomic data sets; thus any improvement to 
BLAST will immediately improve various analy-
ses on large genomic data sets. Furthermore, the 
compressive architecture for sequence search we 
introduce here is tied not only to BLAST but also 
to many algorithms (particularly those based on 
sequence similarity).

Challenges of compressive algorithms
There are trade-offs to this approach. As more 
divergent genomes are added to a database, 

Many algorithms exist for the compression 
of genomic data sets purely to reduce the space 
required for storage and transmission12–15,17,18. 
Hsi-Yang Fritz et al.18 provide a particularly 
instructive discussion of the concerns involved. 
However, existing techniques require decom-
pression before computational analysis. Thus, 
although these algorithms enable efficient data 
storage, they do not mitigate the computational 
bottleneck: the original uncompressed data set 
must be reconstructed before it can be analyzed.

There have been efforts to accelerate exact 
search through indexing techniques16,19,20. 
Although algorithms—such as Maq21, Burrows-
Wheeler Aligner (BWA)22 and Bowtie23—
already can map short resequencing reads to a 
few genomes quite well, compressive techniques 
will be extremely useful in the case of match-
ing reads of unknown origin to a large database 
(say, in a medical or forensic context). Search 
acceleration becomes harder when one wishes 
to perform an inexact search (e.g., BLAST10 
and BLAT11) because compression schemes in 

We describe versions of the widely used BLAST and BLAT algorithms 
that illustrate the compressive genomics paradigm. BLAST and BLAT 
search a genomic database to identify sequences that are similar 
to a given sequence. Our compressive algorithms have two phases: 
(i) compressing the database and (ii) searching the compressed 
data (Supplementary Fig. 1). The compression phase can be 
realized by various schemes. We used an approach based on edit 
script compression. The search phase can be implemented using 
nearly any existing search algorithm. We show the modularity of our 
approach by implementing compressive BLAST and BLAT search 
algorithms that can operate on the same compressed database.

Database compression. To compress data, we store only the 
differences between similar sequence fragments, rather than the 

complete, highly redundant sequences themselves. We implement 
this approach by scanning the nucleotide database and identifying 
sequence fragments sufficiently similar to previously seen fragments. 
Once identified, each fragment is replaced with a link to the original 
sequence and a compact list of differences. By default, we consider 
only fragments 300 base pairs or longer with at least 85% identity 
to previous fragments (Supplementary Methods). The initial data-
compression phase only needs to be done once, and the compressed 
database can be updated incrementally if new data are added. 
This approach substantially reduces the storage required for many 
genomes (Fig. 2a).

The exact output of compression is dependent on the order in 
which the uncompressed data are examined; however, changing 

the order in which genomes are 
added to the library does not 
substantially affect the database 
size, compression speed, search 
speed or search accuracy (data 
not shown). For example, using 
our compressive BLAST algorithm, 
accuracy to hits in the first 
genome added to the database was 
perfect, and the accuracy of all 
subsequent hits was <1% lower.

Compressive BLAST. For the 
search phase, we implemented 
a two-step variant of BLAST. 
First, the algorithm uses standard 
BLAST to search the unique data 
(that is, data not replaced by links 
during compression) with a more 
permissive hit threshold (E value). 
Second, the algorithm traces 

Figure 2  Results of compressive algorithms on up to 36 yeast genomes. (a) File sizes of the uncompressed, 
compressed with links and edits, and unique sequence data sets with default parameters. (b) Run times of 
BLAST, compressive BLAST and the coarse search step of compressive BLAST on the unique data (‘coarse 
only’). Error bars, s.d. of five runs. Reported runtimes were on a set of 10,000 simulated queries. For queries 
that generate very few hits, the coarse search time provides a lower bound on search time. (c) Run times of 
BLAT, compressive BLAT and the coarse search step on the unique data (‘coarse only’) for 10,000 queries 
(implementation details in Supplementary Methods). Error bars, s.d. of five runs. BLAST and BLAT were both 
run with default parameters. The data shown represent differences between searches with 10,000 and 20,000 
queries so as to remove the bias introduced by database construction time in BLAT. The anomalous decrease 
in run time with more data at 8 uncompressed genomes or 21 compressed genomes is a repeatable feature of 
BLAT with default parameters on these data.
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Box 1  Compressive genomics using BLAST and BLAT
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BLAST and BLAT that we presented yield an 
increase in computational speed and, more 
importantly, in scaling, they are only a first 
step. Many enhancements of our proof-of-
concept implementations are possible; for 
example, hierarchical compression structures, 
which respect the phylogeny underlying a set 
of sequences, may yield additional long-term 

compressive algorithms are useful for smaller 
research groups in addition to large centers.

Conclusions
Compressive algorithms for genomics have 
the great advantage of becoming propor-
tionately faster with the size of the available 
data. Although the compression schemes for 

the difference is at the root of these trade-offs. 
However, sacrificing some accuracy of distant 
matches helps to achieve a dramatic increase in 
speed from compression.

As computing moves toward distributed and 
multiprocessor architectures, one must con-
sider the ability of new algorithms to run in 
parallel. Although we expect that the primary 
method of parallelizing compressive genomic 
search algorithms will be to run queries inde-
pendently, truly massive data sets will require 
single queries to be executed in parallel as well. 
In the algorithms presented in Box 1, queries 
can be parallelized by dividing the compressed 
library and link table among computer proces-
sors, although the exact gains from doing so 
will depend on the topology of the link graph 
on the uncompressed database.

To the extent that researchers restrict 
their analyses to small data sets (e.g., what 
could be generated in a single laboratory 
as opposed to a large sequencing center), 
existing noncompressive custom pipelines 
may be sufficiently fast in the short term. 
However, if one wishes to extend an analy-
sis to a much larger corpus of sequencing 
data (perhaps several terabytes of raw data), 
noncompressive approaches quickly become 
computationally impractical. This is where 

links to determine potential hit regions in the full database and 
examines these potential hits with the original, stricter threshold. 
The initial ‘coarse’ search runs on the compressed data without 
decompression, yielding a run time proportional to the size of the 
compressed database. The second ‘fine’ alignment is done by locally 
decompressing only the potential hit regions until either a hit is 
determined or the region can be ruled out.

As the coarse search has a relaxed threshold, searches that hit 
repeat regions will result in many more coarse hits and thus burden the 
full computation. In practice, we mitigate this issue by masking repeat 
regions. For the results presented here, we used a coarse E value 
threshold of 10–20, and always set the BLAST database size parameter 
to the size of the uncompressed database (Supplementary Methods).

To determine whether compression yields acceleration, we 
compressed 36 Saccharomyces sp. genomes24 (Fig. 2a), four 
sets of bacterial genera and twelve Drosophila sp. fly genomes25. 
We simulated queries by sampling from the data set and adding 
mutations, producing a set of queries with many expected hits.

Compressive BLAST analysis of the yeast data set achieved a more 
than fourfold increase in speed with respect to a BLAST analysis. 
As expected, the advantage increased substantially with the number 
of genomes (Fig. 2b). We found a similar increase in speed for the 
microbial data sets (Supplementary Figs. 2–4). As our queries had 
many hits, the majority of the computation time (~73% for yeast) 
was spent on the fine search step, whereas for queries with few hits, 
the coarse step alone would be a more accurate predictor of run 
time. We expect that much faster fine search times can be achieved 
with an optimized fine search algorithm; our implementation simply 
runs BLAST a second time on potential hit regions.

For the fly species, although we achieved a large increase in 
search speed for the closely related D. melanogaster, D. simulans 
and D. sechellia genomes, the gains diminished as we included more 
distant cousins (Supplementary Table 1). In general, the run time of 
our compressive technique scales linearly with respect to the size of 
the nonredundant component of the library (which we expect to be a 
diminishing proportion), and linearly in the number of coarse hits.

Compressive BLAT. To implement a compressive version of the 
faster BLAT algorithm, we substituted BLAT for BLAST in the 
coarse search step and used BLAT’s local alignment algorithm 
for the fine search to ensure comparable results. We tested 
compressive BLAT on the same data as above using BLAT’s 
minIdentity parameter for coarse and fine search thresholds 
(minIdentity = 80 and 90, respectively).

Our compressive approach achieved acceleration over BLAT 
comparable to our results from accelerating BLAST (Figs. 2c and 
Supplementary Fig. 5). Although the coarse search step in BLAT 
theoretically takes a constant amount of time, in practice the 
running time of BLAT on a database of many genomes scales linearly 
with database size owing to the existence of many more 10-mer seed 
matches found during a search. Compression accelerates this step 
by allowing BLAT to rule out families of spurious hits only once. The 
hits produced by compressive BLAT analysis had an overall 96% 
accuracy and 97% specificity with respect to a BLAT analysis. The 
hits found by one algorithm and not the other were overwhelmingly 
of weak similarity. Thus, although it did not produce precisely the 
same hits as BLAT, compressive BLAT obtained coverage of true hits 
similar to the performance of BLAT.
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Figure 3  Trade-offs in compressive BLAST. (a) Speed versus accuracy as a function of the match 
identity threshold in database compression. From left to right, the points represent thresholds of  
70–90%, with points every 2%. E value thresholds of 10–20 (coarse) and 10–30 (fine) were used.  
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combined microbial data set (yeast genomes and those of four bacterial genera) with search queries 
drawn randomly from the combined library and then mutated. NA, inapplicable parameter choices, as 
the coarse E value should always be larger than the fine one.

Box 1  Compressive genomics using BLAST and BLAT (continued)
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performance gains. Moreover, analyses of such 
compressive structures will lead to insights as 
well. As sequencing technologies continue to 
improve, the compressive genomic paradigm 
will become critical to fully realizing the poten-
tial of large-scale genomics.

Software is available at http://cast.csail.mit.
edu/.

Editor’s note: This article has been peer-reviewed.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2241.

ACKNOWLEDGMENTS
We thank J. Kelner, E. Demaine, G. Church, X.R. 
Bao, M. Schnall-Levin, Z. Albertyn, M. Lipson and 
E. Lieberman-Aiden for helpful discussions and 
comments, and L. Gaffney for assistance improving 
the figures. P.-R.L. acknowledges support from the 
National Defense Science and Engineering Graduate 
and US National Science Foundation Fellowships. 
M.B. acknowledges support from the Fannie and 
John Hertz Foundation and the National Science 

COMMENTARY
np

g
©

 2
01

2 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

rig
ht

s 
re

se
rv

ed
.

http://cast.csail.mit.edu/
http://cast.csail.mit.edu/
http://www.nature.com/doifinder/10.1038/nbt.2241.
http://www.nature.com/doifinder/10.1038/nbt.2241.

	Compressive genomics
	Acknowledgements
	Note
	References




