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Transancestral mapping and genetic load
in systemic lupus erythematosus
Carl D. Langefeld et al.#

Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender

and ethnic disparities. We report a large transancestral association study of SLE using

Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and

Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA

and 16 in HA (B50% of these regions have multiple independent associations); these include

24 novel SLE regions (Po5� 10�8), refined association signals in established regions,

extended associations to additional ancestries, and a disentangled complex HLA multigenic

effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading

us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the

three ancestries identifies both ancestry-dependent and ancestry-independent contributions

to SLE risk. Our results are consistent with the unique and complex histories of the

populations sampled, and collectively help clarify the genetic architecture and ethnic

disparities in SLE.
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S
ystemic lupus erythematosus (SLE) (OMIM 152,700) is a
chronic autoimmune disease that affects multiple organs,
and disproportionately affects women and individuals

of non-European ancestry1. Candidate gene and genome-wide
association studies2–4 have successfully identified B90 SLE risk
loci that explain a significant proportion of SLE’s heritability5–8.
These studies have been largely restricted to populations of
European ancestry (EA). Yet, much of the heritability of SLE risk
remains unexplained in EA populations, and is largely unknown
in other ancestries. Here, we report the results of genotyping large
samples of individuals of EA, African American (AA) and
Hispanic (Amerindian) American ancestry (HA) on the Illumina
Infinium Immunochip (196,524 polymorphisms: 718 small
insertion deletions, 195,806 single nucleotide polymorphisms
(SNPs)), a microarray designed to perform both deep replication
and fine mapping of established major autoimmune and
inflammatory disease loci9.

This study identifies 58 distinct non-HLA regions in EA,
9 in AA and 16 in HA. Approximately 50% of the associated
regions have multiple independent associations. These 58 regions
include 24 novel SLE regions reaching genome-wide significance
(Po5� 10� 8). Further, these results localize the association
signals in established regions and extended associations to
additional ancestries (for example, EA to AA or HA). Adjusting
for the associated HLA alleles disentangles a complex multigenic
effect just outside of the HLA region. The association between
SLE and the risk allele genetic load (risk allele count) exhibits an
accelerating nonlinear trend, greater than expected if the loci were
acting independently on risk. This nonlinear risk relationship
leads us to posit a cumulative hit hypothesis for autoimmune
disease. Finally, we report both ancestry-dependent and ancestry-
independent contributions to SLE risk.

Results
SLE genetic association study. In total, 27,574 SLE cases and
controls from three ancestral groups were genotyped and passed
quality control for the Immunochip (AA: 2,970 cases, 2,452
controls; EA: 6,748 cases, 11,516 controls; HA: 1,872 cases and
2,016 controls). Altogether, 146,111 SNPs passed quality control
analyses in at least one ancestry (AA: 128,385, EA: 120,873, HA:
120,786). Restricting linkage disequilibrium (LD) to r2o0.2
yielded 46,774 uncorrelated SNPs (union across ancestries) for an
estimate of the number of independent tests. To minimize
ancestry-specific inflation factors, 3, 4 and 2 admixture factors
were included as covariates in the logistic regression model

for the EA, AA and HA association analyses, respectively
(Supplementary Fig. 1). Inflation factors, scaled to 1,000 cases
and 1,000 controls, were lAA,1000¼ 1.03, lEA,1000¼ 1.03 and
lHA,1000¼ 1.13 (Supplementary Fig. 2). Power analyses are
reported in Supplementary Fig. 3.

Single SNP association. Table 1 shows the number of
distinct regions (see Methods) within each ancestry that reached
three tiers of statistical significance (Tier 1: Po5� 10� 8, Tier 2:
5� 10� 8oPo1� 10� 6 and Tier 3: P41� 10� 6 and
PFDRo0.05) and lists the number of regions with novel SLE
associations. The Tier 1 and Tier 2 thresholds are intentionally
more stringent than even the conservative Bonferroni method to
reduce the Type 1 error rate on this immune-centric genotyping
platform. In total, 5, 38 and 7 distinct non-HLA regions met the
Tier 1 threshold of significance for the AA, EA and HA cohorts,
respectively; and of these Tier 1 associations, 2, 9 and 2 were
novel to SLE regardless of ethnicity or to SLE for a specific eth-
nicity. An additional 4, 20 and 9 distinct non-HLA regions met
the Tier 2 threshold (Fig. 1).

European ancestry. Statistically, EA had the most power
and 58 regions met Tier 1 or Tier 2 thresholds (Supplementary
Data 2). Many are novel SLE risk regions, and others are
novel for EA (Table 2). More than 50% of these regions
had multiple independent SNPs contributing to the association,
based on regional stepwise analyses. In total, 223 distinct
associations met PFDRo0.01 (Tables 1 and 2, Supplementary
Table 2), which included both well-established and novel
associations.

Novel Tier 1 regions of SLE association in EA and the proximal
genes include 4p16 (DGKQ), 6p22 (SLC17A4 and LRRC16A),
6q23 (OLIG3-LOC100130476), 8p23 (FAM86B3P), 8q21 (PKIA-
ZC2HC1A) and 17q25 (GRB2). Of the 20 EA Tier 2 associated
regions, 16 appear novel to SLE.

African American ancestry. The AA sample was powered
to detect OR¼ 1.1 to 1.2 at a¼ 1� 10� 6. In addition to
known regions in AA, novel AA regions identified include 5q33
(PTTG1-MIR146A), 6p21 (UHRF1BP1-DEF6) and 16q22 (ZFP90)
(Tables 1 and 2; Supplementary Data 2). The 8p11 (PLAT)
association is novel to SLE and was not observed in HA or EA as
it was nearly monomorphic in both populations. The 1q25 region
in AA is near the known anti-dsDNA-rs2205960 association
between TNFSF4 and LOC100506023 in non-AA samples. The
association at rs6681482 (P¼ 8.11� 10� 7, OR¼ 0.73) within
LOC100506023 appears independent and separated from the
TNFSF4 associations by a recombination hotspot. Three SNPs in
this region met the stepwise significance threshold, but the
strongest association in EA (rs2205960) was not genome-wide
significant in AA (OR¼ 1.35, P¼ 7.39� 10� 4). The association
with rs2431697 (OR¼ 0.76, P¼ 1.27� 10� 12) at 5q33 was
previously associated with SLE and anti-dsDNA in EA, but not in
AA (ref. 10).

Hispanic ancestry. HA samples had comparable power to
the AA sample but exhibited more (nine versus four) novel
associations at the Tier 1 and Tier 2 thresholds (Tables 1 and 2).
Many regions had multiple independent associations, including
cases of previously reported regions exhibiting additional
novel loci. Novel Tier 1 regions include 14q31 (GALC) and
16p13 (CLEC16A). Novel Tier 2 regions include 3p11 (EPHA3-
PROS1), 6p21 (TCP11-SCUBE3), 6q25 (RSPH3), 12q15
(DYRK2-IFNG), 12q21 (SYT1), 16q21 (CSNK2A2-CCDC113) and

Table 1 | Number of non-HLA independent regions per
significance tier and ancestry (number of novel regions in
parentheses*).

Ancestry

Tier and P value threshold African
American

European
ancestry

Hispanic
ancestry

Tier 1: P valueo5� 10� 8 5 (2) 38 (9) 7 (2)
Tier 2: P valueo1� 10� 6 4 (2) 20 (18) 9 (7)
Tier 3: FDR P valuewo0.01 18 165 66

Tier 3 Regions Only: FDR P valuesz (not cumulative)
0.01–0.05 55 312 154
0.001–0.01 17 119 57
0.0001–0.001 1 40 9
o0.0001 0 6 0

*For Tier 1 and Tier 2 regions only; novel to SLE or first observed in specific ancestral cohort.
wNot cumulative.
zFDR P value represents the Benjamini–Hochberg adjusted false discovery rate P value.
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22q12 (C1QTNF6). Only the 16p13 locus is associated in AA
and EA.

Chromosome X. None of the 442 chromosome X SNPs, pre-
dominantly in Xp22 and Xq28, met Tier 1 or Tier 2 thresholds of
significance. The strongest evidence of association was in females
at Xq28 within GAB3 (Supplementary Fig. 4; rs2664170;

EA: OR¼ 0.89, P¼ 0.0009; AA: OR¼ 0.90, P¼ 0.13; HA:
OR¼ 0.90, P¼ 0.33; Meta P¼ 1.23� 10� 4).

Two-way interactions among associated SNPs. No SNP–SNP
interactions met the Bonferroni threshold (P¼ 1� 10� 9)
(see Methods).

Human leukocyte antigen region. SNP analyses within the HLA
region provided strong evidence of association with SLE across
groups (Fig. 2). These associations are complicated by the region’s
extended LD between SNPs and classical HLA alleles.
Supplementary Data 3 and Supplementary Fig. 5 summarize the
posterior probability distributions for the imputed four-digit HLA
alleles in HLA-A, -B, -C, -DQA1, -DQB1, -DPB1 and -DRB1.

HLA allele associations. HLA allele associations for each
ancestry and for multi-ancestral meta-analysis are shown in
Supplementary Data 4. To disenable regional LD effects, ancestry-
specific stepwise logistic modelling was used to identify the set of
alleles with unique HLA contributions to SLE risk (that is, risk
or ‘protective’ alleles associated even after adjusting for other
SLE-associated HLA alleles) (Supplementary Data 5). To account
for HLA alleles contributing even nominal effects, the models’
entry and exit criteria were set to Pr0.01 (see Methods).
The final models contained both risk and ‘protective’ alleles.
In both the single-allele and multi-locus models, class II
alleles exhibited the greatest association with SLE. The DR3
(DRB1*3:01-DQA1*05:01-DQB1*02:01) and DR15 (DRB1*15:01/
03-DQA1*01:02-DQB1*06:01) haplotypes had the most significant
class II risk alleles across populations.

SNP associations after adjusting for HLA alleles. Only two
SNPs showed evidence of association with SLE (Supplementary
Data 6) after adjusting for the HLA alleles identified in the
stepwise modelling (Fig. 2). Specifically, for EA these SNPs
are, rs1150755 (OR¼ 1.33, P¼ 3.10� 10� 8) within TNXB and
rs9273448 (OR¼ 0.64, P¼ 2.39� 10� 8) within HLA-DQB1
(Supplementary Data 6 and Supplementary Fig. 6). These
associations had comparable ORs in the AA and HA cohorts,
except in HA for rs9273448. Transancestral meta-analysis showed
stronger association at both loci (Supplementary Data 6 and
Supplementary Fig. 6). Whether these residual associations reflect
novel loci or imperfect imputation requires additional study.

Compound risk allele heterozygosity. In several autoimmune
diseases, including lupus11, having two different risk alleles
(compound risk allele heterozygosity) generates greater disease
risk than having two copies of the same risk allele12,13. In SLE,
there are two primary risk haplotypes (DRB1*3:01-DQA1*05:01-
DQB1*02:01 and DRB1*15-DQA1*01:02-DQB1*06:01), which
are comprised of alleles in strong linkage disequilibrium. Thus,
we selected DRB1*03:01 and DR*15 (DRB1*15:01 in EA & HA;
DRB1*15:03 in AA) as tagging alleles to evaluate risk allele
heterozygosity. Supplementary Data 7 summarizes the genotypic
associations and contrasts the effects of risk allele homozygosity,
heterozygosity, and compound heterozygosity. In both EA and
AA, compound risk allele heterozygosity (DRB1*03:01/*15
provided greater risk than homozygosity for either individual
risk allele (that is, DRB1*03:01/03:01; 15/15); these effects are
consistent in direction but not significant in HA. Transancestral
meta-analysis strongly supports that the risk for compound
heterozygotes is greater than homozygotes for any individual
allele (P03:01¼ 1.79� 10� 10; P15:01¼ 4.65� 10� 28). While there
was not conclusive evidence of a statistical interaction for people
having these two risk alleles in EA (P¼ 0.07), AA (P¼ 0.06),

European ancestrya

b

c

d

African American

Hispanic ancestry

Meta-analysis

120
80

60

40

20

0

20

30

140

130
100

80

60

40

20

0

25

20

15

10

5

0

15

10

5

0

1

P
T

P
N

22
F

C
G

R
2A T

N
F

S
F

4
IL

10

IF
IH

1

T
N

IP
1

P
T

T
G

1 
- 

M
IR

14
6A

H
LA

IR
F

5-
T

N
P

O
3

IT
G

A
M

IT
G

A
M

IR
F

5-
T

N
P

O
3

H
LA

P
T

P
N

22
F

C
G

R
2A

IL
10

LB
H

IF
IH

1
S

TA
T

4

H
LA

IR
F

5 
- T

N
P

O
3

P
X

K
 -

 P
D

H
B

 -
 K

C
T

D
6

T
M

E
M

39
A

 -
 T

IM
M

D
C

1
IL

12
A

B
A

N
K

1
IL

2 
- 

IL
21

T
N

IP
1

AT
G

5 T
N

FA
IP

3
JA

Z
F

1
C

7o
rf

 -
 IK

Z
F

1
G

T
F

2I
R

D
1 

- 
G

T
F

2I

B
LK

LY
N

-R
P

S
20

W
D

F
Y

4

IR
F

7
P

D
H

X
-C

D
44

E
T

S
1

S
LC

15
A

4

R
A

D
51

B

E
R

B
B

2 
- 

IK
Z

F
3

IR
F

8
T

Y
K

2

N
C

O
A

5 
- 

C
D

40
U

B
E

2L
3

IT
G

A
M

P
T

T
G

1 
- 

M
IR

14
6A

T
N

F
S

F
4 

- 
LO

C
10

05
06

02
3

N
M

N
AT

2 
- 

S
M

G
7 

- 
N

C
F

2

T
N

IP
1

S
TA

T
4

N
C

F
2

B
LK

B
LK

M
S

R
A

P
X

K

LR
R

C
16

A
P

T
T

G
1 

- 
M

IR
14

6A

P
LA

T

IL
12

R
B

2

PA
P

O
LG

 -
 L

IN
C

01
18

5

D
G

K
Q

S
T

8S
IA

4

P
K

IA
 -

 Z
C

2H
C

1A

A
K

05
74

51

AT
X

N
2

C
LE

C
16

A

G
R

B
2

P
LL

P
 -

 C
C

L2
2

Z
F

P
90

LR
C

25
 -

 S
S

P
B

4
P

T
P

R
H

 -
T

M
E

M
86

B

E
N

T
H

D
1 

- 
G

R
A

P
2

G
A

LC

C
LE

C
16

A

S
LC

17
A

4

FA
M

86
B

3P

IL
12

A

B
A

N
K

1 T
N

IP
1

JA
Z

F
1 C

7o
rf

72
-I

K
Z

F
1

B
LK

W
D

F
Y

4

IR
F

7

E
T

S
1

S
LC

15
A

4

C
LE

C
16

A

IR
F

8
E

R
B

B
2 

- 
IK

Z
F

3

T
Y

K
2

U
B

E
2L

3

IT
G

A
M

AT
G

5
H

LA

T
N

FA
IP

3

IR
F

5-
T

N
P

O
3

T
M

E
M

39
A

 -
 T

IM
M

D
C

1

O
LI

G
3 

-L
O

C
10

01
30

47
6;

G
T

F
2I

R
D

1-
G

T
F

2I

P
K

IA
-Z

C
2H

C
1A

G
R

B
2

D
G

K
Q

N
M

N
AT

2

S
TA

T
4

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21222

–l
og

10
(p

)
–l

og
10

(p
)

–l
og

10
(p

)
–l

og
10

(p
)

Chromosome

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21222

Chromosome

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21222

Chromosome

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21222

Chromosome

Figure 1 | Genome-wide associations in SLE. Manhattan plots for

(a) European ancestry, (b) African American, (c) Hispanic ancestry, and the

(d) meta-analysis. Tier 1 associations are labelled with novel regions

highlighted in red. Genome-wide significance (5� 10�8) is indicated on

each plot.
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Table 2 | Novel ancestry-specific non-HLA associated regions.

Most
significant
SNP(s)

Chr. Position
(b37)

Gene region* Region
rank

Ref.
allele

RAF
case

RAF
control

P value OR (95% CI) Regional
stepwise
P value

dbSNP
functionw

EA Tier 1
rs1132200d,P 3q13 119150836 TMEM39A1-TIMMDC1 29 A 0.138 0.159 1.37� 10� 7 0.83 (0.77–0.89) missense
rs1131265d 3q13 119222456 TMEM39A1-TIMMDC1 29 C 0.161 0.186 1.42� 10� 9 0.81 (0.76–0.87) 5.96� 10�9 coding-synon
rs1534154 3q13 119311030 TMEM39A1-TIMMDC1 29 G 0.177 0.165 2.60� 10�4 1.11 (1.05–1.18) 1.35� 10� 3

rs3733345 4p16 954247 DGKQ 33 G 0.444 0.466 5.84� 10�8 0.89 (0.85–0.93) 5.84� 10�8 untranslated-3
rs4690229i 4p16 970724 DGKQ 33 T 0.486 0.462 1.62� 10�8 1.13 (1.09–1.19)
rs10498722d 6p22 25186512 LRRC16A 12 A 0.096 0.080 2.87� 10� 10 1.30 (1.20–1.41) 2.87� 10� 10

rs35789010i 6p22 25514179 LRRC16A 12 A 0.089 0.072 4.59� 10� 19 1.46 (1.35–1.59) intron
rs4712969 6p22 25764192 SLC17A4 8 T 0.119 0.093 1.83� 10� 22 1.42 (1.32–1.52) 1.83� 10� 22 intron
rs36014129i 6p22 25884519 SLC17A4 8 A 0.101 0.079 1.21� 10� 24 1.50 (1.39–1.62)
rs2327832 6q23 137973068 OLIG3-LOC100130476z 6 C 0.239 0.212 1.76� 10� 13 1.22 (1.15–1.28) 2.38� 10� 8

rs17779870 6q23 138156425 OLIG3-LOC100130476z 6 C 0.132 0.154 5.35� 10� 7 0.85 (0.80–0.91) 1.80� 10� 5 intron
rs5029939 6q23 138195723 TNFAIP3z 6 C 0.061 0.033 2.39� 10� 29 1.81 (1.63–2.01) 7.21� 10� 22 intron
rs2230926P 6q23 138196066 TNFAIP3z 6 C 0.061 0.033 2.79� 10� 29 1.81 (1.63–2.01) missense
rs77000060i 6q23 138237989 TNFAIP3z 6 T 0.055 0.030 1.84� 10� 29 1.89 (1.69–2.11)
rs73137125 7q11 74018950 GTF2IRD1-GTF2I1 15 G 0.219 0.230 3.27� 10� 3 0.92 (0.88–0.97) 1.08� 10� 5

rs73366469 7q11 74033600 GTF2IRD1-GTF2I1 15 C 0.126 0.098 2.68� 10� 13 1.29 (1.21–1.38) 1.11� 10� 15

rs2955587 8p23 8098079 FAM86B3P 25 C 0.468 0.442 7.91� 10� 10 1.15 (1.10–1.20) 7.91� 10� 10 intron
rs2980512i 8p23 8140901 FAM86B3P 25 C 0.497 0.467 3.54� 10� 10 1.15 (1.10–1.20)
rs1966115 8q21 79556891 PKIA-ZC2HC1A 23 A 0.296 0.256 1.43� 10� 7 1.14 (1.09–1.20) 4.11� 10� 11

rs12114284 8q21 79558441 PKIA-ZC2HC1A 23 A 0.291 0.256 2.75� 10� 5 1.11 (1.06–1.17) 1.93� 10� 10

rs930297 17q25 73404537 GRB2 38 G 0.106 0.116 1.43� 10� 7 0.83 (0.77–0.89) 4.91� 10� 8

rs1463485d 17q25 73851791 GRB2 38 G 0.223 0.197 7.34� 10� 5 1.14 (1.07–1.21) 2.27� 10� 5 near-gene-5
EA Tier 2

rs11590283i 1p36 1245368 CPSF3L 42 G 0.188 0.211 1.36� 10� 7 0.86 (0.82–0.91) intron
rs12142199 1p36 1249187 CPSF3L 42 C 0.189 0.212 1.89� 10� 7 0.87 (0.82–0.91) 1.89� 10� 7 coding-synon
rs6662618d 1p22 92935411 GFI1-EVI5 50 T 0.182 0.157 1.54� 10� 6 1.18 (1.10–1.26) 3.81� 10� 3

rs12738833 1p22 93119118 GFI1-EVI5 50 G 0.273 0.251 7.66� 10�6 1.12 (1.06–1.17) 8.34� 10� 7 intron
rs11578098 1p22 93119410 GFI1-EVI5 50 A 0.275 0.250 5.42� 10� 7 1.13 (1.08–1.19) 4.01� 10� 7 intron
rs41264285i 1q22 155033918 ADAM15-EFNA1 54 T 0.226 0.211 8.29� 10� 7 1.14 (1.08–1.20) coding-synon,

intron,
missense

rs45444697 1q22 155034632 ADAM15-EFNA1 54 G 0.225 0.210 1.39� 10�6 1.14 (1.08–1.20) 1.83� 10� 5 intron,
near-gene-5

rs4971066d 1q22 155105882 ADAM15-EFNA1 54 G 0.147 0.168 4.02� 10� 5 0.87 (0.81–0.93) 4.47� 10�4 intron
rs6756736r 2p21 43558743 THADA 45 T 0.211 0.218 5.67� 10� 3 1.22 (1.06–1.41) 8.30� 10�6 intron
rs6705304 2p21 43596746 THADA 45 C 0.083 0.099 9.06� 10� 5 0.86 (0.80–0.93) 1.75� 10� 7 intron
rs62149377 2p16 60986576 PAPOLG 39 G 0.302 0.275 9.22� 10�8 1.14 (1.09–1.19) 1.45� 10� 5 intron
rs115291397d 2p16 61060043 PAPOLG 39 C 0.007 0.012 4.55� 10� 5 0.61 (0.48–0.77) 1.56� 10�4

rs2600669 2p15 61401296 PAPOLG 39 T 0.366 0.387 1.10� 10� 5 0.90 (0.86–0.95) 5.70� 10�4

rs115268109d 2p15 61833802 LOC100132037-
FLJ13305

47 C 0.055 0.045 2.38� 10� 7 1.31 (1.18–1.45) 2.38� 10� 7

rs11681718 2q12 103051144 IL18RAP 40 C 0.252 0.287 1.18� 10� 7 0.88 (0.83–0.92) 1.18� 10� 7 intron
rs2460382d 2q21 135014116 MGAT5y 52 C 0.229 0.232 2.82� 10� 3 0.91 (0.85–0.97) 1.22� 10� 3 intron
rs10496726 2q21 135045250 MGAT5y 52 C 0.094 0.094 3.87� 10� 5 0.85 (0.79–0.92) 1.86� 10� 5 intron
rs11887156i 2q21 135066476 MGAT5y 52 C 0.113 0.115 5.29� 10� 7 0.84 (0.78–0.90) intron
rs2196171i 2q33 198889807 PLCL1 51 T 0.465 0.500 4.65� 10� 7 0.89 (0.85–0.93) intron
rs6738825 2q33 198896895 PLCL1 51 T 0.460 0.494 1.27� 10�6 0.90 (0.86–0.94) 1.27� 10�6 intron
rs4921317d 5q33 158538277 LOC285627 49 C 0.480 0.470 1.46� 10� 5 1.17 (1.09–1.25) 1.94� 10� 5

rs6869688 5q33 158883027 LOC285627 49 C 0.467 0.493 3.38� 10� 7 0.89 (0.85–0.93) 3.97� 10� 7 intron
rs7720046i 5q33 158884535 LOC285627 49 G 0.467 0.493 2.92� 10� 7 0.89 (0.85–0.93) intron
rs71567468i 6p21 34816070 DEF6-PPARD1 56 T 0.057 0.042 8.70� 10� 7 1.29 (1.17–1.43) intron
rs6920432d 6p21 35298662 DEF6-PPARD1 56 G 0.100 0.080 7.40� 10�4 1.15 (1.06–1.25) 7.40� 10� 4

rs1039917 8p23 8718850 MFHAS1 43 A 0.397 0.375 1.48� 10� 7 1.13 (1.08–1.18) 1.48� 10� 7 intron
rs12156002 8q24 129190544 PVT1-BC009730 48 A 0.194 0.221 2.87� 10� 7 0.87 (0.82–0.92) 2.44� 10� 7

rs6651252d 8q24 129567181 PVT1-BC009730 48 C 0.119 0.131 8.80� 10�6 0.85 (0.79–0.91) 8.22� 10�6

rs11788118 9q22 102337331 AK057451 57 A 0.205 0.224 1.07� 10� 6 0.88 (0.83–0.92) 1.07� 10� 6

rs10819689i 9q22 102400263 AK057451 57 T 0.202 0.221 9.26� 10� 7 0.87 (0.83–0.92)
rs12722558 10p15 6070276 IL2RA 46 A 0.124 0.114 2.69� 10� 3 1.11 (1.04–1.18) 9.40� 10� 5 intron
rs10905718 10p15 6114856 IL2RA 46 G 0.319 0.308 3.99� 10� 6 1.12 (1.07–1.17) 1.86� 10� 7

rs112123005 10p15 6472492 IL2RA 46 C 0.024 0.020 1.64� 10� 4 1.33 (1.14–1.53) 2.75� 10�4 intron
rs113304138d 10p15 6564277 IL2RA 46 G 0.008 0.013 2.03� 10�4 0.65 (0.51–0.81) 2.78� 10�4 intron
rs223881 16q13 57386566 PLLP-CCL22 44 T 0.263 0.236 3.19� 10� 7 1.14 (1.08–1.20) 3.19� 10� 7

rs223883i 16q13 57388730 PLLP-CCL22 44 G 0.250 0.224 1.64� 10� 7 1.15 (1.09–1.21)
rs1170436d 16q22 68607486 ZFP901 55 A 0.248 0.221 8.50� 10� 7 1.17 (1.10–1.25) 8.50� 10� 7

rs11673460d 19p13 18191621 LRRC25-SSBP4 53 T 0.054 0.060 3.41� 10� 3 0.86 (0.78–0.95) 5.84� 10�4 intron
rs425648 19p13 18202112 LRRC25-SSBP4 53 A 0.177 0.196 2.59� 10�4 0.90 (0.85–0.95) 2.18� 10�4

rs12971295i 19p13 18517331 LRRC25-SSBP4 53 A 0.258 0.288 6.67� 10� 7 0.88 (0.84–0.93)
rs13344313 19p13 18517767 LRRC25-SSBP4 53 A 0.259 0.290 7.03� 10� 7 0.88 (0.84–0.93) 1.36� 10�6

AA Tier 1
rs2431697 5q33 159879978 PTTG1-MIR146A1 3 C 0.398 0.467 1.27� 10� 12 0.76 (0.70–0.82) 1.27� 10� 12

rs1804182d 8p11 42033519 PLAT 5 A 0.042 0.022 3.48� 10�8 1.94 (1.53–2.45) 3.48� 10�8 nonsense

AA Tier 2
rs34840245 6p21 34812701 UHRF1BP1-DEF61 7 G 0.273 0.237 2.49� 10� 5 1.21 (1.11–1.32) 2.02� 10� 3 intron
rs1194d 6p21 35263555 UHRF1BP1-DEF61 7 A 0.377 0.334 5.04� 10� 7 1.32 (1.19–1.48) 3.69� 10� 5

rs1170436d 16q22 68607486 ZFP901 9 A 0.281 0.244 7.93� 10� 7 1.31 (1.18–1.46) 7.93� 10� 7

HA Tier 1
rs11845506d 14q31 88383035 GALC 5 A 0.005 0.024 5.00� 10� 10 0.20 (0.12–0.33) 5.00� 10� 10

rs8054198d 16p13 11038360 CLEC16A1 7 T 0.011 0.031 1.79� 10�8 0.36 (0.25–0.51) 1.26� 10�8 untranslated-5
rs12448240d 16p13 11187218 CLEC16A1 7 G 0.018 0.011 3.76� 10� 4 2.06 (1.38–3.06) 2.07� 10� 5 intron
rs12925552 16p13 11332805 CLEC16A1 7 C 0.220 0.275 1.19� 10� 3 0.84 (0.75–0.93) 4.77� 10� 5
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or HA (P¼ 0.50), the lack-of-fit test supported the dominance
model of risk (departure from additivity; see Methods) for
an individual DR3 (EA P¼ 7.90� 10� 109; AA P¼ 0.06;
HA P¼ 5.14� 10� 10) and DR15 (EA P¼ 5.79� 10� 26; AA
P¼ 3.99� 10� 13; HA P¼ 3.25� 10� 11) SLE risk alleles.

HLA clustering by amino acid. HLA alleles with high sequence
similarity, but contrasting ORs, suggest the potential presence of
key amino acids influencing disease risk. As expected, clustering
amino acid sequences resulted in most two-digit allele subtypes
residing within the same clusters (Fig. 3 and Supplementary
Fig. 7). When evaluating SLE associations of the three ancestries
across these sequence clusters, several noteworthy patterns emerged.

The two primary DRB1 risk alleles, DR3 and DR15 clustered
separately, suggesting comparative amino acid dissimilarity.
Notably, the closest-clustered neighbours to each risk allele
conferred non-risk in these three ancestries. Multi-sequence
alignment distinguished the unique or less common amino acids
among risk alleles (Supplementary Figs 8–10). Unique to risk
alleles DRB1*15:01 and *15:03 were the amino acids Ser-1 (signal
peptide), Phe47 and Ala71. Three-dimensional modelling of
DRB1 (Supplementary Fig. 8b,c) reveals that these differences
mostly reside within the peptide-binding pocket, creating a space
of non-polar (hydrophobic) residues, unlike the polar-residue
(hydrophilic) space of Tyr47 and Arg71 or Glu71 provided by
non-risk alleles within this cluster (Supplementary Fig. 9).
Residue 71, among the most variable residues in DRB1
(ref. 14), has been implicated in other diseases15. Among
non-risk alleles with at least 95% identity to DRB1*03:01, the
only amino acid unique to this risk allele was Tyr26
(Supplementary Fig. 10). DRB1*03:01 amino acids shared by
less than half of the non-risk alleles in this cluster are highlighted
in Supplementary Fig. 10 and are concentrated between positions
70–77, spanning the designated ‘Shared Epitope’ region16,17.

One predominant DQA-DQB1 pair of SLE risk alleles exists
per evolutionary DQ-sublineage (Fig. 3b,c)18. In the DQ2/3/4
sublineage, DQA1*05:01 confers risk across the three cohorts and
its heterodimer counterpart, DQB1*02:01, confers risk in EA and
HA, but not significantly in AA. Within the DQ5/6 sublineage,
both DQA1*01:02 and DQB1*06:02 yield SLE risk across all three
cohorts. Comparison of DQA1*01:02 to its closest-related alleles
(Supplementary Fig. 11) reveals that DQA1*01:02 (DR15)
uniquely encodes a Met207 versus Val207. DQA1*05:01

encodes a polar Thr13 compared to the non-polar Ala13 found
in DQA1*05:05 (DR3) and DQA1*05:03 (Supplementary Fig. 12).
Identification of specific risk residues was less distinct for the
DQB1 risk alleles.

Gender-HLA and genome-wide SNP-HLA interaction. There
was no evidence that the risk of SLE differed by gender at any
HLA alleles or of a significant SNP-by-HLA allele interaction
anywhere across the genome (PFDR40.05).

Transancestral mapping and top meta-analysis regions. The
three-ancestry meta-analysis identified additional SLE-associated
regions and was particularly informative for 22 regions, including
11 novel regions, 3 published regions that now meet genome-
significance, a complex multigenic region identified by adjusting
for HLA alleles and 7 well-established regions more sharply
localized by transancestral mapping or novel to these ancestries
(Tables 3 and 4; Supplementary Figs 13–15). Supplementary
Data 8 and Supplementary Fig. 16 show additional regions that
only met genome-wide significance in the meta-analysis.
Supplementary Data 9 lists any region with meta-analysis
PFDRo0.001.

On 1p31, rs3828069 is within an intron of IL12RB2
(OR¼ 0.85, P¼ 1.77� 10� 9) and has evidence of association
in all three ancestries. Although IL12RB2 is implicated in multiple
autoimmune diseases19,20, this specific SNP association with
SLE is novel. The 2p16 region exhibited a novel SLE association
at rs1432296 (OR¼ 1.18, P¼ 1.34� 10� 8) near PAPOLG-
LINC01185, which includes REL. A linkage region at 4p16
(ref. 21) contained a strong novel association for rs3733345
(OR¼ 0.89, P¼ 1.83� 10� 11); EA dominated the association,
but with significant support from HA and AA. On 8q21,
rs4739134 is near PKIA-ZC2HC1A (OR¼ 1.12, P¼ 3.47� 10� 8)
and the AA helped localize the association. The region about
16q13 (PLLP-CCL22) exhibited modest association in individual
ancestries, but reached genome-wide significance for rs223889
(OR¼ 1.21, P¼ 1.08� 10� 8) in the meta-analysis. Similarly,
rs137956 (OR¼ 0.88, P¼ 5.0� 10� 8) on 22q13 between
ENTHD1 and GRAP2 was supported across all three ancestries.
We bioinformatically explore three additional novel regions.

The meta-analysis about 16q22 (rs1749792; OR¼ 1.14,
P¼ 3.66� 10� 11) near ZFP90 had strong support from both
EA and AA, with AA samples localizing the association

Table 2 (Continued ).

Most
significant
SNP(s)

Chr. Position
(b37)

Gene region* Region
rank

Ref.
allele

RAF
case

RAF
control

P value OR (95% CI) Regional
stepwise
P value

dbSNP
functionw

HA Tier 2
rs73846279i 3p11 89891345 EPHA3-PROS1 15 T 0.088 0.061 4.82� 10� 7 1.57 (1.32–1.88)
rs7653338d 3p11 89938088 EPHA3-PROS1 15 A 0.087 0.060 1.64� 10� 6 1.58 (1.31–1.91) 1.64� 10� 6

rs9394274 6p21 35114911 TCP11-SCUBE31 8 A 0.285 0.243 6.53� 10� 8 1.34 (1.20–1.49) 6.53� 10� 8

rs12199481d 6q25 159381492 RSPH3 16 C 0.430 0.396 5.72� 10�4 0.78 (0.67–0.90) 2.92� 10� 5

rs2092540d 6q25 159416444 RSPH3 16 T 0.145 0.198 8.92� 10�6 0.73 (0.63–0.84) 6.23� 10� 7 intron
rs2041862d 12q15 68461697 DYRK2-IFNG 12 A 0.100 0.150 1.59� 10� 7 0.66 (0.57–0.77) 1.59� 10� 7

rs17005500d 12q21 79738884 SYT1 13 C 0.048 0.071 2.43� 10� 7 0.58 (0.47–0.71) 2.43� 10� 7 intron
rs2550333 16q21 58267472 CSNK2A2-CCDC113 10 G 0.374 0.292 9.52� 10� 7 1.28 (1.16–1.41) 9.52� 10� 7

rs2731763i 16q21 58280078 CSNK2A2-CCDC113 10 G 0.364 0.279 1.03� 10� 7 1.31 (1.19–1.45)
rs229533 22q12 37587111 C1QTNF6 14 C 0.488 0.437 4.61� 10� 6 1.24 (1.13–1.35) 1.41� 10� 2

rs229541 22q12 37591318 C1QTNF6 14 T 0.486 0.427 2.46� 10� 7 1.27 (1.16–1.39) 1.21� 10� 3

Novel regions have not previously been identified by SNP associations with P values o5� 10�8 and are highlighted in grey. Regions that are the first observed associations in a particular ancestry are
indicated with a superscript1 in the gene region.
i: Imputed SNP.
dorr: Dominant, or recessive model; if not noted, additive model was used.
P: Published association—this SNP has been identified as causal or as the most significant SNP in gene region.
*Named by the genes bounding the region of association, unless literature strongly implicated a specific gene.
wdbSNP’s predicted functional effect.
zThe OLIG3-LOC100130476 region reaches Tier 1 significance even after adjusting for the TNFAIP3 signal, an established SLE region.
yWe validated that the MGAT5 region is distinct from the Lactase gene (LCT) on Chromosome 2, by adjusting for the top hit in the LCT gene (rs55634455i, P¼4.77� 10�4, OR¼0.87). After this
adjustment, the top SNPs were still significant and minimally affected by the adjustment (rs2460382d: P¼ 5.17� 10� 3, OR¼0.91; rs10496726: P¼6.65� 10� 5, OR¼0.86).
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(Supplementary Fig. 13l). While previously identified in a Chinese
cohort, this is the first significant association within EA and AA8.
Within this region, 27 additional SNPs had a meta-analysis
P value within one order of magnitude of the maximum
association, rs1749792. These 28 SNPs span an interval of
44.6 kb, narrowed from the 100 kb associated region in EA.
RegulomeDB22 and HaploReg4.1 (ref. 23) identified 4 of these
SNPs with a RegulomeDB score of 1f and 1 with a RegulomeDB
score of 2f, indicating they were eQTLs and transcription factor
binding sites. HaploReg4.1 showed these five SNPs were
enhancers and promotor histone marks in multiple tissues.
Interestingly, one of these five, rs1170445, is in high LD with
rs1749792 (R2

EA¼ 0.99, R2
AA¼ 0.84, R2

HA¼ 0.99). Here, the
G allele is the risk allele and creates a CpG site in the promoter
region. In GTEx, the G allele corresponds to lowest gene
expression. Hence, when methylated, this variant should result
in decreased gene expression of ZFP90. The rs1170445-ZFP90
expression association was reported in GTEx for whole blood
(P¼ 1� 10� 47) and several other tissues (that is, spleen, skeletal
muscle, brain cortex, lung, testis and EBV-transformed
lymphocytes). Huang et al.24 found expression of ZFP90 in
Jurkat T cells led to decreased expression of IL2 and interferon.
Furthermore, they found that ZFP90 protein binds to IL2 and
interferon gamma promoters.

SLC15A4 was associated with SLE in the EA cohort and
localized by the AA signal in the meta-analysis. The top EA signal
was supported by a 43.7 kb region of SLE-associated SNPs
exhibiting P values within one order of magnitude of the top
signal. The meta-analysis narrowed the region of association to
four SNPs, spanning 9.5 kb around rs1059312 (Supplementary
Fig. 15j). rs1059312 is an eQTL for SLC15A4 and three
supporting SNPs (rs2291349, rs4760593 and rs11059916) altered
CpG sites. The region has been previously reported in Asian
populations25,26; but this is the first instance of genome-wide
significance in EA (Po5� 10� 8)26.

On 17q25 near GRB2, rs8072449 (OR¼ 0.84, P¼ 1.19� 10� 11)
had modest support in each ancestry, but met genome-wide
significance and better localization in the meta-analysis.
rs8072449 is an eQTL for GRB2 (Supplementary Fig. 13m).
There were eight additional SNPs with a meta-analysis P value
within one order of magnitude of the maximum association, and
the transancestral analysis reduced the interval of association
from 93 to 82 kb. The best RegulomeDB scores for these 9 SNPs
was 1f for rs7219, reflecting rs7219 as a known cis-eQTL (NUP85,
MIF4GD, MRPS7), a transcription binding site and within a
DNase peak; in total 7 of the 9 SNPs were reported in
transcription binding sites. Interestingly, the top associated
SNP, rs8072449, breaks a CpG site and 6 others either end or
begin a CpG site. Hence, 7 of the 9 top associated SNPs make or
break a CpG site and several are transcription binding sites.
Of the 147,111 Immunochip SNPs that passed quality control
analyses, only 30% begin or end a CpG site. Although this is a
novel SLE association, GRB2 reportedly regulates SHP2
activity27,28, a potential contributor to SLE pathogenesis29.

A few novel regions, sparsely mapped on the Immunochip,
reached genome-wide significance in the meta-analysis and merit
further fine-mapping efforts. These include rs6886392 on 5q21
(OR¼ 1.13, P¼ 4.08� 10� 9), rs11788118 on 9q22 (OR¼ 0.88,
P¼ 1.53� 10� 8) and rs13344313 on 19p13 (OR¼ 0.90,
P¼ 1.07� 10� 8).

Additional loci not previously reported as having genome-wide
significance for SLE in these ancestries now do so in the
meta-analysis (Table 4). On 4q27, rs11724582 (OR¼ 0.88,
P¼ 1.71� 10� 8) is near IL21, a known SLE risk locus30,31.
IL21 is up-regulated by oestrogen and is produced by T follicular
helper cells which stimulates B-cells to differentiate into

autoantibody-secreting cells; however, there was no evidence of
a SNP-by-gender interaction in any ancestry (P40.40). The SNP
rs2431098 (OR¼ 1.19, P¼ 3.29� 10� 21) at 5q33 between
PTTG1 and MIR146A has an r2¼ 0.52 with rs2431697, a SNP
correlated with down-regulation of MIR146A32.

The 6p21 region is potentially confounded with nearby HLA
associations. The advantages of using multiple ancestries in this
study are exemplified by modelling of SNPs in the 6p21 region
where three separate ancestry-specific signals were identified after
adjusting for HLA alleles. The results show associations at
previously reported UHRF1BP1 and two novel loci within the
SCUBE3-DEF6 region (Fig. 2 and Supplementary Fig. 13e,f).

The transancestral meta-analyses of several previously estab-
lished SLE associations provided important localization, and
increased the number of independent signals or novel transan-
cestral effects. These included: 1q25 (TNFSF4-LOC100506023),
1q25 (NMNAT2-SMG7-NCF2), 7q32 (IRF5-TNPO3), 8q12
(LYN-RPS20), 11p13 (PDHX-CD44) and 20q13 (NCOA5-CD40)
(Table 4, Supplementary Fig. 15).

Admixture and population frequencies of SLE-associated SNPs.
Clustering risk allele frequencies for Tier 1 and 2 SNPs in cases
across EA, AA, and HA yielded three groups of SNPs: comparable
allele frequencies in all three ancestries (75 SNPS), increased
frequency in AA cases (40 SNPs), and reduced frequency in AA
cases (66 SNPs) (Fig. 4); the latter two clusters show increased
and decreased AA-ancestral contribution, respectively. Higher
frequency risk alleles tend to exhibit comparable frequencies
across ancestries; the rarest alleles were largely grouped in the
reduced AA-ancestral cluster. When comparing admixture
averages for risk alleles, AA exhibited the highest deviations
from mean admixture estimates and EA, the lowest (Fig. 4;
Supplementary Data 10). Deviations from average admixture
in risk alleles were significantly weighted to higher proportions
of CEU versus YRI in AA (P¼ 8.36� 10� 12) and HA
(P¼ 2.44� 10� 4) (Supplementary Data 11), further suggesting
increased European ancestry for risk alleles. When aligned to
allele frequency information, highest CEU proportion deviations
in AA and HA resided in the decreased-AA cluster, while the YRI
proportion deviations resided in the increased-AA cluster.
Thus, SLE risk alleles with a low frequency in AA are correlated
with European admixture. Of the 181 Tier 1 and 2 SNPs,
only in two regions were the top associated SNP (rs1804182 AA
Tier 1 and rs11845506 HA Tier 2) nearly monomorphic
(frequencyo0.003) in the other ancestral cohorts. This suggests
that most of the ancestry-specific SNP associations were
not driven by the presence of monomorphic alleles in the
non-discovery cohorts. These allele patterns are further illustrated
in Fig. 4.

Genetic load and SLE risk. To explore effects of the number of
risk polymorphisms on SLE risk, we computed the genetic risk
allele load (unweighted and b-weighted (b¼ log(OR)), see
Methods). Here, a set of ORs that contrasted the lowest 10% of
the risk-allele count distribution with a sliding window of
20 unweighted, or 4 weighted, counts was computed; these
logistic models adjusted for admixture. The pattern of the sliding
window ORs was different across ancestries (Fig. 5 and Table 5).
Specifically, in 2,000 EA cases and 2,000 EA controls that were
independent from the discovery set, a strong and nonlinear effect
emerged, with ORunweighted430 and ORweighted4100 for the
highest load groups. In fact, there was a nonlinear trend in the
log(OR) (that is, b parameter denoting slope) with a greater than
additive effect at the highest quarter of the genetic load range
(Supplementary Fig. 17); this pattern suggests that the effect of at
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Table 3 | Novel non-HLA associated regions identified by transancestral meta-analysis.

SNP Chr. Position
(b37)

Gene region* Ref.
allele

Ancestry RAF
case

RAF
control

P value OR (95% CI) dbSNP
functionw

Tier 1 Meta-Analysis
rs3828069 1p31 67839573 IL12RB2 G Meta – – 1.77� 10� 9 0.85 (0.79–0.90) intron

EA 0.164 0.182 3.37� 10� 6 0.87 (0.82–0.92)
AA 0.042 0.050 3.13� 10� 2 0.82 (0.68–0.98)
HA 0.200 0.225 6.43� 10�4 0.82 (0.74–0.92)

rs1432296 2p16 61068167 PAPOLG-LINC01185 A Meta – – 1.34� 10� 8 1.18 (1.10–1.26)
EA 0.165 0.147 5.31� 10� 7 1.17 (1.10–1.24)
AA 0.049 0.042 6.41� 10� 2 1.19 (0.99–1.42)
HA 0.083 0.083 3.80� 10� 2 1.19 (1.01–1.41)

rs3733345 4p16 954247 DGKQ G Meta – – 1.83� 10� 11 0.89 (0.85–0.92) untranslated-
3

EA 0.444 0.466 5.84� 10� 8 0.89 (0.85–0.93)
AA 0.455 0.482 3.56� 10� 3 0.89 (0.83–0.96)
HA 0.358 0.403 7.03� 10� 3 0.88 (0.80–0.97)

rs6886392 5q21 100135865 ST8SIA4 C Meta – – 4.08� 10� 9 1.13 (1.08–1.18)
EA 0.314 0.297 5.16� 10� 6 1.12 (1.06–1.17)
AA 0.257 0.235 8.53� 10� 3 1.12 (1.03–1.23)
HA 0.236 0.224 7.44� 10� 3 1.16 (1.04–1.29)

rs34840245 6p21 34812701 UHRF1BP1-DEF61 G Meta – – 2.37� 10� 11 1.20 (1.14–1.27) intron
EA 0.130 0.106 4.03� 10� 6 1.18 (1.10–1.26)
AA 0.273 0.237 9.06� 10� 5 1.20 (1.09–1.31)
HA 0.122 0.101 1.47� 10� 3 1.27 (1.10–1.48)

rs4739134 8q21 79556148 PKIA-ZC2HC1A T Meta – – 3.47� 10�8 1.12 (1.07–1.17)
EA 0.290 0.255 2.80� 10� 5 1.11 (1.06–1.17)
AA 0.408 0.377 1.30� 10� 3 1.14 (1.05–1.23)
HA 0.195 0.197 7.00� 10� 2 1.11 (0.99–1.25)

rs11788118 9q22 102337331 AK057451 A Meta – – 1.53� 10� 8 0.88 (0.84–0.92)
EA 0.205 0.224 1.07� 10� 6 0.88 (0.83–0.92)
AA 0.160 0.167 4.12� 10� 1 0.96 (0.87–1.06)
HA 0.146 0.187 4.23� 10�4 0.80 (0.71–0.91)

rs653178 12q24 112007756 ATXN2 C Meta – – 7.39� 10� 9 1.14 (1.08–1.20) intron
EA 0.522 0.491 2.02� 10� 5 1.10 (1.05–1.15)
AA 0.083 0.075 9.97� 10� 2 1.13 (0.98–1.30)
HA 0.288 0.282 2.51� 10� 5 1.25 (1.13–1.38)

rs2041670 16p13 11174652 CLEC16A1 T Meta – – 2.14� 10� 16 0.85 (0.82–0.89) intron
EA 0.287 0.316 2.34� 10� 12 0.84 (0.80–0.88)
AA 0.536 0.564 2.78� 10� 3 0.89 (0.83–0.96)
HA 0.201 0.251 1.67� 10� 3 0.84 (0.75–0.94)

rs223889 d 16q13 57392241 PLLP-CCL22 T Meta – – 1.08� 10� 8 1.21 (1.13–1.29) near-gene-5
EA 0.307 0.285 1.16� 10�4 1.13 (1.06–1.20)
AA 0.697 0.685 5.56� 10� 3 1.29 (1.08–1.55)
HA 0.429 0.381 3.22� 10�4 1.28 (1.12–1.47)

rs1749792 16q22 68569440 ZFP901 T Meta – – 3.66� 10� 11 1.14 (1.10–1.19)
EA 0.253 0.227 4.32� 10�6 1.13 (1.07–1.18)
AA 0.320 0.274 1.64� 10� 6 1.21 (1.12–1.30)
HA 0.298 0.273 4.50� 10� 2 1.11 (1.00–1.23)

rs8072449 17q25 73312184 GRB2 G Meta – – 1.19� 10� 11 0.84 (0.80–0.89)
EA 0.159 0.164 1.08� 10� 6 0.86 (0.81–0.91)
AA 0.804 0.835 6.76� 10�6 0.79 (0.71–0.88)

rs13344313 HA 0.168 0.193 2.97� 10� 2 0.88 (0.78–0.99)
19p13 18517767 LRRC25-SSBP4 A Meta – – 1.07� 10� 8 0.90 (0.86–0.93)

EA 0.259 0.29 7.03� 10� 7 0.88 (0.84–0.93)
AA 0.391 0.407 8.50� 10� 2 0.93 (0.86–1.01)
HA 0.232 0.257 1.45� 10� 2 0.88 (0.79–0.97)

rs56154925 19q13 55737798 PTPRH-TMEM86B T Meta – – 2.27� 10�8 0.88 (0.84–0.92) near-gene-3
EA 0.164 0.178 1.17� 10� 5 0.88 (0.83–0.93)
AA 0.187 0.207 9.51� 10� 3 0.88 (0.80–0.97)
HA 0.200 0.218 2.02� 10� 2 0.88 (0.78–0.98)

rs137956 22q13 40293463 ENTHD1-GRAP2 G Meta – – 5.00� 10� 8 0.88 (0.84–0.92)
EA 0.424 0.446 3.36� 10�4 0.92 (0.88–0.96)
AA 0.099 0.114 8.50� 10� 3 0.85 (0.75–0.96)
HA 0.475 0.502 2.75� 10�4 0.84 (0.77–0.92)

Tier 2 Meta-Analysis
rs6662618 d 1p22 92935411 GFI1-EVI5 T Meta – – 1.02� 10� 7 1.14 (1.08–1.21)

EA 0.182 0.157 1.54� 10�6 1.18 (1.10–1.26)
AA 0.450 0.442 1.18� 10� 1 1.10 (0.98–1.23)
HA 0.250 0.229 5.55� 10� 2 1.14 (1.00–1.29)
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least a subset of the alleles is greater when the overall genetic load
is high. HA and AA showed markedly smaller ORs (between 3
and 10), reflecting the reduced predictive ability of EA-identified
SLE risk loci in non-EA populations and the lack of capturing
non-EA SLE risk loci on the Immunochip.

The total non-HLA weighted genetic load was correlated with
an earlier age at SLE diagnosis in EA (rSpearman¼ � 0.14,
P¼ 0.0001), and HA (rSpearman¼ � 0.10, P¼ 0.0012), but not
AA (rSpearman¼ 0.04, P¼ 0.54). Kaplan–Meier curves in the EA
showed separation accelerates at B35 years (Supplementary
Fig. 18). The HLA-based genetic load was not correlated with age
of onset (P40.05) in any ancestry.

Mapping SNP associations to eQTLs. Many SLE-associated
SNPs are, or are in LD with, cis eQTLs (Supplementary Data 12
and Supplementary Figs 13–16) and potentially link associations
with specific genes. In ancestry-specific eQTL analyses
(Supplementary Data 12), EA yielded 96 unique SNPs or their
proxies mapping to 193 unique genes, followed by HA (22 unique
SNPs; 34 genes) and AA (10 unique SNPs; 17 genes). eQTL
analyses based on the meta-analysis SNPs yielded 107 unique
genes, identified by 40 SNPs (or their proxies), mostly from

whole blood, monocytes or B-cell derived LCL (Supplementary
Data 12). Novel and previously implicated SLE genes were
identified (for example, BANK1, IRF5). Interestingly, a number of
SNPs were associated with expression levels for multiple genes.
For example, four SNPs were associated with expression levels
of at least three genes, and one SNP, newly associated in this
study (rs8072449; 17q25), were associated with expression levels
of eight genes. Thus, some associated SNPs, either directly or via
LD with proxy SNPs, contribute to disease by modifying
expression levels of multiple genes, potentially through tran-
scription binding sites. Supplementary Data 13 and 14 provide
predicted functional characterization of the 206 SNPs from
Tiers 1 to 2 that are in RegulomeDB and HaploReg. These
predictions are informative for generating hypotheses that can be
experimentally tested.

Discussion
Applying the Immunochip to these multi-ancestral SLE
case-control samples has identified 24 novel SLE-risk regions,
replicated established SLE-risk loci and extended their impact
into other ancestries, and refined association signals via

Table 3 (Continued ).

SNP Chr. Position
(b37)

Gene region* Ref.
allele

Ancestry RAF
case

RAF
control

P value OR (95% CI) dbSNP
functionw

rs835573 1p12 120464165 NOTCH2 A Meta – – 2.23� 10� 7 1.13 (1.08–1.18) intron
EA 0.138 0.122 2.74� 10� 5 1.15 (1.08–1.22)
AA 0.438 0.415 1.57� 10� 2 1.10 (1.02–1.19)
HA 0.180 0.159 6.44� 10� 2 1.12 (0.99–1.27)

rs12068671 1q24 172681031 FASLG G Meta – – 6.66� 10� 8 0.88 (0.84–0.92)
EA 0.171 0.186 5.92� 10�6 0.88 (0.83–0.93)
AA 0.383 0.393 2.47� 10� 1 0.96 (0.88–1.03)
HA 0.104 0.138 1.39� 10� 3 0.79 (0.69–0.91)

rs7579944 2p23 30445026 LBH1 A Meta – – 5.11� 10�8 0.90 (0.86–0.93)
EA 0.340 0.364 2.03� 10�4 0.92 (0.88–0.96)
AA 0.698 0.727 5.49� 10�4 0.86 (0.79–0.94)
HA 0.340 0.367 1.76� 10� 2 0.89 (0.81–0.98)

rs461193 5p15 1368997 BC034612 G Meta – – 1.20� 10� 7 1.13 (1.08–1.18) intron
EA 0.214 0.187 1.18� 10� 5 1.13 (1.07–1.19)
AA 0.255 0.241 9.94� 10� 2 1.08 (0.99–1.18)
HA 0.169 0.162 7.95� 10� 3 1.19 (1.05–1.35)

rs909788 6p22 16636461 ATXN11 A Meta – – 1.14� 10� 7 1.10 (1.06–1.15) intron
EA 0.455 0.432 3.26� 10� 5 1.10 (1.05–1.15)
AA 0.676 0.662 1.31� 10� 1 1.06 (0.98–1.15)
HA 0.432 0.402 8.56� 10�4 1.17 (1.07–1.29)

rs11154801 6q23 135739355 AHI1 T Meta – – 3.60� 10� 7 1.11 (1.06–1.16) intron
EA 0.384 0.363 1.12� 10� 5 1.11 (1.06–1.16)
AA 0.115 0.104 5.36� 10� 2 1.13 (1.00–1.28)
HA 0.307 0.298 7.98� 10� 2 1.09 (0.99–1.21)

rs7795074 7p15 26742154 SKAP2 A Meta – – 1.93� 10� 7 0.89 (0.86–0.93) intron
EA 0.327 0.339 1.49� 10� 3 0.93 (0.89–0.97)
AA 0.301 0.328 3.43� 10� 3 0.88 (0.81–0.96)
HA 0.281 0.324 4.26� 10�4 0.84 (0.76–0.92)

rs6601327 8p23 9395532 TNKS C Meta – – 1.46� 10� 7 1.10 (1.06–1.14)
EA 0.398 0.382 5.36� 10� 6 1.11 (1.06–1.16)
AA 0.517 0.493 1.35� 10� 2 1.10 (1.02–1.19)
HA 0.526 0.492 2.21� 10� 1 1.06 (0.97–1.16)

rs17630235 12q24 112591686 TRAFD1—C12orf51 T Meta – – 2.50� 10� 7 1.12 (1.06–1.18) intron
EA 0.457 0.422 2.82� 10� 5 1.10 (1.05–1.15)
AA 0.069 0.063 1.91� 10� 1 1.11 (0.95–1.30)
HA 0.256 0.257 1.83� 10� 3 1.18 (1.06–1.31)

Novel regions have not previously been identified by SNP associations with P values o5� 10�8 and are highlighted in gray
Regions that are the first observed associations in these ancestries are indicated with a superscript 1 in the gene region.
*Named by the genes bounding the region of association, unless literature strongly implicated a specific gene;
d or r: Dominant, or recessive model; if not noted, additive model was used;
wdbSNP’s predicted functional effect.
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transancestral mapping. Over 50% of associated regions had
multiple independent SNP associations. Many of these
associations were linked via eQTL analysis to specific genes,
a process that can accelerate discovery of critical pathways. The
contrast of associations and genes across ancestries documents
numerous ethnic-specific associations the ancestral diversity in
SLE etiology; for example, HA regions not showing equivalent
associations in EA include 3p11 (EPHA3-PROS1), 6q25 (RSPH3),
12q15 (DYRK2-IFNG), 12q21 (SYT1), 14q31 (GALC), 16q21
(CSNK2A2-CCDC113) and 22q12 (C1QTNF6). In total, these
results underscore the shared and distinct genetic profiles of SLE
relative to other autoimmune diseases.

To understand disease biology and prevalence across
populations, distinguishing shared versus ancestry-specific
associations is important because an allele identified in one
population is likely relevant in others33. Clustering by allele
frequencies in cases and comparing risk allele admixture
estimates, three clusters emerged: (1) alleles with comparable
frequencies across populations without strong deviations in
average admixture, (2) alleles with increased AA-ancestral
contribution and (3) alleles with reduced AA-ancestral
contribution and increased CEU admixture. The increased
European ancestry observed in less common AA risk alleles
likely reflects complex demographic histories and admixture
patterns.

The nonlinear nature of how genetic load affects SLE risk leads
us to posit the cumulative hit hypothesis for autoimmune diseases.
That is, in our current environment the immune system can
absorb, with a modest increase in risk, individual risk
polymorphisms. But as the number of risk variants increases,
the system becomes overwhelmed and immune dysregulation
occurs. Currently, it is unclear whether it is the entire genetic load
or only a subset of variants driving the nonlinear association.
In addition, increasing genetic load correlates with an earlier age
of disease onset. These hypotheses are testable within specific

and across autoimmune diseases given their shared genetic
architecture.

Despite the large sample size, there was no robust evidence
for SNP-gender, SNP–SNP or SNP–HLA allele interactions,
suggesting that pairwise-interactions among these Immunochip
loci are not a major source of missing heritability. While the lack
of pairwise interactions across the immune-centric loci may be
surprising given the statistical power of the study, the current
analysis does not preclude higher-order interactions; albeit
agnostic scans for such interactions are analytically challenging.
Furthermore, given the nonlinear effect of genetic load on risk,
explicit and strong pairwise interactions may not be the correct
hypothesis—gene-based or pathway-based interactions may
be more important. Because of limitations in the data, gene-
environment interactions were not computed and this area needs
study.

The individual roles of DR3 and DR15 haplotypes in SLE risk
are well-established. However, in all three ancestries, having two
different risk alleles yielded higher SLE risk than having two
copies of the same risk allele. This is similar to type 1 diabetes,
where heterozygotes for type 1 diabetes-associated haplotypes,
DR3 and DR4, have shown higher risk of disease. It is
hypothesized that this effect is driven via formation of DQA1
and DQB1 trans-heterodimers. In contrast, SLE risk alleles in
DR3 and DR15 stem from divergent ancient haplotypes18;
likewise, trans-pairing has not been shown between DQA and
DQB in these two haplotypes34,35.

Due to the highly polymorphic nature of HLA alleles and
their protein products, it is important to consider high-order
relationships among amino acids in three-dimensional space36.
Standard regression techniques using amino acids in isolation can
be problematic and inappropriate for inference37. To account for
higher-order relationships among amino acids, we (1) clustered
alleles by protein sequence similarity, (2) compared associations
within and between clusters and (3) identified, when possible,
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Figure 2 | HLA SNP associations with and without adjustment of classical HLA alleles. SNPs spanning the extended MHC region showed

significant associations across (a) European ancestry, (b) African American, (c) Hispanic ancestry, and the (d) meta-analysis. The classical HLA alleles,

from the ethnic-specific stepwise-models (Supplementary Data 5), accounted for a majority of the MHC SNP signals. For each plot, the Tier 1 threshold,

Pr5� 10� 8, is indicated by the red line. Associations, downstream in 6p21 spanning UHRF1BP1-DEF6 were largely unaffected after adjusting for

classical HLA alleles and appear independent of the MHC.
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amino acids that uniquely distinguished the risk alleles. This
approach identified several examples of specific amino acids
differentiating risk and protective HLA alleles. For example, the
DRB15*01 amino acids � 1, 47 and 71 were unique to risk alleles.
The combination of Ala71 and Phe47 create a hydrophobic space
in the protein binding pocket compared to the alternatives

observed (Glu71 and Tyr47; or Arg71 and Tyr47). In addition to
antigen binding, there is a vast array of HLA allele-specific
properties, including surface expression stability35, influence of
DNA methylation38 and DR-DQ heterodimers39. Such findings
may help prioritize functional experiments, as we work towards
understanding the HLA mechanisms of SLE.
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Figure 3 | Clustering of HLA Class II alleles by amino acid sequence similarity. For (a) DRB1, (b) DQA1, and (c) DQB1, the odds ratios for each cohort are

superimposed on the cluster if the SLE association P-value was less than 0.01. Alleles that were present in the multi-locus model from the stepwise

procedure are also denoted. This process aims to identify clusters with shared SLE risk or not-risk odds ratios across the three cohorts. Such clusters help

identify potential amino acid sequences contributing to SLE risk. For example, DRB1*15:01 and 15:03 are clustered amongst protective alleles, suggesting

presence of specific amino acids differentiating risk (Supplementary Figs 8 and 9).
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Two major limitations of this study are the comparably
fewer non-EA SLE cases and appropriate controls, and the
strong EA bias in the Immunochip content. Power calcula-
tions using allele frequencies and ORs from EA, and the
number of AA cases and controls, yielded 445.5 expected Tier
1 and 2 SNP associations; however, only 64 were observed.
Although differences in LD contribute to this result, the highly
reduced number of detected associations relative to expected,
plus the genetic load analyses, strongly suggest that ancestry-
specific and -independent loci contribute to SLE risk. It is
imperative to recruit more non-EA populations for genetic
studies.

In conclusion, SLE has a strong genetic contribution to risk
with ancestry-dependent and ancestry-independent contribu-
tions. SLE risk has shared and independent genetic contributions
relative to other autoimmune diseases. This genetic risk manifests
itself as a nonlinear function of the cumulative risk allele
load, a pattern potentially shared across autoimmune and
non-autoimmune diseases.

Methods
Study cohort. Multiple studies provided de-identified DNA samples with
approval from their respective institutional review boards or ethics committees.
These ethics review committees included: Cedars-Sinai Medical Center

Table 4 | Tier 1 non-HLA meta-analysis regions noted for transracial mapping.

Gene region* SNP Chr. Position
(b37)

Ref.
allele

Ancestry RAF
case

RAF
control

P value OR (95% CI) dbSNP
functionw

TNFSF4-LOC100506023 rs2205960 1q25 173191475 A Meta – – 1.16� 10� 30 1.30 (1.23–1.38)
EA 0.267 0.225 3.84� 10� 23 1.29 (1.23–1.36)
AA 0.066 0.050 7.46� 10�4 1.33 (1.13–1.56)
HA 0.390 0.314 2.01� 10� 7 1.29 (1.17–1.43)

TNFSF4-LOC100506023 rs1539255 1q25 173322660 T Meta – – 1.60� 10� 19 0.84 (0.81–0.87) intron
EA 0.311 0.350 2.37� 10� 12 0.85 (0.81–0.89)
AA 0.428 0.460 7.24� 10�4 0.88 (0.81–0.95)
HA 0.273 0.326 1.06� 10� 6 0.78 (0.71–0.86)

NMNAT2-SMG7-NCF2z rs17484292 1q25 183300050 T Meta – – 9.97� 10� 38 1.59 (1.40–1.79) intron
EA 0.089 0.048 1.48� 10� 39 1.77 (1.63–1.93)
AA 0.012 0.009 2.07� 10� 1 1.27 (0.88–1.85)
HA 0.051 0.035 3.07� 10� 5 1.61 (1.29–2.02)

NMNAT2-SMG7-NCF2 rs10911363 1q25 183549757 A Meta – – 2.52� 10� 17 1.17 (1.13–1.22) intron
EA 0.317 0.275 1.18� 10� 13 1.19 (1.14–1.25)
AA 0.329 0.319 2.40� 10� 1 1.05 (0.97–1.14)
HA 0.399 0.333 3.73� 10� 7 1.27 (1.16–1.39)

IL2-IL21 rs11724582 4q27 123391464 C Meta – – 1.71� 10�8 0.88 (0.84–0.93)
EA 0.262 0.280 2.49� 10�6 0.89 (0.84–0.93)
AA 0.129 0.152 9.86� 10�4 0.83 (0.75–0.93)
HA 0.142 0.166 3.58� 10� 1 0.94 (0.83–1.07)

PTTG1-MIR146A rs2431098 5q33 159887336 C Meta – – 3.29� 10� 21 1.19 (1.14–1.23)
EA 0.532 0.497 5.09� 10� 13 1.17 (1.12–1.23)
AA 0.404 0.351 1.49� 10� 8 1.25 (1.16–1.36)
HA 0.470 0.441 4.62� 10� 3 1.14 (1.04–1.25)

IRF5-TNPO3 rs4728142 7q32 128573967 T Meta – – 3.38� 10�84 1.44 (1.39–1.50)
EA 0.531 0.446 6.21� 10� 51 1.40 (1.34–1.46)
AA 0.327 0.264 1.16� 10� 12 1.35 (1.24–1.47)
HA 0.518 0.394 2.10� 10� 27 1.65 (1.51–1.81)

IRF5-TNPO3 rs35000415 7q32 128585616 T Meta – – 1.17� 10� 99 1.82 (1.69–1.96) intron
EA 0.184 0.118 5.67� 10� 70 1.73 (1.63–1.84)
AA 0.040 0.022 1.80� 10� 7 1.86 (1.47–2.34)
HA 0.298 0.158 7.11� 10� 33 1.98 (1.77–2.22)

LYN-RPS20 rs2953898 8q12 56980803 A Meta – – 4.43� 10� 8 0.84 (0.79–0.90) untranslated-3
EA 0.218 0.226 6.89� 10� 5 0.90 (0.85–0.95)
AA 0.029 0.038 1.01� 10� 2 0.77 (0.63–0.94)
HA 0.124 0.167 3.60� 10� 3 0.82 (0.72–0.94)

PDHX-CD44 rs353592 11p13 35119482 T Meta – – 1.35� 10�8 0.89 (0.85–0.93)
EA 0.441 0.475 4.89� 10�6 0.90 (0.86–0.94)
AA 0.113 0.127 4.14� 10� 2 0.88 (0.79–1.00)
HA 0.286 0.339 4.89� 10� 3 0.87 (0.79–0.96)

SLC15A4 rs1059312 12q24 129278864 G Meta – – 6.53� 10� 10 1.12 (1.07–1.16) coding-synon
EA 0.423 0.392 6.26� 10� 7 1.12 (1.07–1.17)
AA 0.497 0.461 1.84� 10�4 1.16 (1.07–1.25)
HA 0.615 0.571 2.17� 10� 1 1.06 (0.97–1.16)

NCOA5-CD40 rs4810485 r 20q13 44747947 A Meta – – 9.95� 10� 9 1.43 (1.17–1.76) intron
EA 0.275 0.248 1.01� 10� 7 1.38 (1.23–1.56)
AA 0.079 0.080 2.16� 10� 1 1.53 (0.78–3.02)
HA 0.216 0.208 2.37� 10� 2 1.42 (1.05–1.92)

The corresponding plots can been found in Supplementary Fig. 15.
d or r: Dominant, or recessive model; if not noted, additive model was used.
*Named by the genes bounding the region of association, unless literature strongly implicated a specific gene.
wdbSNP’s predicted functional effect.
zSNP’s association is not supported by LD SNPs. Cluster call plot was verified for quality control. Additional verification of association will be required.
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Institutional Review Board; Central Ethic Committee of Denmark; Centrala etik-
prövningsnämnden; Comité de Etica de la Investigación de Centro Hospital Uni-
versitario Virgen Macarena; Centro de Estudios Reumatológicos. Santiago de Chile;
Centro Hospitalar Universitário do Porto, Unidade de Imunologia Clinica e
Comissão de Ética; CEPI (Comite de Etica de Protocolos de Investigacion) Insti-
tution: Hospital Italiano de Buenos Aires; Cincinnati Children’s Hospital Medical
Center Institutional Review Board; Clinical Research Unit, Padua University-
Hospital, and Ethics Committee, Province of Padua; Comitato Etico Interaziendale
AOU Maggiore della Carità Ethics Committee, Novara, Italy; Comite de Bioetica
del Consejo Superior de Investigaciones Cientı́ficas; Comité de Docencia e
Investigación, Hospital Escuela Eva Perón, Gro Baigorria, Santa Fe, Argentina;
Comité de Docencia e Investigación, Sanatorio Parque SA; Comite de etica de la
investigacion del HIGA San Martı́n de La Plata, Argentina; Comité de Ética en
Investigación Instituto Nacional de Ciencias Médicas y Nutrición Salvador
Zubirán; Comité de Ética en Investigación, Instituto Nacional de Medicina
Genómica, Mexico; Comité de Ética en Investigación; Comité de Investigación de
la Facultad de Medicina de la UANL y Hospital Universitario ‘Dr José Eleuterio
González’; Comite Docencia e Investigacion H.I.G.A. Dr Oscar Alende Mar del
Plata; Comitè Ètic d’Investigació Clı́nica de l’Hospital Clı́nic de Barcelona; Comités
de Ética, Bio Ética y de Investigación. Hospital G. Almenara, Esalud, Lima, Perú;
Comites de Ética, Bioetica y de Investigación Hospital Nacional Guillermo
Almenara Irigoyen, Lima-Perú;
Commission d’Ethique Hospitalo-Facultaire de l’Université catholique de
Louvain; Duke University Health System Institutional Review Board; Ethics and
Research Committee of Hospital General De Occidente; Fundacion Docencia e
Investigacion Hopsital Italiano de Cordoba; Institution of Public Health and Clinical
Medicine, Rheumatology, Umeå University, Umeå, Sweden; Institutional Review
Board of the University of Puerto Rico Medical Sciences Campus; Institutional Review
Board Office Northwestern University; Johns Hopkins University School of Medicine
Institutional Review Board; London Central Research Ethics Committee Study
sponsor: King’s College London; Medical Ethical Committee (METc) of the
University Medical Center Groningen; Medical University of South Carolina Insti-
tutional Review Board for Human Research; Northwell Health Human Research
Protection Program; Oklahoma Medical Research Foundation Institutional Review
Board; omisión Nacional de Investigación Cientı́fica y Comisión de Ética en Inves-
tigación en Salud, Instituto Mexicano del Seguro Social, México; Regional Ethical
Review Board at Karolinska Institutet, Stockholm, Sweden; Regional Ethics Review
Board in Linköping; Regional Human Medical Research Ethics Committee of the
University of Szeged; SickKids REB; The Institution Review Boards for human
research at UCLA; The Local Ethics Committee of the Karolinska University
Hospital/Karolinska Institutet, Stockholm Sweden; The University Health Network,
Research Ethics Board; Institutional Review Board for Human Use University of
Alabama at Birmingham; UC Davis Institutional Review Board; UCSF Human
Research Protection Program Institutional Review Board; UHN REB; University
Health Network Research Ethics Board and by the local ethics boards of the CaNIOS
investigators at the following centres: Montreal General Hospital, St Josephs’ Heath
Centre, Winnipeg Health Science Center, Queen Elizabeth II Health Sciences Centre,
Ottawa Hospital, Hopital Notre-Dame, Calgary Health Sciences Centre, Centre
Hospitalier Universitaire de Sherbrooke, and Hopital Maisonneuve-Rosemount;
University Hospital of Gran Canaria Doctor Negrin Research Ethic Committee;
University of Chicago Institutional Review Board; University of Southern California
Health Sciences Institutional Review Board; University of Texas Southwestern Med-
ical Center Institutional Review Board; Uppsala Ethical Review Board; Wake Forest
University School of Medicine Institutional Review Board. All study participants
provided written consent prior to study enrolment at the institution where the
samples were collected. All SLE cases in this study were required to meet at least four
of the eleven American College of Rheumatology classification criteria for SLE40,41.

Genotyping and quality controls. Samples were genotyped on the custom-
designed Immunochip Illumina Infinium Assay9 according to Illumina’s protocols,
using the Illumina iScan scanner at the following centres: Oklahoma Medical

Research Foundation, University of Texas Southwestern, HudsonAlpha Institute
for Biotechnology, North Shore-LIJ Health System’s Feinstein Institute for Medical
Research. Intensity data were generated for all samples and sent to the Oklahoma
Medical Research Foundation for genotype calling using OptiCall42. OptiCall
default options were used with one exception: the ‘-nointcutoff’ option was
included to allow removal of intensity outliers. Subsequent genotype clusters were
viewed against their intensity data using Evoker43. Genotype calling was completed
in four batches, keeping samples genotyped at the same center in the same batch.
Batches were designed to include samples of multiple ancestries when possible to
improve rare variant calling. The ancestry breakdown for the batches was: Batch I
was 15% European ancestry (EA), 7% African American ancestry (AA), 55% Asian
ancestry (ASA), 23% Hispanic ancestry (HA); Batch II was 44% EA, 18% AA, 1.4%
ASA, 36% HA; Batch III was 48% EA, 38% AA, 1% ASA, 13% HA; and Batch IV
was 92% EA, 8% AA. Some samples called with the SLE Immunochip study
samples were used for other Immunochip studies.

Samples were excluded if their call rates were o98% across SNPs that passed
quality control filters. Duplicates and first-degree relatives were removed, retaining
the sample with the highest call rate. The Immunochip does not have sufficient
markers in the non-pseudoautosomal regions of chromosome X to reliably
complete gender checks. Admixture estimates were computed using the program
ADMIXTURE44. HapMap phase 2 individuals (CEU: Utah residents with ancestry
from northern and western Europe; YRI: Yoruba in Ibadan, Nigeria; CHB: Han
Chinese in Beijing, China) as anchoring populations. To facilitate testing for
association between rare variants and SLE, and to improve multilocus modelling in
regions of linkage disequilibrium (LD) among SNPs, a factor analysis was
computed on the admixture estimates using principal component extraction and
varimax rotation45. The resulting factors are orthogonal (independent) and thereby
remove collinearity among the admixture estimates when used as covariates in
linear models. Reduced collinearity should facilitate more robust analysis of rare
variants. In addition, principal component (PC) analysis was computed using
Eigensoft v4.2 (refs 46,47) including HapMap phase 2 individuals (CEU, YRI and
CHB) as reference populations. Both the admixture and PC analyses were
completed using a subset of SNPs generated by removing SNPs in LD (r240.2),
with minor allele frequency (MAF)o0.01, or with low call rate (o95%).

The admixture estimates and PCs were used to identify and remove genetic
outliers. A SNP was removed from the primary analysis if it had an overall call rate
o95%, exhibited significant differential missingness between cases and controls
(Po0.05), had significant departure from Hardy-Weinberg equilibrium
expectations (Po1� 10� 6 in cases, Po0.01 in controls) or a cluster separation
score o0.40. SNPs violating the above Hardy-Weinberg equilibrium thresholds
were retained if there was convincing evidence of association at SNPs in linkage
disequilibrium (LD) and the cluster plots indicated that the pattern was not due to
poor genotype calling. Primary inference was based on SNPs with MAF Z0.01.
Finally, 410,000 SNP cluster plots were visually examined, including all SNPs
reported, to remove results potentially based on poor genotyping.

To provide an estimate of the number of independent tests for multiple
comparisons adjustment, the SNPs were LD pruned, r2o0.20, within each
ancestry. The union of these SNPs across ancestries was 46,744 uncorrelated SNPs,
yielding a Bonferroni threshold of Po1.06� 10� 6.

Statistical analysis. Regions in figures and tables are named by the genes
bounding the regions of association or regions of significance for other statistical
test, unless the literature strongly implicated a specific gene.

To test for an association between a SNP and case/control status within an
ancestry, a logistic regression analysis was computed adjusting for admixture
factors as covariates. Primary inference was based on the additive genetic model
unless there was significant evidence of a lack-of-fit to the additive model
(Po0.05). If there was evidence of a departure from an additive model, then
inference was based on the most significant of the dominant, additive, and recessive
genetic models. The additive and recessive models were computed only if there
were at least 10 and 30 individuals homozygous for the minor allele, respectively.

Table 5 | Genetic Load and SLE risk.

non-HLA SNPs from EA Top Hits* (N¼545) HLA classical alleles from EA top hits* (N¼ 10) Combined (N¼555)

P value OR (95% CI)w c-statisticz P value OR (95% CI)w c-statisticz P value OR (95% CI)w c-statisticz

Un-Weighted
AA 5.31� 10� 30 1.15 (1.13–1.18) 0.591 (0.590) 5.75� 10� 7 2.44 (1.72–3.45) 0.540 (0.538) 2.84� 10� 31 1.13 (1.11–1.16) 0.593 (0.592)
EAy 6.15� 10�62 1.23 (1.20–1.26) 0.694 (0.657) 7.20� 10� 41 5.15 (4.05–6.55) 0.670 (0.608) 5.24� 10�69 1.24 (1.21–1.28) 0.702 (0.665)
HA 1.76� 10� 26 1.14 (1.12–1.17) 0.647 (0.624) 9.39� 10� 20 3.41 (2.62–4.44) 0.638 (0.560) 7.02� 10� 30 1.15 (1.12–1.18) 0.651 (0.630)

Weighted by Natural Log of the Odds Ratio (OR)
AA 2.82� 10� 36 2.59 (2.23–3.00) 0.602 (0.601) 9.34� 10� 11 24.11 (9.20–63.17) 0.551 (0.550) 1.80� 10� 40 2.71 (2.34–3.14) 0.608 (0.607)
EAy 1.37� 10� 101 7.83 (6.49–9.46) 0.738 (0.714) 7.60� 10�45 29.06 (18.16–46.52) 0.678 (0.618) 2.19� 10� 121 8.48 (7.09–10.15) 0.759 (0.734)
HA 2.09� 10�46 3.76 (3.14–4.51) 0.674 (0.660) 8.61� 10� 24 34.33 (17.24–68.37) 0.645 (0.582) 1.98� 10� 57 4.26 (3.57–5.09) 0.687 (0.675)

*Top hits from EA sample without validation set of 2,000 SLE cases, 2,000 controls.
wPer 5 alleles.
zWhole model statistic, and in parentheses, the c-statistic for model without admixture factors.
yEA random sample with 2,000 SLE cases, 2,000 controls.
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These tests of association were computed using the SNPGWA version 4.0 module
of SNPLASH (https://www.phs.wakehealth.edu/public/bios/gene/downloads.cfm).
For ancestry-specific analysis of the X chromosome, the data were first stratified by
gender and then meta-analysed using the weighted inverse normal method

(weighted by sample size). The genomic control inflation factor (lGC) was
calculated using a set of SNPs included on the Immunochip for a study
investigating the genetic basis for reading and writing ability. The resulting lGC was
scaled to 1,000 cases and 1,000 controls to standardize comparisons across
populations and studies.

Three tiers of statistical significance are reported. Tier 1 includes those SNPs
that meet the literature-motivated genome-wide threshold of 5� 10� 8. Tier 2
includes those SNPs that are not Tier 1 SNPs, but have a P value for association less
than 1� 10� 6. Tier 3 includes those SNPs that do not meet criteria for Tiers 1
or 2, but meet a genome-wide Benjamini–Hochberg false discovery rate48 adjusted
P value threshold of 0.05. The Tier 2 threshold meets the strict Bonferroni criteria
for the number of uncorrelated SNPs (r2o0.20).

Ancestry-specific logistic regression models were computed to test for evidence
of interactions among all pairs of SNPs that had BH-FDR adjusted P value o0.05.
Each logistic model contained the admixture factors, the two SNPs, and their
centred cross-product term, with the latter term tested using the likelihood ratio
test implemented in the Intertwolog module in SNPLASH. To adjust for the
number of interactions tested, Bonferroni and BH-FDR adjusted P values were
computed. To test for ancestry-specific gender-by-SNP interactions, a case-only
autosomal scan was computed; here, gender was the outcome and admixture
factors and SNP were the predictors. To adjust for the number of tests computed,
the BH-FDR adjusted P values from the likelihood ratio test were computed for
each SNP that passed quality control.

To determine how many distinct associations were within a genomic region, a
manual stepwise procedure (that is, forward selection with backward elimination,
entry and exit criteria of Po0.001) was computed.

For the transancestral meta-analyses, three ancestries were examined for
association and meta-analysed to better isolate shared SLE-risk loci by leveraging
their LD pattern differences. For each SNP, a nonparametric meta-analysis,
weighted inverse normal method (weighted by sample size), was computed as
implemented in METAL49. Regions of association were visually examined and tests
of heterogeneity of the odds ratio were computed. Thus, for each region, ancestry-
specific and meta-analytic tests of association and tests of heterogeneity are
reported. The transancestral patterns of association and LD were visualized using
LocusZoom50. Results from the weighted inverse normal method were compared
to random effects meta-analyses and results of the regions were comparable.

Classical HLA alleles at HLA-A,-B,-C,-DPB1,-DQA1,-DQB1 and -DRB1 were
imputed using the program HIBAG51. HIBAG uses an ensemble classifier and
bagging technique to arrive at an average posterior probability. Unlike alternative
imputation software such as BEAGLE52, HLA*IMP53 and SNP2HLA54, HIBAG
did not require training data for any of our three cohorts, as it provides multiple
ancestry reference panels (European, African, Hispanic and Asian). This, combined
with its accuracy rates being comparable to other approaches51, made HIBAG an
ideal method for HLA imputation in our EA, AA, and HA cohorts. To account for
imputation uncertainty, the allele dosage was utilized for all analyses. To filter out
the lowest frequency alleles, a minimum best guess allele count of 10 was required
in either the cases or controls for each allele, in each cohort.

For analysis of classical HLA alleles, single-allele associations were evaluated
using logistic regression under the additive model and accounting for imputation
uncertainty via allelic dose. To account for population substructure, cohort-specific
factors were used as covariates (EA: factors 1–4; AA: factors 1–3; HA: factors 1–2)
in each analysis. Meta-analysis was completed for any allele that had a single-allele
analysis in at least two cohorts. Evidence of association from each cohort was
combined using the weighted inverse normal method via METAL49 and tests for
heterogeneity of the odds ratio were computed.

To build multi-locus ancestry-specific models of classical HLA alleles for case/
control status of SLE, stepwise regression models were computed. Stepwise logistic
modelling (forward selection with backward elimination) was computed using all
of the classical HLA alleles that met the QC criteria, including requiring at least a
count of 10 alleles from the best guess allele count cross the individuals within an
ancestry. The entry and exit criteria were set to Po0.01 for each of the three
cohorts. As in the single-allele analysis, the logistic models tested for an additive
effect of the alleles and accounted for imputation uncertainty via allelic dose.

To evaluate and compare classical HLA allele associations across the three
cohorts, the results from the single-allele and multilocus modelling were visualized
in the context of classical HLA protein sequence similarity. Protein sequences for
all observed HLA-imputed alleles were retrieved from the EMBL-EBI
Immunogenetics HLA Database55. Sequences within an HLA-gene were aligned
using ClustalOmega56. Unrooted phylogenetic trees for each of the HLA loci were
then generated by Clustal-W2 via the aligned amino acid sequences. The
neighbour-joining method, a distance matrix method, utilized a Markov chain of
nucleotide or amino acid substitution57. The neighbour-joining method uses this
distance information to iteratively evaluate all pairings of neighbours in order to
construct a tree that minimizes the branch length at each stage of clustering58.
The resulting trees were visualized using Dendroscope59. All results from the
single-allele and multilocus classical HLA associations from the three cohorts were
graphically displayed on the unrooted trees.

A second set of ancestry-specific single-SNP analyses was computed across the
HLA locus and surrounding region, while adjusting for the primary SLE-associated
HLA risk alleles from the stepwise modelling. The logistic regression model was
computed, as above, considering the fit to the three genetic models (dominant,
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Figure 4 | Ancestral landscape of SLE risk alleles. Clustering by relative
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comparable frequencies across populations, increased frequencies in AA,

and decreased frequencies in AA. The comparable frequency grouping

contained the most risk alleles, of which, many were common alleles. This

cluster had the smallest deviations from average admixture proportions,

across the three cohorts. The increased frequencies in AA alleles exhibited

moderate deviations towards greater AA-ancestral contribution. The largest

deviations from average admixture were found within alleles exhibiting

decreased frequencies in AA. These alleles were enriched for admixture

deviations of increased CEU-ancestry. The patterns across relative allele

frequencies reveal that ancestry-specific associations are largely not driven

by monomorphic SNPs in other populations.
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additive, recessive); the additive model required at least 10 homozygotes for the
minor allele, while the recessive model required at least 30. The meta-analysis of
these results was computed using METAL.

The Wald tests for HLA-by-SNP and HLA-by-gender interactions were
computed using logistic regression models that adjusted for admixture factors and
included both the main effects of the HLA allele and SNP (or gender) and their
centred cross product as the multiplicative interaction term.

To test whether there was a difference in SLE risk between individuals
homozygous for the same risk allele versus heterozygous for two different risk alleles,
a Wald test from a logistic regression model was computed adjusting for admixture.

To examine ancestry of associated SLE risk alleles, genotyped SNPs from the
population-specific (Tier1 and Tier 2) and the meta-analysis (primary and
secondary) tables were compiled into a list of 205 unique SNPs. For evaluation,
only SNPs of good quality across the three cohorts were retained. These criteria left
181 SNPs for comparison. In cases, admixture proportions of CEU and YRI were
calculated using ADMIXTURE and then the average proportions were tallied for
each cohort. Within each of the three populations and for each SNP, the risk allele’s
average admixture was computed. The resulting risk allele average admixture
proportion was compared to the overall average sample admixture proportion in
cases by computing the difference between risk allele and sample admixture
proportion averages.

To evaluate the SLE-risk allele genetic load, the EA samples were partitioned into
two groups: training (the entire EA sample minus 2,000 cases and 2,000 controls
randomly chosen from the full EA cohort) and testing (the aforementioned 2,000
cases and 2,000 controls). In the training samples, the single SNP association and
stepwise analyses were repeated to obtain a training set of SNPs that had BH-FDR
adjusted P-value o0.05. From these results, the EA SLE-risk genetic load was
calculated for each individual as the count of risk alleles from the training SNPs.
Specifically, we define the EA SLE-risk allele genetic load as:

GRSi ¼
XN

k¼1

gkRAk;

where, GRSi is the genetic risk score for individual i; gk is the beta coefficient for the
kth SNP association with SLE and serves as the weight for that risk allele; RAk is the
number of risk alleles for the kth SNP (0, 1, 2); and N is the number of SNPs.
By definition of parameterizing relative to the risk allele, gk40 for all k. The EA SLE-
risk genetic load was computed for AA, HA, and the EA testing samples. Individuals

whose genetic load (risk allele count) was in the lower 10% of the count distribution
were used as the reference sample. A logistic regression model, including admixture
factors as covariates, computed the odds ratio comparing the reference sample to
samples within a moving window of 20 unweighted risk allele counts for the
unweighted analysis and moving window of 4 for the weighted analysis). For
example, a logistic model compared the risk of SLE for those in the lowest 10% to
those whose risk allele counts ranged from 940 to 960 in the unweighted analysis. The
next model and odds ratios were then computed, sliding the allele count up one (for
example, 941–961). A plot of these odds ratios for moving windows of 20 counts was
constructed to illustrate the pattern. The corresponding plot of the log(OR)¼ b from
the genetic load association with SLE was generated to show that the nonlinearity was
not due to the scale; that is, it documents a departure from linearity on the logit scale.
A similar approach was completed for a weighted risk allele count, where each risk
allele was weighted by the natural logarithm of the odds ratio from the EA SNP
association analysis. Plots of the odds ratio effect of the EA genetic load (weighted and
unweighted) were generated for AA, HA and the independent EA set.

Finally, for each ancestry an admixture-adjusted regression model was
computed to test whether genetic load was associated with age of SLE onset. For
ease of interpretation, the strength of the association was reported as the
Spearman’s rank correlation coefficient, but the P value is from the admixture-
adjusted linear regression model.

Functional annotation analysis. To identify eQTLs for SLE-associated SNPs, all
1,000 Genomes SNPs in LD with the SLE-associated SNP were identified using
SNAP60. Specifically, LD was computed using the CEU (for EA and HA) or YRI
(for AA) data with an r2

X0.5 for Tier 1 and 2 SNPs. SNPs and their proxies were
then queried in a data set downloaded from the eQTL Browser (http://
eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/; Pritchard lab, University of Chicago) and
the GTEx Portal (http://www.gtexportal.org). The eQTL Browser contains eQTL
data surveyed from 17 eQTL studies, and the Blood eQTL Browser61. The GTEx
Portal is a comprehensive resource, with eQTL data from 44 different tissues.
When multiple proxies existed for the same eQTL (that is, same SNP and same
gene), only the proxy with the lowest P value was retained.

RegulomeDB is a database that annotates SNPs with known and predicted
regulatory elements (eQTLs, DNAase hypersensitivity, binding sites of
transcription factors) in the intergenic regions of the human genome22. It includes
high-throughput, experimental data sets from GEO, the ENCODE project,
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published literature, as well as computational predictions and manual annotations
to identify putative regulatory potential and identify functional variants22.
The variants associated with SLE (identified in Tier 1 and 2 in any ancestry cohort)
were queried in RegulomeDB.

HaploReg v2 is a tool for exploring annotations of the noncoding genome at
variants on haplotype blocks23 and uses LD information from the 1,000 Genomes
Project Phase 1 individuals. It analyzes sets of SNPs for an enrichment of cell type-
specific enhancers, and includes all dbSNP build 137 SNPs, predicted chromatin
state in nine cell types, conservation across mammals, motif instances from
ENCODE experiments, enhancer annotations on 90 cell types from the Roadmap
Epigenome Mapping Consortium and eQTLs from the GTEx eQTL browser23.
The query was performed using default settings, including LD calculations based
on the 1,000 Genomes Phase 1 EUR individuals, and epigenome data from both the
ENCODE and Roadmap Epigenome Mapping Consortium projects.

SNPs associated with SLE (Tiers 1 and 2) were annotated with the eQTL data
and HaploReg v2 (ref. 23) to prioritize those with the highest biological potential.
The top summary gene scores were summed across individual criteria (presence of
an eQTL, presence of a nonsense or missense variant, promoter and enhancer
status in a lymphoblastoid B-cell line (B-LCL), the presence of a DNase
hypersensitivity site in any of five immune-related cell lines, presence of a
conserved region, the presence of any bound protein, and transcription start site
and enhancer status in any of 15 immune cell types), in the haplotype block of each
SNP. In the calculation of the biological scores, each functional annotation was
given a weight according to their regulatory potential. A score of ‘3’ was given to
SNPs in an LD block with any variant that mapped within an active or poised TSS
in any of 15 immune cell types, was an eQTL, was non/missense, or mapped within
an active promoter in a B-LCL. A score of ‘2’ was given to SNPs in an LD block
with any variant that mapped within an active upstream flanking TSS in any of 15
immune cell types or mapped within a conserved region. A score of ‘1’ was given to
SNPs in an LD block with any variant that mapped within a weak TSS or any
enhancer in any of 15 immune cell types, mapped within a weak promoter or weak
enhancer in a B-LCL, mapped within a DNase hypersensitivity site in any of 5 cell
lines, or had any bound protein. The sum of these annotations resulted in a final
biological score, ranging from zero to fifteen.

For each of the 146,111 (145,278 unique) SNPs that met quality control
standards in at least one population, the flanking base pairs were identified using
the UCSC reference genome (build 37). Once strand alignment was confirmed
between the Immunochip and UCSC reference genome, it was evaluated whether
either (or both) of a SNP’s alleles created a CpG site in the 50-30 direction.

Data availability. The summary data are available at www.immunobase.org.
Individual genotype data, consistent with the respective Institutional Review Board
approval and subject consent, are available from the corresponding authors.
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