
IMMEDIATE COMMUNICATION OPEN

Genome-wide association study in individuals of European and
African ancestry and multi-trait analysis of opioid use disorder
identifies 19 independent genome-wide significant risk loci
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Despite the large toll of opioid use disorder (OUD), genome-wide association studies (GWAS) of OUD to date have yielded few
susceptibility loci. We performed a large-scale GWAS of OUD in individuals of European (EUR) and African (AFR) ancestry, optimizing
genetic informativeness by performing MTAG (Multi-trait analysis of GWAS) with genetically correlated substance use disorders
(SUDs). Meta-analysis included seven cohorts: the Million Veteran Program, Psychiatric Genomics Consortium, iPSYCH, FinnGen,
Partners Biobank, BioVU, and Yale-Penn 3, resulting in a total N= 639,063 (Ncases= 20,686;Neffective= 77,026) across ancestries. OUD
cases were defined as having a lifetime OUD diagnosis, and controls as anyone not known to meet OUD criteria. We estimated SNP-
heritability (h2SNP) and genetic correlations (rg). Based on genetic correlation, we performed MTAG on OUD, alcohol use disorder
(AUD), and cannabis use disorder (CanUD). A leave-one-out polygenic risk score (PRS) analysis was performed to compare OUD and
OUD-MTAG PRS as predictors of OUD case status in Yale-Penn 3. The EUR meta-analysis identified three genome-wide significant
(GWS; p ≤ 5 × 10−8) lead SNPs—one at FURIN (rs11372849; p= 9.54 × 10−10) and two OPRM1 variants (rs1799971, p= 4.92 × 10−09;
rs79704991, p= 1.11 × 10−08; r2= 0.02). Rs1799971 (p= 4.91 × 10−08) and another OPRM1 variant (rs9478500; p= 1.95 × 10−08;
r2= 0.03) were identified in the cross-ancestry meta-analysis. Estimated h2SNP was 12.75%, with strong rg with CanUD (rg= 0.82;
p= 1.14 × 10−47) and AUD (rg= 0.77; p= 6.36 × 10−78). The OUD-MTAG resulted in a GWAS Nequivalent= 128,748 and 18
independent GWS loci, some mapping to genes or gene regions that have previously been associated with psychiatric or addiction
phenotypes. The OUD-MTAG PRS accounted for 3.81% of OUD variance (beta= 0.61;s.e.= 0.066; p= 2.00 × 10−16) compared to
2.41% (beta= 0.45; s.e.= 0.058; p= 2.90 × 10−13) explained by the OUD PRS. The current study identified OUD variant associations
at OPRM1, single variant associations with FURIN, and 18 GWS associations in the OUD-MTAG. The genetic architecture of OUD is
likely influenced by both OUD-specific loci and loci shared across SUDs.
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INTRODUCTION
Opioid use disorder (OUD) has a serious negative impact on public
health and is a leading cause of preventable death [1]. Although
opioid misuse and progression to OUD [2] are influenced by
heritable factors, discovery of OUD risk loci has been limited [3–7].
Difficulties in advancing OUD genetic discovery are largely due to
lack of adequately powered cohorts of genetically informative
samples [8, 9].
Genome-wide association studies (GWAS) examining single

nucleotide polymorphism (SNP) effects on OUD have been
underpowered [8, 9]. Nevertheless, recent progress in GWAS of
OUD include the identification and confirmation of a genome-

wide significant (GWS) functional variant (rs1799971) in OPRM1 [7].
Earlier OUD GWAS identified associations with variation in several
genes including KCNG2, KCNC1, APBB2, CNIH3, RGMA, and OPRM1
[3–6], but the validity of those associations remains largely
untested due to the lack of powerful independent OUD cohorts.
OUD GWAS have also demonstrated genetic correlations (rg) with
other substance use disorders (SUDs) (e.g. alcohol use disorder
[AUD]; rg= 0.73) and psychiatric disorders (e.g. attention-deficit
hyperactivity disorder; [rg= 0.36]) [7].
Large-scale GWAS meta-analyses have advanced discovery of

novel loci for SUDs (e.g., AUD, problematic alcohol use (PAU),
cannabis use disorder (CanUD) [10–12]. This study applies similar
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meta-analytic methods for OUD, combining GWAS effects across
multiple studies and two ancestral groups.
Multi-trait methods (e.g., MTAG; Multi-trait analysis of GWAS)

[13] have the potential to increase power. MTAG capitalizes on the
rg between genetically-related traits (e.g., rg > 0.70) to increase the
equivalent sample size. MTAG is an attractive option for boosting
power for sets of similar traits like SUDs [11, 14], and holds
particular promise for disorders such as OUD for which only
limited cases are available for analysis. MTAG can generate
estimates of trait-specific effects that leverage information from
multiple GWAS summary statistics while accounting for both
known and unknown sample overlap across the discovery samples
[13]. MTAG can maximize the genetic information available for
OUD by leveraging the statistical power of GWAS of non-
opioid SUDs.
We conducted a large-scale GWAS meta-analysis of OUD in

samples of African (AFR) and European (EUR) ancestry individuals.
We maximized the informativeness of the available samples by
performing a multi-trait analysis that incorporates SUDs that are
highly genetically correlated with OUD.

METHODS
Data and participants
The meta-analysis includes summary statistics across seven cohorts
examining OUD case vs. OUD control status in AFR and EUR ancestry
individuals. We included both published and unpublished OUD GWAS.
Previously published GWAS include data from Yale-Penn [3, 6, 7], PGC-SUD
[6], and the Partners Biobank [15]. For MVP Releases 1 and 2 (the data
releases used in the present analysis), a previous GWAS of OUD cases vs.
opioid-exposed controls was reported [7]. MVP data included in the current
meta-analysis use a different control definition (unscreened controls) to
align better with the control definitions available in most other included
samples. GWAS summary data for FinnGen [16] was accessed via a publicly
available repository (https://r5.finngen.fi/). GWAS of OUD from iPSYCH [17],
BioVU [18], and newly-available data from Yale-Penn subjects (Yale-Penn
3), previously unpublished, were performed by analysts at their respective
study sites (Supplemental Materials). We had a total AFR N= 84,877
(Ncase= 5435 Neffective= 20,032), a total EUR N= 554,186 (Ncase= 15,251;
Neffective= 56,994), and an overall N= 639,063 (Ncase=20,686; Neffective=
77,026). Other than Yale-Penn, this study involved de-identified data.
The work was approved as appropriate by the Central Veterans Affairs (VA)
institutional review board (IRB) and site-specific IRBs, including
Yale University School of Medicine and VA Connecticut, and was
conducted in accordance with all relevant ethical regulations. Cohort-
specific summaries of AFR and EUR OUD subjects are presented in Table 1.
Specific OUD diagnostic codes are provided in Supplementary Table 1.
Additional phenotyping considerations are described in Supplemental
Materials.

Ancestry-specific and cross-ancestry GWAS meta-analysis
GWAS samples were combined using an effective sample-size weighted
meta-analysis in METAL[19]. Ancestry-specific and cross-ancestry meta-
analyses were performed. Measures of cross-sample heterogeneity
(Cochran’s Q, I2) and genomic inflation (λGC) were used to evaluate
potential bias influenced by heterogeneity between cohorts or by
population stratification. Included GWAS summary statistics were limited
to variants present in at least 80% of the analysis-specific effective sample
size (e.g., 80% of EUR Neffective). The 80% effective sample size inclusion
threshold ensured that variant effects present only in smaller cohorts did
not disproportionately influence the overall results. This effectively meant
that a variant needed to be present in MVP, PGC-SUD, and at least one
additional cohort for it to be included (Fig. 1).
Data from the 1000 Genome Project (1000 G) phase 3 [20] was used for

LD reference. Variants were mapped to the nearest gene based upon
physical position (<10 kb from assigned gene) and further characterized by
gene-mapping approaches using expression quantitative trait locus (eQTL)
associations and 3D chromatin interactions (Hi-C)(Supplemental Materials).
Conditional analyses were conducted using GCTA-COJO [21] to examine
the conditional independence of genome-wide significant (GWS;
p= 5.00 × 10−08) OPRM1 variants in low LD (r2 < 0.1).Ta
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SNP-heritability and Linkage-Disequilibrium (LD) Score
Regression
EUR OUD GWAS summary statistics were used to estimate SNP-heritability
(h2SNP), and to characterize OUD genetic correlations (rg) using LD score
regression (LDSC) [22]. LDSC analyses were restricted to HapMap3 variants
[23]. Effective sample-size was used in all LDSC-based analytic steps.
Genetic correlations were estimated with 54 other traits including SUDs,
substance use, psychiatric traits, chronic pain, sociodemographic factors,
and additional traits of interest (data sources are described in Supple-
mental Tables). Bonferroni-corrected significance was p= 9.26 × 10−04

(0.05/54). LDSC analyses were not performed in AFR and cross-ancestry
meta-analyses because of the inability to use an LD reference panel for
recently-admixed populations such as African-Americans or for analyses
integrating datasets from diverse ancestry groups [22].

Multi-trait analysis of GWAS summary statistics (MTAG)
Based on LDSC estimates of genetic correlations with OUD, a joint-analysis
that included the EUR OUD GWAS and GWAS summary statistics for AUD [11]
and CanUD [12] was conducted using MTAG [13]. MTAG enhances statistical
power by leveraging the genetic correlation between traits to generate trait-
specific estimates for each SNP. The AUD GWAS summary statistics used in
the present analysis are from a broader GWAS of problematic alcohol use [11].
MTAG used study-specific effective sample sizes for the respective GWAS.
Study-specific effect sizes were transformed to Z-scores to be on a uniform
scale across the three included GWAS. Included genetic variants were filtered
using default MTAG parameters [13]. Briefly, variants were restricted to those
common to all three of the GWAS, with a minor allele frequency (MAF) > 0.01,
and present in at least two-thirds of the 90th percentile of the study-specific
SNP sample sizes. These MTAG parameters guard against heterogeneity in the
distribution of common vs. rare variant effects, ensuring that SNP effects
generated from relatively small subsets of the contributing discovery GWAS
do not bias the effect estimates across traits [13].

Phenome-wide Association Study (PheWAS)
To examine phenome-wide relationships for OUD and the OUD-MTAG
analysis, and to compare their relationships with other clinically-relevant
outcomes, we performed phenome-wide association studies (PheWAS) in
BioVU [18], a cohort of >66,000 genotyped patients, with phenotypic data
currently available for 1338 clinical outcomes from electronic health
records [18]. Additional details on the BioVU cohort are provided in
Supplemental Materials. Polygenic risk scores (PRS) for OUD and OUD-
MTAG were computed using PRS-CS [24], excluding the subset of BioVU
participants included in the meta-analysis. The respective PRS were then
included in individual logistic regression models regressed on 1291 clinical
outcomes with case counts ≥100, covarying for sex, age, and the first 10
genetic principal components. Statistical significance for the PheWAS was
defined as p= 3.87 × 10−05 (0.05/1291).

Polygenic risk score analysis
PRS are described in Supplemental Materials. Briefly, a leave-one-out PRS
analysis was performed by excluding the EUR and AFR Yale-Penn 3 (YP3)
cohorts from the respective OUD GWAS and OUD-MTAG analyses allowing
for YP3 OUD cases and controls to be used as ancestry-specific PRS target
samples.

RESULTS
Ancestry-specific and cross-ancestry GWAS meta-analyses
In the ancestry-specific analyses, there were three GWS variants
(Fig. 2) in EUR (Table 2). The top association (rs11372849;
p= 9.54 × 10−10) mapped to FURIN on chromosome 15, one of
two GWS SNPs in the FURIN gene (rs17514846; r2= 0.91). The
second strongest association was with the OPRM1 functional
variant (rs1799971; p= 4.92 × 10−09). An additional OPRM1 variant
was also identified (rs79704991; p= 1.11 × 10−08; r2= 0.02)
(OPRM1 regional plots—Supplementary Fig. 1). GCTA-COJO [21]
was used for conditional analysis of the two GWS OPRM1 variants
demonstrating low LD (rs1799971 conditioned on rs79704991 and
vice versa). In these analyses, each variant fell below GWS when
conditioning on the effect of the other (conditioned rs1799971-
pconditioned= 1.66 × 10−06; rs79704991-pconditioned= 3.71 × 10−06);
although, there were no statistically significant differences in
effect estimates for the respective OPRM1 variants conditioned vs.
unconditioned effects. No GWS variants were identified in the AFR
GWAS (Supplementary Fig. 2).
The cross-ancestry OUD GWAS identified two GWS risk variants

mapping to OPRM1 (Supplementary Fig. 3) (Table 2). The top
association was with rs9478500 (p= 1.95 × 10−08), an intronic
variant. Rs1799971 was also GWS in the cross-ancestry meta-
analysis (p= 4.91 × 10−08), and is not in strong LD with rs9478500
(EUR r2= 0.03; AFR r2= 0.002; ALL r2= 0.04). The top FURIN
association in EUR (rs11372849) was uninformative in three of four
AFR ancestry cohorts and did not meet the threshold (80% of
Neffective) we set to be included in the analysis. The second top
FURIN association (rs17514846) fell below GWS in the cross-
ancestry GWAS (p= 6.00 × 10−08).

Gene-based analysis
Gene-based analyses are described in Supplemental Materials.
Both FURIN (p= 3.09 × 10−07) and OPRM1 (p= 3.59 × 10−07) were
significant in EUR gene-based analysis (Supplementary Fig 4).

Fig. 1 Summary of OUD GWAS, meta-analysis, and MTAG study design. Overview of European-ancestry opioid use disorder (OUD) genome-
wide association study and OUD multi-trait analysis.
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Additional results are reported in Supplemental Table 3–5 and
Supplementary Fig 5.

SNP-heritability and Linkage-Disequilibrium (LD) Score
Regression
The liability scale SNP-heritability (h2SNP) estimate was 12.75%
(s.e.= 1.1%) in EUR using effective sample-size adjusted preva-
lence rates and a population prevalence of 0.021 [25]. Genome-
wide inflation was mild with respect to sample size and favored
OUD polygenicity as indicated by the LDSC inflation factor
(λGC= 1.18), intercept= 1.01 (s.e.= 0.011), and attenuation ratio=
0.05 (s.e.= 0.049).
OUD showed statistically significant (p ≤ 9.26 x 10−04) genetic

correlations with 40 traits including substance use, SUDs,
psychiatric traits, pain outcomes, physical health, and socio-
demographic characteristics (Fig. 3; Supplementary Table 6). The
OUD trait in the current study was strongly genetically
correlated with the largest published GWAS of OUD to date
(rg= 1.02; p= 2.38 x 10−214) [7], suggesting that OUD is being
captured consistently across the studies, as might be expected
given the substantial overlap in OUD cases between the two
studies, although the control definitions differed between
analyses. OUD was also strongly genetically correlated with
other SUDs, including CanUD (rg= 0.82; p= 1.14 x 10−47) [12]
and AUD (rg= 0.77; p= 6.36 x 10−78) [11]. Modest genetic
correlations were found for measures of substance use (e.g.,
the quantity/frequency alcohol use measure AUDIT-C) (rg= 0.14;
p= 8.15 x 10−03) [10].

OUD also demonstrated statistically significant genetic correla-
tions with many mental health, pain, physical health, and
sociodemographic traits. The strongest positive correlations across
the respective domains were with Generalized Anxiety Disorder
(rg= 0.52; p= 2.89 x 10−18) and PTSD (rg= 0.52; p= 3.87 x 10−19),
lower back pain (rg= 0.61; p= 1.22 x 10−09), inability to work due
to being sick or disabled (rg= 0.57; p= 1.31 x 10−20), and scores
on the Townsend Deprivation Index (rg= 0.56; p= 1.13 x 10−25).
OUD was negatively genetically correlated with measures of
sexual activity (age of first sexual intercourse [rg=−0.64;
p= 4.43 x 10−76]), indices of educational attainment (age of school
completion [rg=−0.54; p= 9.41x10−28]) and cognitive perfor-
mance (rg=−0.38; p= 1.54 x 10−20), and levels of past month
“Heavy Do It Yourself” physical activity (rg=−0.38;
p= 7.37 x 10−13), among others (Supplementary Table 6).

Multi-trait analysis of European GWAS summary statistics
(MTAG)
MTAG was supported by strong genetic correlation for OUD with
CanUD (rg=0.82; p= 1.14 x 10−47) and AUD (rg= 0.77;
p= 6.36 x 10−78) in EUR. The OUD-MTAG analysis resulted in an
increase in effective sample size from the original EUR OUD GWAS
Neffective= 56,994 (GWAS mean x2= 1.18) to an equivalent sample
size of N= 128,748 (GWAS mean x2= 1.40). The increase resulted
in the identification of 18 independent GWS OUD-MTAG risk loci
(Fig. 2; Table 3), some previously associated at either the variant
level, or that reside in genes associated with, psychiatric and
substance use outcomes in previous GWAS. Seven of the OUD-

Fig. 2 OUD and OUD-MTAG manhattan plots. Manhattan plots of (A) European-ancestry OUD GWAS results and (B) OUD-MTAG multi-trait
GWAS results.

J.D. Deak et al.

3973

Molecular Psychiatry (2022) 27:3970 – 3979



Ta
bl
e
2.

G
en

o
m
e-
w
id
e
si
g
n
ifi
ca
n
t
(p
≤
5.
00

E-
08

)
as
so
ci
at
io
n
s
in

(A
)
EU

R
O
U
D

G
W
A
S,

an
d
(B
)
cr
o
ss
-a
n
ce
st
ry

O
U
D

G
W
A
S.

(A
)
EU

R
O
U
D

an
al
ys
is

C
h
r

Po
si
ti
on

M
ar
ke

r
A
1

A
2

G
en

e
EU

R
M
A
F

EU
R
Z

EU
R
P-
va

lu
e

D
ir
ec
ti
on

A
FR

M
A
F

A
FR

Z
A
FR

P-
va

lu
e

15
91

41
94

32
rs
11

37
28

49
T

TC
FU

RI
N

0.
46

6.
12

9.
54

E-
10

+
+
+
??
?
+
?

-
-

-

6
15

43
60

79
7

rs
17

99
97

1
A

G
O
PR

M
1

0.
13

5.
85

4.
92

E-
09

+
+
+
+
+
+
+
+

0.
03

0.
83

0.
40

7

15
91

41
65

50
rs
17

51
48

46
A

C
FU

RI
N

0.
46

−
5.
77

7.
87

E-
09

--
--
+
--
?

0.
18

−
0.
94

0.
34

7

6
15

43
19

44
9

rs
79

70
49

91
T

G
O
PR

M
1

0.
13

5.
71

1.
11

E-
08

+
+
+
+
+
+
+
+

0.
08

0.
59

0.
55

2

6
15

43
15

31
0

rs
12

20
00

46
T

C
O
PR

M
1

0.
13

5.
64

1.
70

E-
08

+
+
+
+
+
+
+
+

0.
08

0.
67

0.
50

5

6
15

43
09

80
8

rs
10

49
92

76
T

C
O
PR

M
1

0.
13

5.
52

3.
38

E-
08

+
+
+
+
+
+
+
+

0.
08

0.
49

0.
62

1

6
15

43
04

24
2

rs
34

06
95

31
T

C
O
PR

M
1

0.
13

5.
51

3.
67

E-
08

+
+
+
+
+
+
+
+

0.
08

0.
61

0.
54

2

6
15

43
77

92
5

rs
37

78
14

6
T

C
O
PR

M
1

0.
17

−
5.
5

3.
84

E-
08

--
-+

--
--

0.
08

−
1.
54

0.
12

5

6
15

43
78

22
3

rs
94

78
50

0
T

C
O
PR

M
1

0.
17

−
5.
49

4.
12

E-
08

--
-+

--
--

0.
08

−
1.
76

0.
07

8

6
15

43
79

15
2

rs
38

23
01

0
A

G
O
PR

M
1

0.
17

5.
48

4.
25

E-
08

+
+
+
-+

+
+
+

0.
08

1.
59

0.
11

1

6
15

43
78

73
9

rs
37

78
14

7
A

G
O
PR

M
1

0.
17

5.
46

4.
83

E-
08

+
+
+
-+

+
+
+

0.
08

1.
47

0.
14

1

(B
)
C
ro
ss
-a
n
ce
st
ry

O
U
D

an
al
ys
is

C
h
r

Po
si
ti
on

M
ar
ke

r
A
1

A
2

G
en

e
Z

P-
va

lu
e

D
ir
ec
ti
on

EU
R
M
A
F

EU
R
Z

EU
R
P-

va
lu
e

A
FR

M
A
F

A
FR

Z
A
FR

P-
va

lu
e

6
15

43
78

22
3

rs
94

78
50

0
T

C
O
PR

M
1

−
5.
62

1.
95

E-
08

--
-+

--
--
-+

-+
0.
17

−
5.
49

4.
12

E-
08

0.
18

−
1.
76

0.
07

8

6
15

43
79

93
4

rs
92

85
54

2
T

C
O
PR

M
1

5.
56

2.
73

E-
08

+
+
+
-+

+
+
+
+
-+

+
0.
17

5.
43

5.
61

E-
08

0.
16

1.
74

0.
08

2

6
15

43
79

15
2

rs
38

23
01

0
A

G
O
PR

M
1

5.
53

3.
26

E-
08

+
+
+
-+

+
+
+
+
+
--

0.
17

5.
48

4.
25

E-
08

0.
11

1.
59

0.
11

1

6
15

43
81

01
2

rs
37

78
14

8
T

G
O
PR

M
1

5.
52

3.
34

E-
08

+
+
+
-+

+
+
+
+
+
-+

0.
17

5.
43

5.
73

E-
08

0.
10

1.
68

0.
09

4

6
15

43
55

10
0

rs
69

36
61

5
A

G
O
PR

M
1

−
5.
52

3.
38

E-
08

--
-+

--
?-
--
+
-

-
-

-
0.
10

−
1.
72

0.
08

5

6
15

43
77

92
5

rs
37

78
14

6
T

C
O
PR

M
1

−
5.
51

3.
54

E-
08

--
-+

--
--
--
+
+

0.
17

−
5.
5

3.
84

E-
08

0.
12

−
1.
54

0.
12

5

6
15

43
83

65
8

rs
37

78
15

0
T

C
O
PR

M
1

−
5.
49

3.
97

E-
08

--
-+

--
--
-+

-+
0.
17

-5
.3
8

7.
31

E-
08

0.
18

−
1.
69

0.
09

1

6
15

43
82

13
9

rs
37

78
14

9
C

G
O
PR

M
1

−
5.
48

4.
20

E-
08

--
-+

--
--
--
+
+

0.
17

−
5.
44

5.
42

E-
08

0.
12

−
1.
58

0.
11

4

6
15

43
82

47
3

rs
77

72
95

9
A

G
O
PR

M
1

5.
48

4.
34

E-
08

+
+
+
-+

+
+
+
+
+
--

0.
17

5.
43

5.
66

E-
08

0.
12

1.
58

0.
11

4

6
15

43
62

25
4

rs
93

22
44

5
A

G
O
PR

M
1

−
5.
47

4.
54

E-
08

--
-+

--
--
--
+
-

0.
17

−
5.
44

5.
49

E-
08

0.
10

−
1.
56

0.
12

0

6
15

43
82

36
7

rs
77

73
99

5
T

C
O
PR

M
1

5.
46

4.
78

E-
08

+
+
+
-+

+
+
+
+
+
--

0.
17

5.
42

5.
84

E-
08

0.
12

1.
56

0.
12

0

6
15

43
60

79
7

rs
17

99
97

1
A

G
O
PR

M
1

5.
46

4.
91

E-
08

+
+
+
+
+
+
+
+
+
-+

+
0.
13

5.
85

4.
92

E-
09

0.
03

0.
83

0.
40

7

B
o
ld

=
Le
ad

SN
P

J.D. Deak et al.

3974

Molecular Psychiatry (2022) 27:3970 – 3979



MTAG loci mapped to the nearest gene via brain eQTL data and
Hi-C interactions; 8 loci were not mapped to the nearest gene via
brain eQTL and Hi-C data but were implicated with additional
genes in their respective genomic regions. Some loci fell in
complex genomic regions with many mapped genes. These OUD-
MTAG loci regions are summarized in Supplemental Fig. 6, 7 and
Supplementary Tables 12–15 along with the OUD loci.
The top OUD-MTAG association was with rs11229119

(p= 7.03 x 10−11) on chromosome 11 mapping to both TMX2
and CTNND1. The second strongest was with NICN1 (rs77648866;
p= 1.82 x 10−10) on chromosome 3. Additional GWS associations
included FOXP2 (rs1989903; p= 2.47 x 10−10), PDE4B (rs7519259;
p= 2.68 x 10−10), SLC39A8 (rs13135092; p= 3.60 x 10−10), NCAM1
(rs1940701; p= 9.63 x 10−10), RABEPK (rs864882; p= 1.24 x 10−09),
PLCL2 (rs55855024; p= 7.89 x 10−09), and FTO (rs7188250;
p= 3.63 x 10−08). One of the FURIN variants identified in the EUR
OUD GWAS was also GWS in the OUD-MTAG (rs17514846;
p= 2.30 x 10−08). The top OPRM1 association was with
rs1799971 (p= 1.39 x 10−06). Of the 18 GWS loci, three were
GWS in the AUD GWAS and one was GWS in the CanUD GWAS
used for MTAG (Table 3).
The OUD-MTAG gene-based analysis resulted in 66 Bonferroni

significant (p ≤ 0.05/15,927= 3.14 x 10−06) genes (Supplementary
Table 7; Supplementary Fig 8).
The OUD-MTAG GWAS was significantly genetically correlated

(Bonferroni p ≤ 9.26 x 10−04) with 46 traits including the largest
previously published GWAS of OUD to date at rg= 0.98
(p= 1.22 x 10−77) [7]. All estimates of genetic correlation for the
OUD-MTAG analysis can be found in Supplementary Table 8.

Phenome-wide Association Study (PheWAS)
The top PheWAS association for OUD was with substance
addiction and disorders (OR= 1.53; p= 2.12 x 10−69). Additional
top OUD associations included tobacco use disorder (OR= 1.26;
p= 3.38 x 10−56), chronic pain (OR= 1.25; p= 2.32 x 10−28),
alcohol-related disorders (OR= 1.35; p= 1.04 x 10−23), mood
(OR= 1.13; p= 1.27 x 10−22) and anxiety (OR= 1.14;
p= 1.00 × 10−21) disorders, viral hepatitis C (OR= 1.33;

p= 3.04 x 10−20), and suicidal ideation or attempt (OR= 1.49;
p= 2.17 x 10−19), amongst others (Supplementary Fig 9; Supple-
mentary Table 9).
Similar patterns of association were found for the OUD-MTAG

PheWAS. The top associations were with tobacco use disorder
(OR= 1.30; p= 1.37 x 10−68), substance addiction and disorders
(OR= 1.42; p= 1.15 x 10−46), and alcohol-related disorders (OR=
1.42; p= 7.36 × 10−31). OUD-MTAG also demonstrated significant
associations with mood (OR= 1.12; p= 7.76 x 10−21) and anxiety
(OR= 1.13; p= 1.45 x 10−20) disorders, chronic pain (OR= 1.20;
p= 2.51 x 10−20), viral hepatitis C (OR= 1.32; p= 1.73 x 10−18),
and suicidal ideation or attempt (OR= 1.47; p= 4.52 x 10−18)
(Supplementary Fig 9; Supplementary Table 10).

OUD polygenic risk score (PRS) analysis
In Yale-Penn 3 (YP3) EUR (N= 1959, 440 OUD cases), the EUR OUD
PRS was a significant predictor of OUD (beta= 0.45; s.e.= 0.058;
p= 2.9 x 10−13) with the PRS specifically accounting for 2.41% of
OUD variance (Supplementary Table 11). The OUD-MTAG PRS was
a stronger predictor of OUD (beta= 0.61;s.e.= 0.066;
p= 2.0 x 10−16) explaining 3.81% of OUD variance.
In YP3 AFR (N= 1017, 171 OUD cases), both AFR-derived and

EUR-derived OUD PRS were generated. The EUR-derived PRS
(beta= 0.19;s.e.= 0.0945; p= 0.042; R2= 0.29%) explained a small
proportion of OUD variance in YP3 AFR but the AFR-derived PRS
(beta= 0.073;s.e.= 0.049;p= 0.136; R2= 0.11%) was not a signifi-
cant predictor.

DISCUSSION
We present a large genetic study of OUD, with an overall sample
size of 639,063 (EUR= 554,186; AFR= 84,877) individuals (Ncases=
20,686 [EUR= 15,251; AFR= 5435]). This study is the first to
provide evidence of a GWS single-variant GWAS association
between FURIN and OUD. We support findings from previous OUD
GWAS implicating OPRM1 as a risk locus for OUD [7], including the
coding variant rs1799971 and additional OPRM1 associations that
remained statistically significant in a cross-ancestry analysis of AFR
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and EUR populations. We add evidence of gene-based associa-
tions with OUD and provide estimates of OUD SNP-heritability and
genetic correlations with numerous traits. Further, we apply a
multi-trait approach for OUD genetic discovery utilizing the high
degree of genetic correlation across SUDs (OUD, AUD, CanUD) to
increase power, yielding an equivalent sample size of 128,748 and
18 GWS OUD-MTAG risk loci. PheWAS of OUD and OUD-MTAG
demonstrated similar patterns of associations across the phe-
nome, and the OUD-MTAG PRS explained a larger amount of
variance in OUD case status (3.81%) compared to the OUD PRS
(2.41%), suggesting that the OUD-MTAG and OUD analyses are
capturing similar phenomenon.
Compared to other complex psychiatric traits, there are

comparatively small samples available for genetic analyses of
SUDs, particularly those involving illegal substances (heroin,
cocaine) [8, 9]. A strategy that increases statistical power by
incorporating other sets of samples—for example, from GWAS of
closely-related but non-identical traits such as other SUDs—could
help advance our understanding of the genetic architecture of
OUD. This study brought much more information to bear on the
analysis of OUD risk variation, resulting in the identification of
many more loci. These associations included two loci from the EUR
OUD GWAS (OPRM1 and FURIN), and 18 loci identified in the OUD-
MTAG analysis (also including FURIN). The OUD-MTAG loci did not
include OPRM1. The absence from the MTAG analysis of any
statistically significant association mapped to OPRM1, a locus that
should be highly-specific to OUD, was unexpected.
FURIN was associated with OUD risk in both SNP-based and

gene-based analyses. FURIN (Furin, Paired Basic Amino Acid
Cleaving Enzyme) encodes the endoprotease furin enzyme that
serves a primary role in regulating synaptic neuronal activity,
including the synthesis of brain-derived neurotropic factor and
regulation of neurotrophin levels in the brain [26]. Genetic
variation in FURIN has been associated with multiple psychiatric
outcomes including schizophrenia [27, 28] and studies examining
genetic and phenotypic features shared between schizophrenia
and bipolar disorder [29, 30]. The two top FURIN SNPs associated
with OUD are in strong LD (r2= 0.91); the second strongest FURIN
association, rs17514846, has been significantly associated with

multiple cardiovascular and hypertension outcomes [31, 32], and
was also GWS in a GWAS of parents’ attained age (current age of
parents or parental age at death) [33]. A statistically-significant
FURIN gene-level association being driven by rs17514846 was
reported between FURIN and opioid addiction [34]. In a targeted
follow-up in the FURIN gene region, there was significant
association between rs11372849 (also lead SNP in the current
study) and opioid addiction. Accumulating evidence linking FURIN
and opioid outcomes, including the FURIN GWAS associations
reported herein along with evidence of gene-based associations
with opioid addiction [34], reflect the high degree of co-morbidity
between OUD and psychiatric and physical health traits.
Our findings support previous OUD GWAS implicating OPRM1

genetic variation in opioid addiction and OUD [7, 34] and extend
GWS findings for OPRM1 as a risk factor in a cross-ancestry
analysis. The top association in the EUR OUD GWAS was with the
OPRM1 coding variant (rs1799971) identified in an earlier OUD
GWAS, all cases of which are also included in the current study,
plus an additional OPRM1 variant (rs79704991) in low-LD with
rs1799971 (r2= 0.02). Two OPRM1 variants were also GWS in the
cross-ancestry OUD GWAS (rs1799971 and rs9478500; r2= 0.02).
Rs9478500 was previously GWS for opioid addiction in EUR [34].
There is evidence of OPRM1’s complex haplotype structure and
the potential for multiple independent OPRM1 risk loci influencing
risk for OUD and SUDs dating to 2006 [35]. Conditional analysis of
the top OPRM1 variants (rs1799971 and rs79704991; r2= 0.02)
demonstrated that these variants are not independent as
indicated by each variant falling below GWS when conditioned
on the other; however, the variant effects remained nominally
significant and there were no significant differences in the
conditioned vs. unconditioned effect sizes. Future studies of
larger cohorts with diverse ancestral backgrounds will be needed
to distinguish the effects of OUD risk alleles across the OPRM1
region, including the known-functional rs1799971 variant which
may or may not be the variant motivating previous findings.
We found an estimated SNP-heritability (h2SNP) of 12.75%

(Z= 11.28) compared to the previous largest OUD GWAS (h2SNP=
11.30%; Z= 6.27) [7]. However, the comparison between these two
studies is not direct: the largest previous GWAS [7] used opioid-

Table 3. Genome-wide significant (p ≤ 5.00 × 10−08) Lead SNP associations in OUD-MTAG analysis (of 441 total GWS SNPs).

Chr Pos MarkerName Allele 1 Allele 2 Gene(s) Z P-value p-value in AUD p-value in CanUD

11 57535966 rs11229119 T C TMX2-CTNND1 −6.50 7.03E-11 2.60E-07 6.68E-05

3 49469449 rs77648866 A G NICN1 6.33 1.82E-10 5.90E-07 5.89E-03

7 114137940 rs1989903 A G FOXP2 −6.20 2.47E-10 1.23E-03 3.52E-09

1 66434743 rs7519259 A G PDE4B 5.73 2.68E-10 9.94E-08 1.36E-05

4 103198082 rs13135092 A G SLC39A8 6.51 3.60E-10 4.89E-18 0.88

11 112869404 rs1940701 T C NCAM1 -6.10 9.63E-10 4.91E-06 1.67E-03

9 127968109 rs864882 T C RABEPK −5.60 1.24E-09 2.45E-05 0.06

6 19076417 rs9350100 T C RP11-254A17.1 5.62 1.76E-09 3.37E-05 2.89E-03

1 91208451 rs2166171 T C BARHL2 −5.88 4.80E-09 1.18E-06 2.76E-05

3 16850764 rs55855024 A C PLCL2 5.73 7.89E-09 1.50E-06 0.20

7 75622281 rs6467958 T C TMEM120A −5.50 1.06E-08 2.24E-05 4.02E-03

11 113477081 rs11214677 T C TMPRSS5 −5.65 1.16E-08 1.23E-04 1.65E-05

1 28989020 rs6667501 A G GMEB1 5.55 1.74E-08 3.66E-04 2.21E-03

19 45453763 rs10422888 A G CTB-129P6.11 5.55 1.99E-08 5.83E-05 6.22E-03

15 91416550 rs17514846 A C FURIN −5.59 2.30E-08 2.85E-03 0.09

15 47645174 rs73403005 A G SEMA6D −5.69 2.46E-08 6.06E-09 2.38E-03

13 96932868 rs2389631 A C HS6ST3 −5.61 2.53E-08 8.72E-05 0.06

16 53834607 rs7188250 T C FTO 5.64 3.63E-08 4.41E-12 0.61

Bold=GWS in non-OUD MTAG sumstats
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exposed controls, while we used a broader control definition,
including not only individuals who were opioid-exposed, but
subjects with no OUD assessment. This was necessitated by the fact
that many of the available datasets did not define exposed controls
and would have been excluded had we used the exposed control
definition. Findings from the current study do not establish whether
the control definition impacted the detection of genetic loci or the
genetic architecture of OUD.
OUD was positively genetically correlated with other SUDs

(CanUD, AUD) and psychiatric conditions (PTSD, depression,
schizophrenia), with lower correlations for measures of substance
use (as opposed to dependence; e.g., AUDIT-C), suggesting that
OUD is more akin to measures of substance dependence than use
per se. OUD was genetically correlated with multiple forms of
chronic pain (e.g., lower back pain) and indicators of impairment
(inability to work, decreased physical activity) and significantly
genetically correlated with socioeconomic hardship (Townsend
Deprivation Index) and lower levels of educational attainment.
These patterns of genetic correlation are consistent with and may
reflect high rates of co-occurrence of OUD with SUDs and
psychiatric disorders in epidemiologic studies [25, 36]. Beyond
epidemiologic estimates, SUDs and psychiatric disorders have also
been demonstrated to be risk markers for severe opioid-related
outcomes, such as opioid overdose [37]. Lower educational
attainment and greater economic hardship have also been
associated with higher rates of opioid overdose and opioid
overdose-related deaths [38]. These patterns of genetic correlation
are consistent with the complex clinical presentation of OUD.
We examined the utility of using MTAG to increase the

information available from the limited number of genotyped
OUD subjects. The OUD multi-trait analysis was feasible given the
high genetic correlations with CanUD (rg= 0.82) and AUD
(rg= 0.77) and increased by an order-of-magnitude the number
of GWS risk loci detected. While this provides proof-of-concept for
this approach given that many of the loci identified via OUD-
MTAG have previously been implicated with psychiatric and
substance use outcomes, OPRM1 was not GWS in the OUD-MTAG
analysis, so increased detection may have come at the cost of
specificity for OUD. However, only 4 of the 18 OUD-MTAG GWS
associations were GWS in the respective AUD and CanUD GWAS
used as MTAG instruments, so the MTAG results did not simply
reflect the findings from AUD and CanUD GWAS. The OUD-MTAG
PRS also outperformed the OUD PRS in predicting OUD case status
in the Yale-Penn holdout analysis (OUD-MTAG PRS: 3.81%, OUD
PRS: 2.41%) indicating that the OUD-MTAG is capturing OUD risk,
and that the OUD-MTAG PRS is more powerful than the OUD PRS
alone as also reflected by the comparative number of GWS loci
identified in the respective GWAS.
A PheWAS across 1291 clinical outcomes also demonstrated

convergent patterns of association between OUD and OUD-MTAG
with common comorbidities (including SUDs, psychiatric traits,
chronic pain, viral hepatitis C), supporting that these two analyses
capture genetic factors that underlie similar clinical presentations
and related impairment. Additionally, summary data from the
OUD MTAG analysis including multiple SUDs was highly geneti-
cally correlated (rg= 0.98) with OUD [7], so it appears that the
OUD-MTAG did capture genetic information relevant to OUD risk,
though measuring the risk for OUD through a genetic liability for
SUDs more broadly. That is, genetic risk for OUD may be a
combination of a broader addiction liability (OUD-MTAG loci)
combined with the opioid-specific genetic effects (e.g., OPRM1)
that were found in the OUD single-trait analysis that are also
influencing risk.
The distinction between substance-specific genetic effects and

general SUD liability is of interest. Quantitative genetic studies
have demonstrated both substance-specific influences, as well as
heritable factors that contribute to SUDs more broadly [39, 40]. Up
to 38% of variation in opioid dependence was reportedly

accounted for by opioid-specific factors that were not shared
with other SUDs [41]. Molecular genetic studies have begun to
disentangle common vs. substance-specific genetic influences,
reporting evidence to suggest the presence of a common unitary
addiction factor that can account for risk across SUDs, in addition
to substance-specific influences [42, 43]. Larger-scale OUD studies
will be needed to parse genomic influences specific to OUD from
those underlying risk for SUDs more broadly, but this will require
many more genotyped OUD cases, because it cannot be
accomplished via statistical methods alone.
The present study has limitations. Despite including all

genotyped OUD subjects available, the OUD-only component of
the present study is smaller than GWAS for other substance use
behaviors [14] because OUD cases are underrepresented in
available datasets. MTAG yielded a much larger sample, but at
the apparent cost of a reduction in specificity marked by the non-
significance of OPRM1 in the OUD-MTAG. To maximize sample size
while maintaining OUD diagnosis to define case status in extant
datasets, we used an unscreened control group, which although
not optimal, allowed for the inclusion of additional subject
cohorts. Important consideration must be given to OUD control
definitions [6, 34]. Additionally, inadequate subject numbers
limited our ability to identify risk variants in non-EUR populations.
This must be addressed by purposeful recruitment of AFR and
other non-EUR OUD subjects.
We report novel findings from a large-scale GWAS meta-analysis

of OUD and employed multi-trait approaches that advanced
discovery. These identified genomic risk factors for the develop-
ment of OUD and its underlying biology highlight the need to
assemble large OUD datasets that include individuals from diverse
ancestral backgrounds. To advance our scientific understanding of
OUD risk will require study of a range of opioid-related traits (e.g.,
clinically diagnosed OUD, non-dependent opioid use, and
prescription painkiller use) [44].
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