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Hybrid Al-assistive diagnostic model permits rapid
TBS classification of cervical liquid-based thin-layer
cell smears

Xiaohui Zhu'21®, Xiaoming Li31®, Kokhaur Ong*'>1®, Wenli Zhang"?'®, Wencai Li>'®, Longjie Li%, David Young?,
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Technical advancements significantly improve earlier diagnosis of cervical cancer, but
accurate diagnosis is still difficult due to various factors. We develop an artificial intelligence
assistive diagnostic solution, AIATBS, to improve cervical liquid-based thin-layer cell smear
diagnosis according to clinical TBS criteria. We train AIATBS with >81,000 retrospective
samples. It integrates YOLOvV3 for target detection, Xception and Patch-based models to
boost target classification, and U-net for nucleus segmentation. We integrate XGBoost and a
logical decision tree with these models to optimize the parameters given by the learning
process, and we develop a complete cervical liquid-based cytology smear TBS diagnostic
system which also includes a quality control solution. We validate the optimized system with
>34,000 multicenter prospective samples and achieve better sensitivity compared to senior
cytologists, yet retain high specificity while achieving a speed of <180s/slide. Our system is
adaptive to sample preparation using different standards, staining protocols and scanners.
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ervical cancer (CC) is one of the most common malignant

tumors in women, with 604,000 new cases and 342,000

deaths in 2020!. In developing countries, the mortality rate
of CC is about 2.5 times than that of developed countries. One of
the reasons is that CC screening has been successfully carried out
in developed countries, and early diagnosis enables close mon-
itoring of disease progression and timely intervention and
treatment?. Cytology screening technology has also evolved from
the traditional Pap smear to liquid-based thin-layer cell smear
technology, which has significantly improved the quality of
samples and is commonly used for investigation in CC
screening®. However, the incidence and mortality of CC in China
is increasing with an annual growth rate of 2-3%* We also
observed that younger women are developing this disease?. The
increasing trend of CC in China, probably in other developing
countries too, is due to a number of complex factors, but the
shortage of experienced cytologists and cytotechnologists is one
of the major factors.

In addition to specimen preparation techniques, diagnostic
criteria are essential for patient stratification. The Bethesda sys-
tem, known as the TBS standard, was established in 1988 and has
attracted the global attention of cytopathologists. Compared with
the traditional five-level classification system, the current TBS
standard (2014 version)®, as shown in Supplementary Table 01
provides more clinical guidance. Currently, TBS is a widely
accepted and adopted diagnostic standard in different countries,
including China. However, the accurate diagnosis of cervical
liquid-based cytology smears is still a challenge due to the fol-
lowing two reasons: (I) technically speaking, a cytologist must
find only a few abnormal and malignant cells in a sample com-
posed of tens of thousands of cells, (II) in addition, due to the lack
of experienced and qualified cytologists or cytotechnologists, and
the influence of factors such as their diagnostic experiences,
moods, fatigue, etc. human factors may cause data
misinterpretation.

The emergence of Al in the 21st century has shown great
promise to perform such crucial but tedious tasks both thor-
oughly and tirelessly. AI has changed our daily lives in various
ways, and its applications in medical diagnosis has increased
rapidly. The field of AI has been well developed, including rein-
forcement learning, supervised learning and unsupervised learn-
ing, such as machine learning (ML), pattern recognition,
convolutional neural networks (CNNs), feedback neural net-
works, self-supervised learning, and weakly supervised learning,
etc. Today, these technologies have an increasingly important role
in biomedical and clinical application®. Different Al systems have
been developed to address the needs in clinical diagnosis, for
example cardiac systolic dysfunction screening’ and skin cancer
classification which achieved diagnostic results that are compar-
able to the level of clinical experts®.

In pathological images, the development of digital pathology
and big data facilitate the development of traditional image
analysis and ML technology®. At the same time, it is especially
worth noting that deep learning (DL) also has been extensively
studied in pathology, and CNNs have become the preferred
technology for general image classification!?. It also has been used
for image-based detection tasks!!:12 and applied to identify and
quantify cellular!3 and histological features!1>,

In clinical pathological diagnosis, the application of AI to
whole-slide imaging (WSI) pathological image detection, classi-
fication and prognosis prediction has been a hot research topic in
recent years. Various studies were published, including the
development of CNNs to classify pathological breast cancer slice
images at the pixel levell®. Neighboring Ensemble Predictor
neural network, based on CNNs, was proposed to detect nuclei
and classify them using spatial constraints!”. For the prediction of

cancer diagnosis and progression/prognosis, we can use Al to
diagnose basal cell carcinoma, prostate cancer, and breast cancer
axillary lymph node metastasis through weakly supervised
learning!®, classify lung cancer samples and make prognosis
based on gene mutation profiles'?, and predict the prognosis of
colorectal cancer patients20, These research results have laid a
solid foundation for the clinical application of Al in pathological
diagnosis and prognosis.

Al-assistive CC screening is the most widely used application
in pathology?! and has a wide range of application prospects?2.
Since the birth of cell smear technology, people have tried to
develop a system that can automatically screen cervical cell
samples. The Cytoanalyzer project, which can be traced back to
the 1950s in the United States, developed an automatic micro-
scope for differentiating cancer versus normal cells based on the
size and optical density of the nucleus for the screening of Pap
smears?3. Japan’s CYBEST system attempts to extract features
such as nuclear area, nuclear density, cytoplasmic area, and
nuclear-to-plasma ratio from traditional cell images;>* Neuro-
medical Systems’ PAPNET cytology screening system began to
use neural network classifiers to identify abnormal cells and
automatically screen cervical smears2>. In recent years, the
development of neural network technology has led to the appli-
cation of computer-assisted cervical cytology screening to receive
increasing attention. For example, image classification of cervical
Pap smears26-29 and target detection and classification of cervical
Pap smears3 have been implemented. Commercialized products
have even been developed and approved by the U.S. Food and
Drug Administration3!. At the same time, there are also many
reports of clinical research using Al-assisted analysis
systems32-36, Without exception, these systems have increased
the sensitivity of CC screening and reduced the false negative rate.
However, many studies only focused on a certain part of the
automatic screening diagnosis of cervical Pap smear, such as
using six different CNNs to classify cervical lesions®’, or using
different algorithms to segment cervical cell and nuclei®® and
detect and classify images of PAP smears®. A variety of auto-
matic screening systems are able to identify suspicious intrae-
pithelial lesion areas3140 and allow doctors to focus on those
suspicious areas.

Currently, there is no such system for automated assistive
interpretation of cervical liquid-based cytology smears in strict
accordance with TBS standards which includes all the subtyping
(squamous, glandular, and infectious lesions). The challenges of
building a robust and adoptable Al-assistive system are the
potential variations and factors caused by (I) different sediment
approaches, such as natural, membrane, and centrifugal sedi-
mentations, (II) staining reagents, including both commonly used
EA-50 and EA-36, (III) image quality variation caused by dif-
ferent scanners, and (IV) sample preparation at multiple medical
centers. Large-scale study and systematic development are
required to address these challenges such that the developed AI
model is able to be adopted by different medical centers. The
desired diagnostic system will require a powerful and robust Al-
based model that is easily applied, verified and adopted by
cytopathologists and widely applicable to different populations
and multiple medical centers. It will reduce the workload of
cytologists, reduce false negative rates, improve diagnostic accu-
racy, and ultimately reduce mortality. This urgent and unmet
need is especially important to reduce the rising mortality rate in
China and other countries facing similar challenges.

In this paper, we have developed an Artificial Intelligence (AI)
assistive diagnostic system that can help cytologists perform data
interpretation and improve the efficiency and quality of screening
based on TBS standards. The integrated system is composed of
five AI models, which we employ to detect and classify the lesions
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Fig. 1 Large-scale multicenter smear samples collection based on the TBS standard. a The number of retrospective smears of different preparation and
staining protocols collected from multiple medical institutions (n=81,727). b The number of prospective smears of different preparation and staining
protocols collected from multiple medical institutions (n = 34,403). ¢ The smear number of different TBS classification in the retrospective study. d The

smear number of different TBS classification in the prospective study.

based on large and annotated training datasets collected from five
central medical centers in China. Based on a large, well-organized
training database, we developed an AI-Assistive TBS (AIATBS) to
detect and classify digital cervical liquid-based cytology smears.
Adhering to the requirements of the TBS reporting system, we
can classify cervical precancerous lesions and infectious lesions
with sensitivity exceeding that of senior cytologists, while speci-
ficity was slightly lower but comparable. The clinical validation at
11 medical centers, combined with the sensitivity and specificity
profile, shows that ATATBS system is suitable for adoption by
clinical centers for routine assistive diagnostic screening.

Results

Large-scale smear sample collection and digitization for mul-
ticenter retrospective and prospective studies. In order to
develop the AIATBS system, we collected a large number of
cervical liquid-based thin-layer cell smear samples (n = 81,727),
from five central medical institutes (indicated by “Medical insti-
tutions 1-5” in Fig. 1a) and other anonymized smaller medical
institutions (collectively indicated by “Other” in Fig. 1a) within 3
years before May 31, 2019 as our training, testing and validation
dataset for the AIATBS system development. The prospective
clinical samples (n = 34,403) between August 1st, 2019 and April
30th, 2020 from 11 anonymized medical institutions (indicated
by “Medical institutions A-K” in Fig. 1b) were collected for our
clinical validation.

The smear samples were prepared across the different clinical
sites, including use of three common sedimentation methods: (I)
natural sediment, for example BD PrepStainTM liquid-based cell
automatic film maker, (II) membrane sediment, such as Thinprep
liquid-based thin-layer cell preparation system, (III) centrifugal
sediment, mostly using centrifugal and manual operation.
Cytoplasmic staining reagents included*! both Papanicolaou

Stain EA-50 Solution (EA-50) and Papanicolaou Stain EA-36
Solution (EA-36), which are routinely used in cervical liquid-
based thin-layer cell smear sample staining for clinical screening.
The details of the prepared samples using different methods and
staining reagents are given in Fig. 1a, b. We can see that there are
preferences of different medical centers for sediment and staining
methods. After quality control of sample preparation and image
acquisition, we scanned the smears and classified each smear/
sample according to the TBS diagnosis. The details on final
confirmation criteria of smear TBS classification are described in
the “Methods”. The number of different TBS classifications are as
shown in Fig. ¢, d.

YOLOv3 model achieves fast, semi-supervised smear sample
annotation based on the TBS standard. According to the TBS
diagnostic classification, we needed to identify both infected
benign and malignant lesions. We classified and annotated both
infected and malignment cases and included the benign classes
such as superficial squamous epithelium, repair and metaplastic
cells, normal glandular epithelial cells, and parabasal cells or
lymphocytes, etc. In order to get more detailed pathological fea-
tures, we further classified the smear samples into 24 new, more
detailed classes as show in Table 1 and Fig. 2a. These 24 classes
are named as C1-C24 in the classification index of Table 1.
The annotations of a quality-controlled image database are the
cornerstone for supervised learning. The fully manual annotation
of such a large number of digital pathology images is very
challenging, essentially infeasible and unpractical. In order to
rapidly select high-efficiency detection algorithms to build our
target detection model for semi-supervised annotation, we used
our initially available labeled data of squamous intraepithelial
lesions to test different algorithms. We found that YOLOv342
detection accuracy was comparable with other models, such as
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Table 1 Corresponding relationship between new annotation classification and TBS classification.
New annotation Corresponding TBS Category Definition
classification classification
AGC_A (CD) AGC_NOS, AGC_FN, Glandular intraepithelial Atypical glandular cells, pathological morphology similar
AlS, ADC lesions to cervical gland cells
AGC_B (C2) AGC_NOS, AGC_FN, Glandular intraepithelial Atypical glandular cells, other pathological morphology
AlS, ADC lesions
ASC_L_S (C3) ASCUS, LSIL, ASCH, Squamous Single atypical squamous cell with low nuclear/
HSIL, SCC intraepithelial lesion cytoplasmic ratio (excluding Koilocytes)
KC (C4) LSIL Squamous Single koilocyte
intraepithelial lesion
ASC_L_F (C5) ASCUS, LSIL, ASCH, Squamous Atypical squamous cells with low nuclear/cytoplasmic
HSIL, SCC intraepithelial lesion ratio, arranged in sheets or clusters
ASC_H_B (Cé) ASCUS, ASCH, HSIL, SCC  Squamous Atypical squamous cells with high nuclear/cytoplasmic
intraepithelial lesion ratio, arranged in clusters (cells number >10)
ASC_H_M (C7) ASCUS, ASCH, HSIL, SCC  Squamous Atypical squamous cells with high nuclear/cytoplasmic
intraepithelial lesion ratio, arranged in clusters (2 < cells number <10)
ASC_H_S (C8) ASCUS, ASCH, HSIL, SCC  Squamous Single atypical squamous cell with high nuclear/
intraepithelial lesion cytoplasmic ratio
SCC_R (C9) SCC Squamous Keratinizing squamous cell carcinoma cells
intraepithelial lesion
SCC_G (C10) SCC Squamous Non-Keratinizing squamous carcinoma cells
intraepithelial lesion
MC (C11) NIL Normal Superficial squamous epithelium
SC (C12) NIL Normal Single normal cell with high nuclear/cytoplasmic ratio
(Including parabasal cells, lymphocyte cells, and reserve
cells etc.)
RC (C13) NIL Normal Repair and metaplasia cells
GEC (C14) NIL Normal Glandular epithelial cells of cervical tube
EMC (C15) EMC EMC Endometrial cells
TRI (C16) TRI Infectious lesion Trichomonas vaginalis
CAN (C17) CAN Infectious lesion Candida albicans
HSV (C18) HSV Infectious lesion Herpes simplex virus
ACTINO (C19) ACTINO Infectious lesion Actinomycetes
CC (C20) CcC Infectious lesion Clue cells
PH (C21) NIL Evidence of infectious lesion Perinuclear halo
Neutrophils (C22) NIL Normal Neutrophils
Mucus (C23) NIL Normal Mucus
Debris (C24) NIL Normal Debris

Faster R-CNN*%3, SSD513%%, and RetinaNet*’, as shown in
Supplementary Table 02. However, the YOLOv3’s efficiency was
2.5-4x higher than others and it was therefore selected to build
our single-class detection model. To reduce the labeling burden of
cytologists and achieve rapid training data annotation, we used
the single-class YOLOv3 model for semi-supervised labeling#® as
mentioned in the Methods, Fig. 2b-f. In total, we annotated 1.7
million different annotations as a training dataset for our Al
learning, as shown in Fig. 2g. We can see that the distribution of
different classes is highly unbalanced. For example, AGC_B (C2)
and EMC (C15) are still rare cases in our large database.

Deep learning models can extract high quality features from
the training dataset. After annotation as mentioned above, we
trained a multi-class YOLOv3 model to detect intraepithelial
lesions, infectious lesions and endometrial cells as detailed in the
Methods. The mean Average Precision (mAP) of YOLOv3 model
reached 82.33% precision in Fig. 3a, and its detection accuracies
of different classes are shown in Fig. 3b. We observed that the
accuracy of different classes has some variation. In order to solve
such variation and improve the overall performance, we trained
an Xception model?’ for fine-grained classification with all
annotated and classified images. This model achieved precision of
96.30% and recall of 96.80% as shown in Fig. 3c. We will use these
two models to detect and classify targets and extract the

classification and probability information of the target output for
further processing.

The targets detected by the YOLOv3 model were reclassified by
the Xception model, however there were often false positives that
reduced the system performance. Thus, it was important to
further reduce the falsely detected targets. We trained the Patch
model*8 to classify the 608*608 pixel area (including the target
and its surrounding neighborhood). The results shows that the
Patch model achieved validation accuracy of 91.92% as shown in
Fig. 3d. After the probabilities of true and false Patch
classification corresponding to the output targets were analyzed,
the patch model could identify the false positives as shown in
Supplementary Fig. 1a.

In cytopathological diagnosis, it is crucial to characterize cell
nuclei morphology. To address this, SC, ASC_L_S and ASC_H_S
data were merged, and a U-Net* algorithm was used to train the
nucleus segmentation model. The representative segmentations
were shown in Fig. 3e, and the mean Intersection Over Union
(mIOU) reached 83.60% as in Supplementary Table 03. For
prediction, we input the SC, ASC_L_S, and ASC_H_S classified
from the Xception model into the cell nucleus segmentation
model. The segmented nuclei are shown in Supplementary
Fig. 1b, and the gray value of cell nuclei was calculated.

XGBoost model and logical decision trees can predict TBS
classification with high sensitivity and specificity. In practice,
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the TBS classifications are not uniform; for example, HSV and
EMC are rare, while ASCUS, LSIL, and HSIL are common.
Furthermore, the distribution of common intraepithelial lesions is
not balanced as they are often associated with infectious lesions.
Therefore, to achieve the final classification of smear according to
the TBS diagnostic criteria, we delineated the common squamous
intraepithelial lesions including ASCUS, LSIL, ASCH, HSIL, and
SCC from other lesions and formulated the interpretation strat-
egy separately.

We applied an XGBoost model®® to distinguish between
positive and negative squamous intraepithelial lesions as shown
in Fig. 4a-d. We selected 121 features as shown in Supplementary
Table 04, and they were the key to achieve efficient model
recognition and differentiation. The selected features were input
into the XGBoost model for further training. By testing the
effectiveness of permutation and combination of DL models, we
found that the AUC increased with the number of models and
reached a maximum after all four models were combined, as
shown in Supplementary Fig. 2a.

Then, we counted the number of splits of each feature in each
tree, and after normalization, we obtained feature importance
distribution histograms (Supplementary Fig. 2b). This result
showed that the importance of the feature was related to the
pathological characteristics of the lesion. For example, X-L13 and

X-SCC4 were the top two features in ratio of importance. The
corresponding lesions expressing these features most highly,
Koilocyte and keratinizing Squamous Cell Carcinoma, are two
lesions with extremely obvious characteristics in cervical cytology.
This feature importance study will be helpful to provide feedback
to the cytopathologists and enhance their performance. The
results of tenfold cross-validation of the models showed that the
average sensitivity of the training samples was 83.96%, the
specificity was 94.64% (Supplementary Table 05), and the average
AUC obtained from tenfold cross-validation reached 96.73%
(Supplementary Fig. 2c).

To increase the sensitivity of the AIATBS system for the
application of screening, we fine-tuned the model, reduced the
specificity to a certain extent, and applied the ten models of the
given tenfold cross-validation to predict the classification of the
training samples. The threshold for determining a digital smear as
a positive sample was the requirement that one or more of the ten
models predicted that a given sample was positive. Finally, the
sensitivity of the XGBoost model in the existing training set
reached 100.00%, i.e., without missing any true positives, and the
specificity was marginally reduced to 93.20% as shown in
Supplementary Table 06.

With the previous XGBoost model, we could only predict the
general cytopathological types such as squamous intraepithelial
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lesions but not distinguish the classes required for the TBS
diagnosis. To address this, we next excluded the negative
classifications and classified positives into ASCUS, LSIL, ASCH,
HSIL, and SCC. We then trained another XGBoost model to
further classify squamous intraepithelial lesions into the subtypes
required for TBS classification by using existing features as shown
in Fig. 4e. We performed tenfold cross-validation (Supplementary
Table 07) and refined the model with the highest accuracy of
80.43% as the TBS classification model for squamous intrae-
pithelial lesions.

Infectious lesions, glandular intraepithelial lesions and endo-
metrial cells have distinctive pathomorphological characteristics,
so limited features are sufficient to achieve the required
performance for classification. Therefore, we extracted the
features from the YOLOv3 and Xception models (Fig. 4a, b)
and used logical decision trees to make a final decision as shown
in Fig. 4f and Supplementary Table 08. Because of the small
number of samples containing glandular intraepithelial lesions
combined with clinical treatment needs, we combined AGC_FN,
AIS, and ADC into one class for prediction. We found that logical
decision trees could clearly distinguish infectious diseases and
severe intraepithelial lesions from negative samples as shown in
Supplementary Table 09.

Overall, the results showed that by comprehensive application
of DL and ML models, we could finally predict TBS diagnostic
classification for WSIs of cervical liquid-based thin-layer smears.

Al-based Digital Pathology Image Quality Control system is an
important part of AIATBS. Similar to the quality requirements
of the TBS standard for smear samples, the quality of digitized
image is crucial for AI model development. Al solutions may
generalize to account for potential quality issues; however, such
capability is not unlimited. The quality of smear samples depends
on multiple links such as cervical exfoliated cell collection, sample
preservation, smear production and dyeing. Obviously, for Al
solutions, in addition to the above influencing factors, quality
control in the smear digitization process is equally important.

To solve this problem, we designed and integrated an AI-based
Digital Pathology Image Quality Control (DPIQC) system based
on the XGboost model in our diagnostic platform as described in
the “Methods” (Fig. 5). The average validation-set accuracy of our
DPIQC system was 99.11%, and the detailed training and
validation results are shown in Supplementary Tables 10, 11.

So far, after we successfully developed the DPIQC system, our
AISTBS system includes the following for AI models: (I) YOLOv3
detection model, (II) Xception classification model, (III) Patch area
classification model, (IV) Nucleus Segmentation model, (V)
XGBoost model and Logical Decision Trees, and (VI) DPIQC
system. Different models play their role and were integrated into the
AIATBS system to achieve accurate TBS classification and quality
control of digital smears. The strategic integration of multiple
learning models is described in the Methods, and the flowchart of
our AIATBS system platform is shown in Supplementary Fig. 3.

AIATBS system permits accurate and rapid TBS classification.
After the training and optimization of our AIATBS system, we were
ready to conduct a clinical trial including 11 medical institutions in
China. As image quality control was a key step before clinical
annotation and training, ~9.6% of samples were unqualified and
rejected by using the DPIQC system. It is worth noting that 89.11%
of these unsatisfactory smears excluded by the DPIQC system were
also excluded by the senior cytologists (Supplementary Table 12).
We then collected a total of 34,403 prospective cervical liquid-based
cytology smears accepted by the DPIQC system for verification. The
smear preparation methods again included natural, membrane and

centrifugal sedimentation, and the staining schemes included both
EA-36 and EA-50 (Fig. 1b).

Based on the final TBS classification results as shown in Fig. 1d
(diagnostic confirmation standard was given in the Methods), we
analyzed the sensitivity and specificity of the AIATBS system in
samples of different sample preparation, staining schemes, and
digital scanning. The statistical analysis indicated that the ATATBS
system had good sensitivity and specificity in smear sample sets of
different sample preparations (sensitivity: p = 0.4108, specificity: p
=0.5773) (Fig. 6a), different staining schemes (sensitivity: p =
0.3268, specificity: p = 0.2442) (Fig. 6b), and two different scanners
(sensitivity: p=0.0148, specificity: p=0.0839) (Fig. 6c). These
results suggested the sensitivity and specificity of the AIATBS
system were related to the type of scanners.

To evaluate the performance of the system, we adjusted the
statistical classification according to the clinical treatment
principles of cervical precancerous lesions. We combined LSIL,
ASCH, HSIL, and SCC in the classification of squamous
intraepithelial lesions and analyzed the glandular intraepithelial
lesions according to the classification of the ATATBS system. Our
data showed that the sensitivity of the model for detecting
intraepithelial lesions and other lesions (including infectious
lesions and EMC) was 92.00% and 83.00%, respectively, and the
overall specificity was 82.14% (Supplementary Table 13), where
the false negative and false positive samples were mainly in
ASCUS. Meanwhile, we found that the sensitivity and overall
specificity of the AIATBS system in medical institutions that
previously provided retrospective samples were slightly higher
than those in medical institutions that did not provide retro-
spective samples, however without statistically significant differ-
ence (sensitivity of intraepithelial lesions: p = 0.2751, sensitivity
of other lesions: p=0.2616, overall specificity: p=0.2398)
(Supplementary Table 14). The accuracy of the XGBoost model
in predicting the corresponding TBS classification of squamous
intraepithelial lesions was 74.15% (Supplementary Table 15).

The average computational time for diagnosis of natural,
membrane and centrifugal sedimentation was 66.27 s, 171.8 s,
and 85.30s, respectively (p <0.001) (Supplementary Table 16).
The natural sediment has the shortest diagnosis time. For the
devices, the average time for diagnosis of each sample scanned by
scanners 1 and 2 were 89.30 s and 107.20 s, respectively, (p <
0.001). If we fix the scanner type (Scanner 1) and smear
preparation (natural sedimentation), the average diagnosis time
for each sample stained by EA-36 and EA-50 protocol were
67.25 s and 68.69s, respectively, (p=0.0657), as shown in
(Supplementary Table 16). The possible factors which may
impact the computational time of AIATBS are the sediment
method and the scanner, but not the staining solution.

We conducted statistics on the manual diagnosis of senior
Cytologists in six medical institutions (indicated by “Medical
institutions a—-f” in Fig. 6d), and compared them with the results
of the ATATBS system. The results showed that the sensitivity of
senior Cytologists to manually detect intraepithelial lesions and
other lesions (including infectious lesions and endometrial cells)
was 86.12% and 76.33%, respectively, which were lower than the
90.75% and 84.23% of the AIATBS system (p=0.0435, p=
0.0254), and their specificity was 90.18%, which was higher than
the 81.93% of the AIATBS system (p=0.0131) as shown in
Fig. 6d. The senior Cytologists’ accuracy (true positive rate) of
TBS classification for squamous intraepithelial lesions was 80.16%
(Supplementary Table 17), while the accuracy of the AIATBS
system was 75.24% (p = 0.0984) (Supplementary Table 18). The
main reason for the low accuracy of the AIATBS system is that
HSIL and ASCH are not easy to distinguish. SCC is easily
misjudged as HSIL, but this variation has no effect on the
subsequent clinical treatment and is acceptable in clinical
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Medical Institution Biopsies number

Table 2 The sensitivity of AIATBS system in cervical histological biopsy diagnosis.

Positive sample number

AIATBS missed sample number AIATBS sensitivity

| 180 145
Il 382 298
I 418 394
Total 980 837

8 0.944827586
17 0.94295302
19 0.95177665
44 0.947431302

practice. In our prospective database, we obtained 980 cervical
liquid-based cytology smears with corresponding pathological
biopsy diagnosis results (which serve as ground truth) from three
large medical institutions and compared these results with the
ATATBS-based cytology diagnoses of smear samples. Through
calculation, we found that the sensitivity of AIATBS system for
cervical intraepithelial lesions was 94.74% as in Table 2.

Overall, the sensitivity of our system was higher than that of
senior Cytologists while still maintaining high specificity. These
results shows that the AIATBS system is able to improve the
screening diagnostic quality of cervical liquid-based thin-layer cell
smears in clinical practice and reduce the Cytologists’ workload.

Discussion

In the past few decades, the mortality rate of CC in many
countries has been on an overall downward trend®!->2, which is
largely due to development of CC examination methods including
the Pap smear, colposcopy, and human papilloma virus (HPV)
screening. The Pap smear®? is the most frequently employed
method, but it yields a high false negative rate for CC screening.
The liquid-based Pap tests have been suggested as alternative
cervical screening methods>*. Various preparations of cervical
liquid-based thin-layer cell smears have greatly reduced the
false negative rate of CC screening and have laid a solid foun-
dation for early diagnosis and treatment. In China, there is an
extreme shortage of cytologists, and the workload of CC
screening is huge. Cytologists need to spend a long time looking
for various lesions from thousands of cells in each smear, a
process prone to missed diagnoses. The AIATBS system is
developed to reduce their workload, improve the accuracy of
diagnosis and solve these unmet needs.

Cervical cytology is the most researched direction in the field of
pathology, involving many researches such as image recognition,
classification, and cell nucleus segmentation?”2. Our system inte-
grates multiple DL models, other ML models and a logical decision
tree to achieve digital cervical liquid-based smear detection, classi-
fication and nucleus segmentation tasks to reasonably formulate a
TBS diagnosis decision based on WSIL At present, the intelligent
screening systems for regional detection of cervical liquid-based
cytology smears31:33 implement risk stratification management of
cervical lesions, which makes it possible to control the diagnostic
quality. However, these solutions mainly focus on cervical intrae-
pithelial lesions and cannot classify and grade the lesions, and they
ignore infectious lesions and thus cannot perform auxiliary diag-
nostics strictly according to the TBS standard in clinical screening,
We compiled a large dataset, collecting >81,000 retrospective cer-
vical liquid-based thin-layer smears prepared according to a range
of standards and staining protocols from multiple centers and
annotated the smear strictly according to the requirements of the
TBS criteria. It is one of the largest and most comprehensive studies
of Al-based cervical liquid-based cytology smear diagnosis. We
have developed the ATATBS system and performed extensive ver-
ification experiments to validate its performance in prospective
clinical decision-making. The effects of these results are extensive:
(I) we classified the lesions in more detail according to their mor-
phology, significantly improved the accuracy of detection and

classification and provided a nucleus segmentation model for
accurate quantification of cell nuclei, (II) we used an efficient semi-
supervised tagging model, which not only ensures the accuracy of
data but also rapidly expands the amount of data (III) by integrating
the multiple DL models in AIATBS, it extracts different levels of
features to complement each other, effectively quantifies the clas-
sification objectives, and provides accurate parameters for the
construction of a strongly generalized model to predict the TBS
classification and diagnosis of the whole digital smear (IV) the ML
and logical decision tree, based on the diagnostic experience of
cytopathologists, can truly achieve TBS classifications of cervical
liquid-based cytology smears, and (V) We also developed the AI-
based DPIQC system to perform good quality control in the pre-
paration, staining and scanning stages of cervical liquid-based
cytology smears. The above five strategies allowed us to develop and
train our AIATBS for cervical liquid-based thin-layer cytology,
which can be extended to pathological practice for prospective data
and integrated into the clinical workflow of CC screening.

In the clinical prospective validation, AITBS system showed the
characteristics of high speed (<180 s/smear), high sensitivity
(intraepithelial lesions >92.00%, other lesions a 83.00%) and high
specificity (82.14%), while also showing excellent generalization
performance for all kinds of smears and staining protocols. In
particular, it is worth noting that AITBS shows a higher sensitivity
than senior cytologists in prospective studies. The follow-up results
of cervical histological biopsy also showed 94.74% sensitivity, which
lays a solid foundation for the clinical application of the system.

However, we also found some problems that are worth noting.
First of all, most of the false negative and false positive cases were
ASCUS (Supplementary Table 13), suggesting that similar to a
cytopathologist’s diagnosis, the model also has lower accuracy for
this challenging category (<90%), so it is necessary to accumulate
more training data and correct those errors through HPV
detection and histological biopsy. Secondly, the system had some
difficulty detecting cervical glandular epithelial atypical hyper-
plasia and adenocarcinoma. The reasons may be the lack of
training data for glandular epithelial lesions, poor smear pre-
paration, staining and scanning. The solution to these problems
lies in the accumulation of more training data and strict quality
control of smear preparation, staining and scanning.

Finally, the developed AIATBS system is strictly based on the
requirements of the TBS standard to pre-test the whole smear and
shows strong predictive capability. It is expected to effectively assist
most of the screening work of senior cytologists, thus greatly
reducing the work burden of senior cytologists and cytotechnolo-
gists, with broad application prospects for assistive diagnosis.

Materials and methods

Ethical approval. The retrospective and prospective studies were approved by the
Medical Ethics Committee of Nanfang Hospital of Southern Medical University
(Ref. No. NFEC-2019-241). The informed consents were waived by the Medical
Ethics Committee since the samples were irreversible anonymised.

Smear sample digitization and establishment of TBS classification diagnosis.
All smears were scanned with 0.25 um/pixel resolution using two different scanners
(Scanner 1: linear scanning and single layer; Scanner 2: area array camera scanning
and single layer). For the retrospective study, the positive (including intraepithelial
lesions, infectious lesions, and EMC) smears were reviewed by three
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cytopathologists who diagnosed according to the TBS standard. For intraepithelial
lesion smear, they first referred to the histological diagnosis of the cervical biopsy
corresponding to the smear. For smears that had no histological results or

false negative histological results which might be caused by irregular cervical
biopsies, the unanimous diagnosis of the three cytopathologists prevailed. For
smears that could not reach a unanimous diagnosis, the positive diagnosis with the
highest lesion grade prevailed. To avoid the more challenging case of false negatives
from subtle pathologies, the negative (NILM) smears were reviewed by senior
cytologists. Negative smears were evenly distributed to 20 senior cytologists for
reexamination, and three cytopathologists randomly checked 10% to ensure that
there were no positive cases in negative smears.

Multicenter retrospective smears annotation. Based on the TBS diagnostic
criteria, the WSI of the digital smears with 24 different classifications (as shown in
Fig. 2a) were manually annotated by 20 senior Cytologists using the annotation
software known as Automated Slide Analysis Platform (ASAP)1.8 (Supplementary
Fig. 4a), an open-source platform for visualizing, annotating, and automatically
analyzing whole-slide histopathology images.

The annotation was carried out along the boundary of each lesion area, with the
width and height of the image on either side having no more than 608 pixels. An
annotation file was then generated and recorded. It contained the necessary
structured information for the following AI learning, such as the category
information and a rectangular Region of Interest (ROI) image, which was a
rectangular region defined by the coordinates in the scanned images. If the width or
height of any image exceeded 608 pixels, the senior cytologists decomposed the
image in to several small images according to the morphological structure of the
lesion area such that the width or height of the decomposed images were within the
given range (Supplementary Fig. 4b).

In order to accelerate the data annotation, a pretrained single-class YOLOv3
model, known for its accuracy and efficiency, was created based on the above
manually annotated data as shown in Fig. 2b, c. The pretrained model detected the
lesion classifications and generated rectangular ROIs for the following
semiautomated annotation and Al learning. Afterward, senior cytologists further
assessed the detected images and eliminated any non-targeted ROIs (Fig. 2d).

Finally, patch files comprising 608 x 608 pixels were generated from the smears
for each ROI obtained from one-class YOLOv3 models. Used labeling software to
calibrate the incorrect ROI of each image (Supplementary Fig. 4c and Fig. 2e), the
cropped patch images for each ROI were annotated into different defined
categories containing relevant information (Supplementary Fig. 4d). The cropped
patch files were saved, and the annotation dataset was reviewed and confirmed
again by cytopathologists (Fig. 2f).

Deep learning models for target detection, fine-grained classification, patch
classification, and nucleus segmentation. After annotation and verification by
the cytopathologists, we combined our training dataset with SC and PH except
GEC, MC, RC, Neutrophils, Mucus and Debris classification, and merged similar
classifications to one class in pathomorphology such as C1 and C2, C4 and C5, and
C6-C10. Next, 1216 x 1216 pixel ROIs were created, each large enough to include
neighborhood information, according to the coordinate position and then uni-
formly resized to 608 x 608 pixels. The target detection training was organized
based on the Darknet53 framework, and a YOLOV3 detection model were
obtained. The training process was iterated for 450,000 epochs until the mAP of the
test set no longer improved (Fig. 3a).

The annotated images of 24 annotated classifications were normalized to 299 x
299 pixels by using bilinear interpolation. Then Xception classification model was
applied for the classification training. A total of 18 epochs were iterated until the
accuracy of the verification set could no longer improve. The images from each
different classification detected by YOLOv3 were input into the Xception model to
extract refined features for classification.

ASC_L_S, KC and ASC_L_F in the annotated data with classification of
squamous intraepithelial lesions were merged as True_LSIL. ASC_H_B,
ASC_H_M, ASC_H_S, and SCC_G were merged as True_HSIL. The
corresponding False LSIL and False HSIL classification data were composed of false
targets corresponding to the Xception classification detected by the YOLOv3 model
from the negative smears. We used this data to train the Patch classification model.
The training data was organized using ROIs of 608 x 608 pixels with information
around the targets for the feature selection. The ROIs were convoluted by the two-
dimensional Gaussian kernel using DenseNet-50. The output were the selected
features designed for the positive and negative decision, such as True_HSIL,
False_HSIL, True_LSIL, and False_LSIL. We applied iterative training based on the
cross-entropy loss function until the loss of the testing set no longer decreased. The
model with the highest accuracy in the tenfold cross-validation training was
selected as the final prediction model. When the model predicted the target, we
used the Sigmoid function [o(z;) = T3] to output the probability value of the
corresponding classification, thereby mapping the value of the classification
probability to [0-1].

The training data for a nucleus segmentation model was composed of images
annotated and classified as SC, ASC_L_S and ASC_H_S. The quantity ratio of each
type of image was roughly 1:1:1. 80% of the dataset was used for training and 20%
for validation. The augmentation data was performed by rotating, exchanging color

channels, adjusting brightness, contrast and increasing the noise, etc. The nucleus
segmentation model was trained using a U-Net algorithm. Dilated convolution was
used for the convolution kernel. Deconvolution was used for up sampling, and the
loss function was Dice loss + cross-entropy loss>. After 50 epochs of training
iteration for the validation set, mIOU no longer improved, and the training was
terminated. The highest mIOU model from fivefold cross-validation was selected
for the final segmentation. After the cell nuclei of targets were segmented by the
model, the target images were converted to grayscale, and the gray value of the cell
nuclei were calculated (Supplementary Fig. 1b).

In order to build and train the above DL models, all the code was written in
Python (3.6). We used Open Slide(0.4.0), a C library that provided a simple
interface, to read whole-slide images. TensorFlow (1.13.1) and Mxnet (1.5.1) were
used to train DL models and do network inferrence.

Machine learning model training and logic decision tree. According to the
optimized features and output of the above DL models, the feature selection was
mainly based on the cytopathologist’s diagnostic experience according to the TBS
standard, i.e., features known to be defining based on clinical experience, while
other features were selected according to simple logistic regression, i.e., algorithm
features. The 121 features obtained from the YOLOvV3 detection model (Fig. 4a),
Xception classification model (Fig. 4b), Patch classification model (Fig. 4c), and
nucleus segmentation model (Fig. 4d) were input into an XGBoost model for
diagnostic model training. Prediction results of positive and negative squamous
intraepithelial lesions were reached. Next, the positive results were further classified
by a simple XGBoost model for squamous intraepithelial lesions TBS classification
as shown in Fig. 4e.

The features of infectious lesions, endometrial cells and glandular intraepithelial
lesions were collected from the YOLOv3 and Xception models (Fig. 4a, b). First, we
used a shallow decision tree to preliminarily define the above classifications to
obtain thresholds with high sensitivity and specificity, and then according to the
distribution of feature values of each classification in the training set, the
cytopathologist supplementally delineated some thresholds to predict above
classifications based on the TBS criteria, so that the logic decision tree strategy of
the TBS classification diagnosis could reach the highest sensitivity and specificity as
much as possible (Fig. 4f and Supplementary Table 08).

The final TBS classification diagnosis of cervical liquid-based thin-layer cell
smear was obtained by combining the XGBoost model with the logical decision
tree, i.e., final diagnostic decisions, as shown in Supplementary Fig. 3.

Strategic integration of multiple learning models in the AIATBS system. In
our research, the most important task in the construction of multiple DL models is
to provide accurate parameters for the ML and logical decision tree diagnosis
model to predict the TBS classification of the whole smear. In the training data, this
purpose is achieved by extracting complementary training of different levels of
features, monitoring training, and verifying the loss and accuracy of the data. The
YOLOVS3 target detection model is used to detect lesion targets, and the annotated
categories with relatively consistent pathological morphology are merged, so that
YOLOV3 can learn the commonness of different types of morphology and improve
the efficiency of detection. The classification probability obtained by YOLOv3 was
affected by the target background, target size and noise around the target. We used
a further accurate classification of the detected target to extract high-precision
target features. Next, we input the detected targets into Xception?’, which is more
efficient than Inception V3, for fine feature extraction, and classification. Since
there are still a large number of false targets detected by YOLOv3 model after the
Xception model classification, we used the Patch model to further identify squa-
mous intraepithelial lesions in CC screening. The Patch recognition module selects
the Densenet model with deeper layers, which can effectively express the

deeper semantic features of the image. This approach not only retained more
morphological and dimensional information of cells*$%, but also introduced a
Gaussian distribution highlighting the target cell area from its surrounding area,
enabling the network to focus on a small-dimensional target region and extract
features effectively. In addition, nuclear enlargement is the most important marker
of cervical intraepithelial lesions. Indeed, DNA ploidy technology used to screen
cervical precancerous lesions and make an auxiliary diagnosis is based on this
cellular feature®’. In order to obtain the parameters of the size of the squamous cell
nucleus, we use the U-net network>®>° which is widely used in medical image
segmentation, to segment the target nucleus and calculate the gray value. The
training results show that the quantitative parameters of the segmented nuclei
constitute an important part of the parameters of the XGboost model for classi-
fying squamous intraepithelial lesions. ATATBS integrates several DL models and
still can quickly achieve target detection and classification mainly because YOLOV3
directly predicts the target location and classification information, accelerating
detection speed over that of Faster R-CNN and RetinaNet*3-4°, Similarly, Xception
can also accelerate the prediction speed through batch prediction.

One of the main challenges of DL is over-fitting, because over-fitting models
cannot be extended to unseen data. We used the XGBoost model (squamous
intraepithelial lesions) and logical decision tree (infectious lesions, glandular
epithelial lesions and endometrial cells) to integrate the parameters extracted from
multiple DL models to predict the TBS classification of cervical liquid-based thin-
layer cell smears so as to simulate the process of TBS reports made by
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cytopathologists after observing various lesions. The XGBoost model employed a
random forest for reference, took into account the probable situation of sparse
training data, and specified the default direction of branches for missing values or
specified values, which can be lower than fitting>. It could solve the problem of
poor generalization caused by the inconsistent characteristics of various types of
lesions. The training results showed that the model could accurately predict the
squamous intraepithelial lesions and make a relatively correct TBS classification for
diagnosis. For certain TBS classifications that are represented by a small number of
cases and typical morphology, clinical judgment by cytopathologists according to
diagnostic experience was needed to avoid false negatives. Of course, the best way
to reduce over-fitting is to get more training data, and we continue to collect more
clinical data to optimize the system.

Digital pathology image quality control (DPIQC) system. We scanned the
smears (including preparation of natural sedimentation, membrane sedimentation
and centrifugal sedimentation) with 0.25 um/pixel resolution digital pathology WSI
scanners (Fig. 5a) and segmented the digitized images into 6000 x 6000 pixel
images (Fig. 5b). The training data for DPIQC system, which contains both
satisfying/unsatisfying images, was therefore carefully selected and confirmed by
three cytopathologists together. Then, we used the Laplacian operator to convolve
the block and calculate its gradient to evaluate the images focus. The images were
transformed into hue, intensity and saturation (HIS) space, features of the images
were extracted from various dimensions, and feature histograms were calculated to
generate input for contrast evaluation. In order to evaluate whether the given large
image contained enough cell quantity for diagnosis, we implemented a cell
counting module to roughly evaluate the number of cells in the entire large image.
The specific method was to use the Otsu threshold segmentation method to
separate cell and non-cell regions and then calculate the ratio of the cell area to the
entire image as an evaluation indicator. We extracted the above features from
qualified and unqualified images (Fig. 5¢) and input the features into the XGBoost
model to build the DPIQC system (Fig. 5d).

Multicenter prospective study for AIATBS system. Senior cytologists assessed
the smears according to the clinical diagnosis protocol, and the automatic analysis
was carried out using our developed online AIATBS or local server (server hard-
ware configuration given in Supplementary Table 19). The experiments were
double-blind for both the senior cytologists and the AIATBS system. The diag-
nostic results obtained manually by senior cytologists, the classification results of
our AIATBS and the time taken were recorded. The performance, including
diagnostic efficiency and effectiveness of AIATBS and senior cytologists, was
evaluated. The protocol of determining the final diagnosis was the same as the
retrospective study as described above. As the classification of squamous intrae-
pithelial lesions and intraglandular lesions is prone to error in cytopathological
diagnosis, but this error does not affect clinical treatment; as long as the AIATBS
system predicted squamous epithelium lesions or glandular epithelium lesions as
intraepithelial lesions in the TBS classification, we did not consider the error of this
classification in sensitivity analysis. In addition, ~1.2% of smears with two or more
lesions were classified as a single lesion according to the priority of the clinical
treatment required for the lesion.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

In this work, we presented a hybrid Al-assistive diagnostic model for TBS classification of
cervical liquid-based thin-layer cell smears. This paper was produced using no publicly
available image data as it is constrained by personal information protection, patient
privacy regulation, and medical institutional data regulatory policies, etc. The size of our
research data is also too huge to be properly stored in public repositories. However, the
authors have made every effort to make the available of these resources publicly available
such as the source code, software methods and the supporting information to reproduce
technical pipeline, analyses, and results. All data supporting the finding of this work are
available unconditionally for accredited scientific researchers for the purpose of
reproducing the results and/or further academic and AI related research activities from
the primary corresponding author dyqgz@126.com upon request within 10

working days.

Code availability

The source code for training the models mentioned in this work is available at
https://gigantum.com/louguei/ncomms, or obtained by sending a request to the primary
corresponding author (Prof. Y.D., dyqgz@126.com).
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