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Intensity and Stationarity Analysis 
of Land Use Change Based on CART 
Algorithm
Xiao Sang   1, Qiaozhen Guo1, Xiaoxu Wu2, Ying Fu1, Tongyao Xie1, Chengwei He1 & 
Jinlong Zang1

Land use directly reflects degree of human development and utilization of land. Intensity analysis 
of land use is a quantitative method to analyze land use changes. In this paper, land use changes 
in Tianjin were studied using Thematic Mapper (TM) remote sensing images in 1995, 2000, 2005, 
2010 and Operational Land Imager (OLI) remote sensing image in 2015. Land use information was 
extracted using decision tree classification method based on CART (Classification and Regression 
Trees) algorithm. This paper introduced land use intensity analysis to analyze its change intensity and 
stationarity, respectively at interval, category and transition levels. Based on the theory, new models 
were developed in the transition level to analyze land use change pattern. The analysis quantifies the 
contribution of a certain land categories to land use change during a specific time interval. The change 
of land use during 1995–2015 indicated that Tianjin experienced rapid urban development with the area 
of urban land increased by about 7.5%. This study provided a reference for the sustainable development 
of land use in Tianjin.

Land use intuitively records surface features which are changed by human activities to satisfy the needs for natu-
ral resources. Land use change has a major impact on environmental problems such as land degradation, global 
climate change and biodiversity by urban expansion, forest overexploitation, and agricultural intensification1–4. 
Studies in this field improve the understanding of local development and provide a basis for sustainable develop-
ment planning.

The common data used in land use change analysis include Landsat image5–9, MODIS image10–16, high-resolution 
remote sensing images with meter grade17–19, radar image20–23, and some other data like satellite scatterometer 
data and thematic data24–26. Research on land use could help us to optimize land development and utilization. In 
land use research, many methods have been proposed to improve accuracy of land use classification27–32. CART 
(Classification and Regression Trees) algorithm is one of the decision tree classification algorithms widely used in 
land use classification33,34. CART algorithm constructs a binary tree using a randomly selected sample of remote 
sensing, and then uses the tested sample to prune. Though many machine learning algorithms have been applied like 
SVM (Support Vector Machine)35,36 and RF (Random Forest)37,38, one study pointed out that advanced classification 
algorithms may not always have advantages when they were applied to proceed multispectral image data39.

In terms of land use change analysis, some studies focused on the characteristics of land use change without sys-
tematic analysis, like the impact of conservation status and ownership on land use and land cover change (LULC)40. 
Since the concept of intensity analysis was put forward41, it becomes an important research aspect in land use change. 
Pontius et al.42 pointed out problems that can be solved using intensity analysis in the field of land use research. Some 
research analyzed land use change using intensity analysis in many study areas, like southern coastal areas of China43, 
and Parnitha and Penteli in Greece44. Intensity analysis has a top-down hierarchy at interval, category and transition 
levels and a layered progressive system that demonstrates the process of land use change. At the same time, the intensity 
analysis evaluates the process of land use change by setting the stability. Stable land use conversion may not necessarily 
lead to sustainable development, but it provides an important basis for sustainable development. When the stable devel-
opment of a certain land use has a favorable effect on the surrounding or internal factors, this state can be continued in 
a short time in the future, but it needs to be within the carrying capacity of the environment; if it adversely affects the 
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environment or internal factors, it should delay or even hinder its development through appropriate measures, leaving 
a space for development of favorable land use transformation. Even though the intensity analysis can be used to analyze 
land use more systematically, it could not completely reflect its change. In this paper, new models were developed to 
quantify the contribution of land categories to land use change, and taking Tianjin as the study area we analyzed land 
use change during 1995–2015 based on the intensity analysis to provide reference for urban sustainable development 
for Tianjin.

Results
Land use classification accuracy of Tianjin was listed in Tables 1 and 2. The relationship between kappa coefficient 
and classification quality was shown in Table 3 45. Land use classification maps of five years were shown in Fig. 1. 
According to Tables 1–3 and Fig. 1, classification results meet accuracy requirement of the data.

The total area of Tianjin was estimated 11,511.02 km2. Table 4 showed area size of each land category and their 
proportion in 1995, 2000, 2005, 2010 and 2015 respectively. Generally, agricultural land was the main land use 
category, followed by water and urban land; area of these three land categories accounted for about 95% of the 
total area in Tianjin. During the study period, the categories with the greatest change were urban and agricultural 
land with 7.5% increase and 7.5% decrease, respectively. And water area decreased about 1.35%, other land area 
increased about 1.09%, forest had a slight increase in area. Throughout the study period, the area of urban land 
continued to increase and the area of agricultural land continued to decrease. The area of water changes to forest 
and other land was fluctuating. The main transition was from agricultural land to urban land and which indirectly 
indicated that Tianjin experienced rapid urban development.

Land use intensity analysis at interval level.  From 1995 to 2000 (Fig. 2), annual land use change inten-
sity of 4.17% was greater than the uniform intensity (3.70%), which indicated that land use change was fast during 
this period. But from 2000 to 2005, from 2005 to 2010 and from 2010 to 2015, annual land use change intensity 
were respectively 3.63%, 3.40% and 3.62%, all of which were smaller than the average value; this indicated land 
use change was slow during the three periods. In 1994, State Department of China issued Decision of the State 
Council on Deepening the Reform of Urban Housing System (National issued [1994] Num.43)46 and then Tianjin 
government approved Deepening the Housing System Reform Program Implementation Details in Tianjin47 that 
carried out on March 15, 1995. So with the implementation of these policies, the dramatic change of land use took 
place from 1995 to 2000.

Year Water Forest Urban Land Agricultural Land Other Land

1995
Producers/% 95.74 90.91 92.31 96.61 25.00

Users/% 93.75 100.00 92.31 95.15 100.00

2000
Producers/% 91.30 100.00 96.88 98.73 71.43

Users/% 97.67 100.00 100.00 95.68 83.33

2005
Producers/% 87.18 100.00 94.12 98.75 75.00

Users/% 100.00 100.00 94.12 95.18 100.00

2010
Producers/% 80.65 87.50 75.00 97.74 57.14

Users/% 96.15 100.00 90.91 84.97 80.00

2015
Producers/% 72.22 85.71 87.04 97.83 100.00

Users/% 96.30 100.00 94.00 88.82 88.89

Table 1.  Land use classification accuracy of Tianjin respectively for producers and users.

Classification accuracy 1995 2000 2005 2010 2015

Overall Classification Accuracy/% 94.80 96.40 96.00 88.40 91.20

Kappa Coefficient 0.90 0.93 0.92 0.81 0.85

Table 2.  Land use classification accuracy of Tianjin.

Kappa Coefficient Classification quality

<0.00 very poor

0.00~0.20 poor

0.20~0.40 general

0.40~0.60 good

0.60~0.80 great

0.80~1.00 excellent

Table 3.  Kappa Coefficient statistics and classification quality.
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Land use intensity analysis at category level.  According to land use intensity change of Tianjin at cate-
gory level (Fig. 3), the most active change was observed for other land. Area of other land occupied less than 3% of 
total area of Tianjin. Expansion of the city affected change of other land. The change intensity of water was active 
due to utilization of water area. The change intensity of urban land was also greater than the average intensity. 
Over the past 20 years, rapid economic development had attracted a large number of immigrant people to Tianjin; 
and under influence of national policy and planning, area of urban land showed an increasing trend. Agricultural 
land accounted for more than 60% of total area of Tianjin. Even if its change intensity was relatively flat, its change 
area was still considerable. With popularization of the concept of sustainable development and implementation 
of environmental protection and other policies, change of forest was more stable and weak.

Figure 1.  Land use classification maps of Tianjin, (a) 1995, (b) 2000, (c) 2005, (d) 2010 and (e) 2015.

Year Water Forest Urban Land Agricultural Land Other Land

1995
area/km2 1943.80 449.78 1265.16 7739.39 112.90

proportion/% 16.89 3.91 10.99 67.23 0.98

2000
area/km2 1928.53 475.25 1322.45 7570.41 214.39

proportion/% 16.75 4.13 11.49 65.77 1.86

2005
area/km2 1960.52 454.04 1547.16 7389.78 159.52

proportion/% 17.03 3.94 13.44 64.20 1.39

2010
area/km2 1809.72 450.53 1842.40 7172.70 235.67

proportion/% 15.72 3.91 16.01 62.31 2.05

2015
area/km2 1788.81 472.20 2128.62 6883.39 238.01

proportion/% 15.54 4.10 18.49 59.80 2.07

Table 4.  Area size and proportion of land categories of Tianjin.
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Land use intensity analysis at transition level.  As for urban land, the overall change trend was increas-
ing. According to intensity change of urban land at transition level in Tianjin during 1995–2015 (Fig. 4a–d), 
the transitions of urban land were mainly from agricultural land and the uniform intensity W was on the rising 
trend. As for water, in 1994, resolution on establishment of the Binhai New District was passed in the second 
meeting of 12th session of People’s Congress in Tianjin. During the “Eleventh Five-Year Plan” period (2006~2010), 
development and opening of the Tianjin Binhai New Area had been rapidly promoted. This further advanced 
economic development in Tianjin, which also contributed to development and utilization of waters. As for forest 
(Fig. 4a–d), development of tourism industry in Pan Mountain promoted its transition to urban land, area of 
which had continued rising, but the transition intensity was not great due to environmental protection. As for 
agricultural land (Fig. 4a–d), the annual change intensity were all above the uniform intensity and the W value 
became bigger and bigger. As for other land (Fig. 4a–d), its transition intensity was largest during 2010–2015 

Figure 2.  Land use intensity change of Tianjin at interval level.

Figure 3.  Land use intensity change at category level of Tianjin. (a) 1995–2000, (b) 2000–2005, (c) 2005–2010; 
and (d) 2010–2015.
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and lowest during 2000–2005. For the four periods, all the transitions from agricultural land to urban land were 
active, so was the transition from forest to urban land during 2010–2015. And the others were dormant. Among 
sources of transition to urban land (Fig. 4e), agricultural land was the main source, followed by water, and then by 
forest and other land. According to Fig. 4f, as for the transition to urban land, transition intensity from agricul-
tural land occupied the most but it accounted for no more than 60% of the areas transformed from agricultural 
land; this transition intensity accounted for 34.27% during 1995–2000, and then increased annually, and finally 
stably reached at about 57%. The transition of forest to urban land had increased annually. The transition intensity 
of water to urban land fluctuated at around 10%. The transition intensity of other land to urban land was least 
during 2000–2005 and then increased radically to 15.39% during 2010–2015.

As for agricultural land, the overall change trend was decreasing. Transition direction for agricultural land 
was mainly to urban land and water (Fig. 5a–d). Due to rapid economic development, urban land showed an 
expansion trend with its main source from agricultural land. According to the image, a certain proportion of 
agricultural land was transformed to water because of rainstorm. Due to the policy of returning agricultural 
land to forest, a slight proportion of agricultural land was transformed to forest which accounts for about 2% of 

Figure 4.  Intensity change of urban land based on gains while other categories based on losses at transition 
level in Tianjin in four time intervals. (a) 1995–2000; (b) 2000–2005; (c) 2005–2010; (d) 2010–2015; (e) 
intensity change of urban land from water, forest, agricultural land and other land in a particular time interval 
from perspective of increased area of urban land; (f) change intensity of urban land from water, forest, 
agricultural land and other land in a particular time interval from perspective of water, forest, agricultural land 
and other land respectively.
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the total transformed area of agricultural land. For the four periods, all the transition from agricultural land to 
urban land were active and transition from agricultural land to other land were dormant. Meanwhile, transitions 
from agricultural land to water were dormant during 2000–2005 and active at other periods. Transitions from 
agricultural land to forest were active during 2000–2005 and dormant at other periods. Transition of agricul-
tural land to urban land and water had a high intensity but with low intensity to forest and other land (Fig. 5e). 
Agricultural land was main sources for area increase of urban land and water, even for forest in some periods 
(Fig. 5f). Transition proportion from agricultural land to other land was small during 1995–2000 and 2005–2010, 
and large during 2000–2005 and 2010–2015.

Discussion
The change of land use is staged, and the transition of stable land use categories is a process from quantitative 
change to qualitative change. In the stage of quantitative change, a steady increase or a steady decrease, accumu-
lated over a long period of time, will have an irreversible effect on the final state. Therefore, the stable transition 
of land use categories over a long period of time can be used as a basis for the relevant departments to predict 
the land use structure in the future, or to estimate the extent to which land use can be changed. Some land 

Figure 5.  Intensity change of agricultural land based on losses while other categories based on gains at 
transition level in Tianjin in four time intervals. (a) 1995–2000; (b) 2000–2005; (c) 2005–2010; (d) 2010–2015; 
(e) change intensity from agricultural land to water, forest, urban land and other land in a particular time 
interval from perspective of increased agricultural land; (f) change intensity from agricultural land to water, 
forest, urban land and other land in a particular time interval from perspective of water, forest, urban land and 
other land.
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use categories will have favorable or unfavorable effects on the surrounding environment during the process of 
change. The stable transition trend of land use is the basis for some effects. In the sense of sustainable develop-
ment, stable land use transition provides clearer information than unstable transition. Stable land use transition 
reflects the regularity of long-term land use and can be used for predicting initial land use change in the future; 
while the unstable transformation is difficult to determine the general trend of land use developmentso that it 
can’t provide a clear reference for the sustainable development of land use. Based on that, understanding change 
of land use contributes to the realization of sustainable development.

Sustainable development is the development that meets the needs of the present society without compromis-
ing the ability of future generations to meet their own needs48. Tianjin, as a municipality with rapid economic 
development, attracts people from all over the country. Rapid population growth has increased the demand for 
natural resources especially land. According to the results of this study, the transition of agricultural land to 
urban land was stable during 1995–2015. This means that in the short term, the agricultural land will continue 
to decrease and the urban land will continue to increase. The sustainable development goals proposed by the 
United Nations include education, infrastructure, health lives, and climate49. Undoubtedly, the increased urban 
land meets the basic living requirement of Tianjin residents’ education and infrastructure. But it also had effect 
to climate in a certain degree. From 1995 to 2015, the annual average temperature in Tianjin rose from 12.6 °C 
to 13.6 °C50,51. And less or more land category might be fulfilling a certain climate target52. So for the sake of the 
future generation, urban planning needs to be conducted with higher sustainability awareness.

In this paper, there are two limitations. First, the land use intensity analysis was used to analyze the changes of 
land use in detail, but the impact of these changes on human society, natural ecological environment and other 
aspects still need to be further studied. Second, the remote sensing data of each year used in this paper were not 
collected on the same date, and the effect of precipitation on data quality may lead to the error for water area. So 
how to reduce the impact of different daily precipitation on the images also deserves further study.

Conclusions
In this paper, new models were developed to describe change intensity of both gain category and loss category of 
land use from different perspectives. The new models quantified the contribution of one land category to other 
land categories and the contribution of all other land categories to a specific land category. The land use change 
was described in a more comprehensive way, and the theory of land use intensity was applied completely and 
meaningfully. And then the improved theory was applied to the LULC in Tianjin from 1995 to 2015. It provided 
a reference for the sustainable development of land use in Tianjin.

In general, agricultural land, water and urban land accounted for majority of land in Tianjin. During the two 
decades in this study, agricultural land and urban land changed most, with area of agricultural land reduced by 
about 7.5% and that of urban land increased by about 7.5%. Area of forest, water and other land all increased 
slightly.

As for the intensity and stationarity analysis of land use change at the interval level, transition intensity of land 
use during 1995–2000 was greater than the average intensity, implying a stable state; while transition intensity 
of land use during 2000–2005, 2005–2010 and 2010–2015 were smaller than the average intensity, implying an 
unstable state. At the category level, during four time periods of the study, change intensity of water, urban land 
and other land were all greater than the average intensity, implying being active in change; change intensity of 
forest and agricultural land were less than the average intensity, implying being dormant in change; change of 
all land use categories were stable. At the transition level, agricultural land accounted for 85% of land which was 
transformed to urban land. However, this represented only 45% of all agricultural land loss. The other main tran-
sition of agricultural land was water and it was also the main source of forest land. As for gain land use urban land, 
all transitions from agricultural land were stable. And for loss land use agricultural land, all transitions to urban 
land were stable, and to other land were unstable.

Materials
Study area.  Tianjin is located in northern part of the North China Plain, with its east neighboring the Bohai 
Sea and north close to Yanshan (Fig. 6). Tianjin has warm temperate semi-humid monsoon climate, and within 
the area covering 116°43′–118°04′E longitude and 38°34′–40°15′N latitude, it is affected seriously by marine 
climate. Four seasons are distinct in Tianjin: climate is windy, dry and rainless in spring; it is hot and rainy in 
summer; it is cool and mesothermal in autumn; it is cold, dry and snowless in winter. The annual average temper-
ature is about 14 °C. The hottest month is July, with average monthly temperature reaching 28 °C and the highest 
temperature reaching 41.6 °C. The coldest month is January, with average monthly temperature of −2 °C and the 
lowest temperature of −17.8 °C. The average annual precipitation in Tianjin is 360–970 mm. Tianjin is a munici-
pality city, economic center of the Bohai Sea areas, and national shipping center of the north world.

Data.  In this paper, the data used were TM remote sensing images in 1995, 2000, 2005, 2010, and OLI remote 
sensing image in 2015, which all covered Tianjin. It also included administrative map and other textual data. 
The remote sensing data were downloaded from the USA Geological Survey (http://glovis.usgs.gov), and the 
spatial coordinate system was WGS_1984_UTM_50N. Administrative map was downloaded from Geographical 
Information Monitoring Cloud Platform (http://www.dsac.cn/DataProduct/Index/201932). The textual data were 
collected from the web of Tianjin Statistics Bureau (http://stats.tj.gov.cn). The principles of image selection are as 
follow: (1) The period when vegetation growth could be detected since forest and agricultural land are important 
land use categories in the study area; (2) All images must be high-quality with value of maximum cloud less than 
10%; (3) For Tianjin, four images are need to mosaic together so that images are selected with similar time as 
much as possible after excluding images with poor quality. Based on these principles, all images were acquired 
from April to September.

https://doi.org/10.1038/s41598-019-48586-3
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Methods
Image preprocessing.  The first step was radiometric calibration that converted the DN value of image into 
a radiance value. The second step was atmospheric correction that eliminated radiation errors caused by atmos-
pheric scattering and absorption in remote sensing images53. The third step was image merge that merged all 
individual bands. TM images were obtained by merging all bands and OLI image was derived by merging 2–7 
bands. The fourth step was image mosaic that combined multi-view adjacent remote sensing images into a large, 
seamless image. Histogram matching was chosen to do color correction. Auto generate seamlines were chosen 
using ENVI. Cubic convolution was chosen on resampling method. The last step was image clip that obtained 
images of the study area using Tianjin administrative map.

Image classification and accuracy assessment.  According to the national standard Current Land Use 
Classification (GB/T 21010-2017), spatial resolution of Landsat images and regional characteristics of Tianjin, 
land use in the study area was divided into five categories: forest, agricultural land, urban land, water and other 
land. The forest refers to land where trees, bamboos and shrubs are grown, and does not include greening land 
within the towns and villages. The agricultural land refer to the land on which crops are grown, including paddy 
fields, irrigated land, and fallow fields. The urban land refers to residential land, transportation land, commercial 
service land and public management service land. The water refers to inland waters, tidal flats, ditches, swamps, 
and hydraulic structures. The other land refers to land other than the above-mentioned land. The images were 
classified and land use information was extracted using CART54.

The CART algorithm is one of the algorithms for generating decision trees. It simply divides a sample into 
two sub-samples so that each non-leaf node has two branches. A decision tree generated by this algorithm is 
referred to as a binary tree. Gini is used as split node which measure impurity at split. The range of Gini is from 
0 to 1 and the larger Gini the greater the degree of unevenness in the sample set55. The following is the process of 
land use classification based on the CART algorithm. First, the multivariate dataset was built. The classification 
dataset included seven multi-spectral bands in TM/OLI image, NDVI and the result of ISODATA unsupervised 
classification with the five categories mentioned before. The ISODATA unsupervised classification algorithm is a 
clustering method. When the distance between two types of cluster centers is less than a certain threshold, they 
are combined into one class. When a certain standard deviation is greater than a certain threshold or the number 
of samples exceeds a certain threshold, it is divided into two categories. When the number of samples in a certain 
class is less than a certain threshold, it needs to be canceled. In this way, according to the initial clustering center 

Figure 6.  Geographic position of the study area.

https://doi.org/10.1038/s41598-019-48586-3
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and the number of categories set, iteratively, a better classification result is finally obtained. Second, rule was 
acquired. The decision tree was obtained by training samples. And training samples were acquired by uniformly 
drawing for each category in the remote sensing images. Third, land use information was extracted. Land use 
information was extracted through choosing the decision tree which was obtained from the second step. Fourth, 
post-processing was implemented based on the classification map from the third step. And post-processing 
included merging adjacent similar classification areas, filtering too small classification areas and modifying the 
wrong classification boundary. At last, land use classification was obtained after correcting the incorrect image 
boundary by visual interpretation.

The accuracy of remote sensing image was assessed by accuracy of producers and users, overall classification 
accuracy and kappa coefficient which was calculated by confusion matrix. Producer accuracy is the number of 
pixels that are correctly classified in each class as a percentage of the pixels that the class uses as a training sample. 
User accuracy is the number of pixels that are correctly classified for each category as a percentage of the total 
number of pixels that are classified as the class. Overall classification accuracy is the percentage of the total num-
ber of pixels correctly classified to the total number of pixels. Kappa coefficient is defined by Eq. 1. The number of 
random points used as accuracy assessment for each image was 250.
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Intensity and stationarity analysis of land use change.  The intensity and stationarity analysis of 
land use change focus on the change itself. Intensity analysis as a top-down hierarchical accounting framework 
includes interval level, category level and transition level42.

Analysis at interval level reflects total change in each time interval. Intensity analysis uses land use change 
intensity S(t) (Eq. 2) and uniform intensity U (Eq. 3) to explain land use change during a certain period42. If S(t) 
is greater than U, the change of land use is fast; vice versa. Stationarity analysis in each time interval is carried out 
through comparing S(t) and U. If the S(t) is evenly distributed over the whole time interval, the change is stable. 
Otherwise, it is unstable.
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In Eqs 2–3, i and j denote the number of land categories, Ctij denotes the area that transformed from category i to 
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Analysis at the category level studies the intensity change of each land category within a particular time inter-
val. It uses annual gain intensity of Gtj (Eq. 4) and annual loss intensity Lti (Eq. 5) to explain land use change of 
a certain land category42. If Gtj or Lti is greater than U, the change of this land category is active; otherwise, it is 
dormant. Stationarity analysis for each land category is conducted through comparing Gtj, Lti and U: if the Gtj or 
Lti is evenly distributed in the whole space, the change is stable; otherwise, it is unstable.
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Analysis at the transition level studies the transition of a particular land category. As for land category n, Rtin 
(Eq. 6) is the transition intensity from category i to category n in a particular time interval t; and Wtn is the aver-
age transition intensity during this time interval (Eq. 7), with assumption that the land category n is increasing 
over the entire time period42. As for land category m, Qtmj (Eq. 8) is the transition intensity from category m 
to category j in a particular time interval, and Vtm is the average transition intensity during this time interval 
(Eq. 9), with assumption that the land category m is decreasing over the entire time period42.

The transition intensity of each land category is compared with the uniform intensity. If the transition inten-
sity is evenly distributed over the whole space, the change is stable. Otherwise, it is unstable.
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In this paper, Ptin (n), Ptin (i), Otmj(m) and Otmj (j) were defined and new models were developed at transi-
tion level to describe land use change situations in more detail. Ptin (n) (Eq. 10) is used to describe change inten-
sity from land category i to category n in a certain time interval from perspective of gain land category n; Ptin (i) 
(Eq. 11) is used to describe that from perspective of land category i. Otmj (m) (Eq. 12) is used to describe change 
intensity from land category m to category j in a certain time interval from perspective of loss category m; Otmj 
(j) (Eq. 13) is used to describe that from perspective of changed category j.

=
∑

∗
=

P C
C

100%
(10)

tin(n)
tin

i 1
J

tin

=
∑

∗
=

P C
C

100%
(11)

tin(i)
tin

j 1
J

tij

=
∑

∗
=

O
C

C
100%

(12)
tmj(m)

tmj

j 1
J

tmj

=
∑ −

∗
=

O
C
C C

100%
(13)

tmj(j)
tmj

i 1
J

tij tjj

Data Availability
The Landsat data are publicly available here: http://glovis.usgs.gov. The administrative maps are publicly available 
here: http://www.dsac.cn/DataProduct/Index/201932. The textual data are publicly available here: http://stats.
tj.gov.cn.
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