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We demonstrate the potential of satellite interferometric Synthetic Aperture Radar (inSAR) to identify 
precursors to catastrophic slope failures. to date, early-warning has mostly relied on the availability 
of detailed, high-frequency data from sensors installed in situ. the same purpose could not be chased 
through spaceborne monitoring applications, as these could not yield information acquired in 
sufficiently systematic fashion. Here we present three sets of Sentinel-1 constellation images processed 
by means of multi-interferometric analysis. We detect clear trends of accelerating displacement prior to 
the catastrophic failure of three large slopes of very different nature: an open-pit mine slope, a natural 
rock slope in alpine terrain, and a tailings dam embankment. We determine that these events could 
have been located several days or weeks in advance. the results highlight that satellite inSAR may now 
be used to support decision making and enhance predictive ability for this type of hazard.

Landslides occur in a wide variety of forms and environments. These are a direct expression of the geology, rhe-
ology, and destabilizing forces of the slope. The destructive power of a landslide, among other factors, is strictly 
related to the variation of available frictional strength, which in turn dictates how the rate of displacement changes 
with time. In particular, landslides prone to abrupt drops in shear resistance over one or more surfaces of rupture 
pose a major threat to vulnerable communities. Precursory signs may not be obvious and evacuation times are 
virtually inexistent once the failure paroxysmal phase is initiated. Therefore, prediction and early warning are the 
only viable options1. In this sense, Voight’s materials failure relation of tertiary creep under constant applied stress 
and temperature has found wide acknowledgement in the field of slope failure prediction2,3. Such empirical rela-
tion is linked to the theory of damage accumulation, and in particular to mechanisms of creep fracture by stress 
corrosion and power law lattice deformation4. Sub-critical crack nucleation and growth, which may be catalyzed 
by pore water pressure buildup, ultimately leads to a degree of voids coalescence that can no longer be supported 
by the remaining cross-sectional intact patches along the joint surface5,6. This induces a sudden transition from 
peak to residual strength conditions and the kinematic release of the unstable mass. The abovementioned pro-
cesses are explicated by a phase of progressive deformation (i.e. accelerating or tertiary creep), during which 
strain increments of the slope surface up to failure are observed in the form a power-law2,3.
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from which a linear law relating inverse velocity and time can be derived
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where Ω is the measurable quantity (e.g. displacement), whilst α and A are empirical constants. Several authors 
have suggested that linearly extrapolating the theoretical time of singularity in an inverse velocity versus time plot 
(i.e. α = 2) can be used to predict the time of slope failure7–10. For this reason, monitoring activities are mostly 
focused on measuring the movement of the ground surface. Ground-based techniques used for failure prediction 
purposes include extensometers, distometers, survey stations and prisms, and slope stability radar. Nonetheless, 
many slope failures still come as a surprise because of the inability to effectively detect precursory tertiary creep. 
This often stems from: inadequate field of view of the instrument; limited number of measuring points; lack of 
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ancillary data supporting the installation of a monitoring network; unawareness about the presence of ongoing 
instability phenomena; difficult site accessibility; economical or logistical constraints in general.

Such limitations may be largely solved through the exploitation of spaceborne platforms. In particular, sat-
ellite Interferometric Synthetic Aperture Radar (InSAR) has proved to be a unique tool for surface deformation 
monitoring. By calculating the deformation-induced phase shift of the back-scattered microwave signal between 
two coherent acquisitions, millimetric measurement accuracy and metric spatial resolution are attained in most 
atmospheric conditions, with no need to install physical reflectors on the ground. Earthquakes, volcanic activ-
ity, glacier motion, and subsidence have been among the most investigated topics11. However, the poor revisit 
capacity of orbiting satellites, the limited data accessibility, and the policy on image acquisition (i.e. background 
and on demand acquisitions) have so far prevented the use of satellite InSAR as a tool for systematic monitoring 
of critically unstable slopes. Recent developments have now opened up to the prospect of extending the appli-
cation of satellite InSAR also to the field of slope failure prediction12. Most of the new missions consist in fact 
of an integration of more than one satellite working in constellation mode. This has significantly improved the 
frequency and regularity of the acquisitions, as well as the ground visibility of the flyovers. In addition, the newest 
algorithms for the processing of interferometric data-stacks make it possible to retrieve a greater amount of radar 
targets within the sensor swath. The interferometric products acquired by the Sentinel-1 constellation ensure a 
worldwide coverage and are freely distributed to the public.

Results
We highlight the results of the processing of three stacks of Sentinel-1 images by means of the SqueeSAR algo-
rithm13, with the aim of identifying precursory accelerating displacements over as many recent catastrophic slope 
failures. All these events were unforeseen, and caused multiple fatalities and/or massive economic losses. While 
data are here reviewed in retrospect, Raspini et al.14 described how to set up a systematic processing chain of 
Sentinel-1 interferometric data stacks, hence demonstrating the possibility of moving from a static analysis of 
archive images to a dynamic, continuously updated monitoring of the ground deformation. Such an approach 
could have been applied in the presented scenarios. The value of the results is enhanced by the fact that slope types 
of very different nature are considered, specifically: the failure of an open-pit mine slope, of a natural rock slope in 
alpine terrain, and of a tailings dam embankment. After a brief description of the case studies and of the monitor-
ing data, we discuss the predictability of the failures and the key features of the precursors. It should be noted that 
the timing of the events and of the satellite acquisitions are expressed in terms of the respective local time zone.

open-pit failure. At about 8:41 pm on 17 November 2016, a catastrophic slope failure occurred in a copper 
open-pit mine (name and location may not be disclosed for confidentiality reasons). The incident caused the 
death of 16 mine workers and the termination of the extraction activities. As previously described by Carlà et 
al.15, the failure happened without apparent warning signs, as it mostly affected a sector of natural slope above the 
mine crest and outside of the field of view of the slope monitoring system in place at the site. The approximately 
640 000 m3 unstable mass rapidly slid downslope and buried the uppermost benches of the pit, where production 
works were being carried out. The basal rupture surface was identified in proximity of the interface between a 
layer of recrystallized limestone blocks and underlying spilite rock formations included in the ore body, at an 
average depth of 11 m. The instability may be associated with a simple translational mechanism, and was report-
edly driven by a period of unusual adverse weather conditions for the local climate (170 mm of rainfall between 
25 October and 2 November 2016)15.

28 SAR images have been acquired in ascending orbit over the mine site between 19 February and 21 
November 2016 (i.e. four days after the event). The revisit time, which was of 12 days during the first part of the 
monitoring interval, diminished to 6 days in September 2016 as the second satellite of the Sentinel-1 constellation 
became fully operational. The last image prior to the failure was thus acquired on 15 November 2016. The distri-
bution of the radar targets exhibiting precursory ground deformation matches remarkably the source area of the 
failure, with average line-of-sight (LOS) velocities for the monitoring interval generally ranging from 50 mm/y to 
122.3 mm/y (Fig. 1). Up to 30.2 mm of LOS displacement were recorded in the period 9–15 November 2016. By 
contrast, radar targets surrounding the failure area were largely stable.

Xinmo landslide (Sichuan province, china). A catastrophic 13 × 106 m3 rock avalanche devastated the 
village of Xinmo at 5:45 am on 24 June 2017. The sliding mass, coming to rest over an area of about 1.5 km2, 
buried 62 houses and killed more than 100 people. The site falls within a well-known tectonically active region; 
even if repeated seismic events may have been responsible for a progressive destabilization of the rock mass, 
earthquakes are not considered the primary trigger of the failure16. The rupture surface developed in a heavily 
jointed bedrock mainly composed of metamorphic sandstone and phyllite. It has been proposed that the magni-
tude of the event was the consequence of a complex triggering mechanism, involving the sequential mobilization 
of different unstable slope sectors and the entrainment of older landslide deposits17. Intrieri et al.18 documented 
that the remoteness of the failure source area, located on a steep (55°–60°) alpine slope at an elevation of 3400 m 
a.s.l., meant that detecting precursory signs by means of conventional techniques was virtually impossible. For 
the same reason, the presence of tension cracks and the occurrence of minor precursory rockfalls were entirely 
unnoticed.

45 SAR images have been acquired in descending orbit between 10 October 2014 and 20 June 2017 (i.e. 4 
days before the event), with a revisit time of 12 days. More than 700 radar targets have been identified within the 
boundaries of the landslide. Those located in the uppermost hillslope portion near the mountain crest recorded 
the largest average LOS velocities for the monitoring interval (generally ranging from 10 mm/y to 26.8 mm/y), 
and well outline the failure source area (Fig. 2). LOS displacements of up to 30.7 mm were recorded in the period 
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8–20 June 2017. In the surrounding sectors, smaller rates of displacement and no accelerating trends were 
observed. The slope was completely stable at lower elevation.

failure of a tailings dam embankment at cadia gold mine (new South Wales, Australia). At 
about 6:45 pm on 9 March 2018, a mobile slump affected the southern wall of the Cadia gold mine northern 
Tailings Storage Facility (TSF). A slurry of sediments, water, and a low level of benign processing reagents were 
consequently released in the basin of the southern TSF. This adjacent tailings pond maintained its structural 
integrity, hence preventing the dispersion of waste in the environment. Although there was no major impact on 
the safety of the workers and on the overall containment capacity of the TSF, operations at the mine had to be 
halted for several days. The event is just the last of an alarmingly growing list of tailings dam embankment failures 

Figure 1. Satellite InSAR data showing precursory deformation leading up to the failure of the investigated 
open-pit mine slope on 17 November 2016. The purple-colored polygon in the inset delimits the area affected 
by accelerating trends of displacement. The underlying photos in the main figure and in the inset depict pre- 
and post-failure instants, respectively. The maps with satellite imagery were created with the ArcGIS PRO 2.4 
software (https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview).

Figure 2. Satellite InSAR data showing precursory deformation leading up to the Xinmo landslide on 24 June 
2017. The purple-colored polygon in the inset delimits the area affected by accelerating trends of displacement. 
The underlying photos in the main figure and in the inset depict pre- and post-failure instants, respectively. The 
maps with satellite imagery were created with the ArcGIS PRO 2.4 software (https://www.esri.com/en-us/arcgis/
products/arcgis-pro/overview).
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that have occurred in recent past, and that occasionally have caused disastrous environmental damages19. Whilst 
it has long been recognized that there is a vast underestimation of the potential of cohesionless soils to undergo 
rapid failure by static liquefaction, this kind of incidents still takes by surprise engineering designers and practi-
tioners20. With regards to the Cadia gold mine northern TSF, it has been suggested that a zone of highly compress-
ible, strain-weakening volcaniclastic material near the foundation level of the southern wall was the controlling 
factor of the failure. Accelerated lateral movements of the embankment over this weaker layer produced lique-
faction (i.e. loss of strength) of the loose saturated tailings, which in turn determined a sudden increase of load 
on the dam. Full details and analyses are available in the report published by the independent technical review 
board which investigated the incident21. As in situ evidences of precarious stability conditions (e.g. tension cracks 
or minor slumps) may appear with very little notice, the detection of any precursory deformation of tailings dam 
embankments is essential.

34 SAR images have been acquired in descending orbit over the mine site between 1 January 2017 and 10 
March 2018, with the last acquisition before the event performed on 26 February 2018 (revisit time of 12 days). 
LOS displacements throughout the southern wall of the northern TSF were very subtle or within the margin of 
error of the technique for the most part of the monitoring interval, and then substantially increased from January 
2018. In particular, the radar targets showing the largest LOS displacements between January–March 2018 (more 
than 40 mm, and up to 68.9 mm) lie within or in close proximity of the boundaries of the failure (Fig. 3); a max-
imum LOS displacement of 29.9 mm was measured in the period 14–26 February 2018. Radar targets over the 
rest of the storage facility showed lower movements or remained essentially stable during the entire monitoring 
interval. The presence of significant deformation just outside of the eventual failure area may be explained by 
considering that the weaker volcaniclastic layer diffusely underlay this sector of the northern TSF. On the other 
hand, it was reported that the embankment was taller and steeper where the slump ultimately developed; this 
was also where an excavation at the toe was present21. It is therefore likely that the structure yielded where the 
imbalance between the resisting forces and the loading imposed by the liquefaction of the tailings was locally 
more pronounced.

failure predictability. The presented datasets reveal accelerating trends of displacement in the weeks lead-
ing up to the investigated slope failures; the areas tied with this behavior are enclosed by the purple polygons 
in the insets of Figs 1–3. Here we back-analyze the detected precursors in order to assess the potential to make 
effective failure-time predictions if systematic, continuously updated satellite InSAR monitoring campaigns had 
been carried out. Expected failure-times were derived by applying the inverse velocity method for every radar 
target showing relevant precursors, and the coefficient of determination R2 was taken as a quality index of the 
regressions. The inverse velocity plots in Fig. 4 show an example of prediction for each case study. The relative 
frequency distribution of the errors (i.e. tpf − taf, where tpf is the predicted time of failure and taf the actual time of 
failure) and of the R2 values was also computed to provide a measure of the predictive ability that may be deduced 
from the three stacks of Sentinel-1 images (Fig. 5).

Most of the radar targets within the boundaries of the open-pit slope failure are characterized by a final acceler-
ating trend in the form of a classic tertiary creep curve. Such a phase is already well evident in the early November 
2016 acquisitions, roughly two weeks before the event (Fig. 4a,b). A total of 78 radar targets was exploited for the 

Figure 3. Satellite InSAR data showing precursory deformation leading up to the failure of the Cadia gold 
mine northern TSF on 9 March 2018. The purple-colored polygon in the inset delimits the area affected by 
accelerating trends of displacement. The underlying photos in the main figure and in the inset depict pre- and 
post-failure instants, respectively. The maps with satellite imagery were created with the ArcGIS PRO 2.4 
software (https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview).
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analysis. Linear regression of the inverse velocity data gives a distribution of the predictions that is remarkably cen-
tered around the actual time of failure (Fig. 5). The mean error is only slightly more than half a day (where a positive 
error indicates that the failure occurred earlier than the estimate); the median is off by 0.32 days, and the difference 
between the earliest and latest expected failure-time is less than 12 days. The R2 distribution is left-skewed, with a 
mean value of 0.9 and a very low standard deviation. All these elements testify that the information contained in the 
monitoring dataset would have been valuable for predicting the event with high accuracy and more than sufficient 
forewarning. The time series of 125 radar targets in the source area of the Xinmo landslide also respond to a marked 
tertiary creep behavior; the onset of the final acceleration phase is typically evident more than one month before the 
event (Fig. 4c,d). The inverse velocity regressions provide a normal distribution of the errors that is again centered 
near the actual failure-time (Fig. 5). The mean error is of 4.09 days, and in general the variability is somewhat higher 
than in the first case study; the total range of the predictions extends for an interval of approximately a month. The R2 
distribution is instead very similar to what observed in the open-pit dataset. The style of the precursory deformation 

Figure 4. Example of accelerating trend and resulting inverse velocity regression related to (a,b) the failure 
of the investigated open-pit mine slope; (c,d) the Xinmo landslide; (e,f) the failure of the Cadia gold mine 
northern TSF. The red dotted lines indicate the actual failure-time.
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of the Xinmo landslide is in accordance with the notion that, as high stresses relative to rock strength are produced, 
large-scale slides are able to accommodate large strain levels for considerable time lengths prior to failure9. As a 
consequence, the event could have been predicted with acceptable accuracy and forewarning notwithstanding the 
lower frequency of acquisition (12 days) available at the time in the area. Finally, also 123 radar targets within the 
breach area of the Cadia gold mine northern TSF experienced a monotonic increase of the displacements prior to 
the event (Fig. 4e,f); these points are all localized on top or on the slope face of the dam (Fig. 3). The reliability of the 
predictions appears in this instance to be quite lower: the distribution of the errors is visibly flatter, and the tallest 
bin, while still adjacent to the center of the histogram, stands for a relative frequency of less than 0.2. As a reference, 
peaks of relative frequency in the open-pit and Xinmo datasets were 0.49 and 0.47, respectively. The gap between 
the mean prediction and the actual failure-time is about 10 days. The R2 distribution is still left-skewed, with mean 
and standard deviation that are basically equivalent to the other cases. Based on these data, it would have not been 
possible to pinpoint the time of failure with reasonable confidence.

Discussion and conclusions
Several observations may be derived from the results. First of all, the whereabouts of every slope failure are well 
reflected by the spatial location of the more rapidly moving radar targets. Secondly, the reliability of the time 
predictions (but not the quality of the inverse velocity regressions) seems to degrade as the gap between the 
last acquisition before the event and the event itself widens. This is not surprising, as the form of accelerating 

Figure 5. Relative frequency distribution of the errors and of the R2 coefficient from the inverse velocity predictions.
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trends may be influenced by a number of possible changes in background conditions as failure approaches9. A 
lower frequency of acquisition will thus diminish the chances of capturing late trend variations and finding a fit 
to the inverse velocity curve that is representative of the last step of the failure process. In this sense, the 6-day 
frequency of acquisition currently offered by the Sentinel-1 constellation may be suitable for singling out firm 
predictions over relatively short time lengths. Opportune and statistically consistent time predictions could have 
been extrapolated from the open-pit and Xinmo datasets, with a margin of error of hours in the first case and of 
a few days in the latter case; this is a very successful outcome when considering the scale of these disasters and 
the level of risk posed to human life. The same cannot be said about the Cadia gold mine dataset, mainly because 
the last SAR image was acquired 11 days prior to the incident at the northern TSF. Moreover, the embankment 
suffered an abrupt rise in external load upon liquefaction of the tailings21; as such, a 12-day frequency of acquisi-
tion would have been not suitable for tracking the evolution of the escalating failure process. Nevertheless, it may 
be argued that systematic satellite InSAR monitoring would have still provided decision makers with a definite 
“qualitative” indication about an ongoing stability issue of the embankment, that could have ultimately produced 
a breakthrough of the stored material. The magnitude of the precursory deformation detected throughout the 
southern wall from January 2018 is in fact not in line with the usually very low security tolerances for this type of 
retaining structures.

To summarize, the experiences herein reported are pioneering yet remarkable examples of how satellite 
InSAR could improve risk awareness and provide early warning of impending catastrophic slope failures in 
vast, inaccessible, or otherwise unmonitored regions, with a cost per single slope considerably lower than that 
required for dedicated monitoring systems. This consideration is only valid for large-scale instabilities undergo-
ing time-dependent development of a controlling release surface, therefore implying a ductile behavior of the 
slope and extended periods of progressive deformation at relatively slow rates9. Typical examples include com-
plex, deep-seated slides responding to rotational, translational, or compound mechanisms. Instabilities of brittle 
nature, such as rockfalls or small-scale slides in tension or shear in hard rock masses, may not be recorded because 
of the extreme rapidity with which they transition from a condition of equilibrium to failure10. The same limita-
tion applies to shallow landslide types that are activated in the aftermath of a sudden external trigger (e.g. debris 
flows). In other terms, monitoring and prediction may not be performed when precursors and controlling factors 
are too instantaneous with respect to the revisit time of the satellite, or over areas that are too small for the spatial 
resolution of the sensor (5 × 20 m for Sentinel-1). Excessively rapid movements (i.e. more than a few centimeters 
between consecutive acquisitions) may also generate phase ambiguity or loss of coherence of the interferometric 
products11,12. This issue concerns primarily the terminal stages of tertiary creep, when rates of displacement are 
more likely to fall out of the range of the technique22; the reduction in temporal coherence may even lead to the 
loss of radar targets12. Additionally, as satellite InSAR is capable of tracking only the component of the movement 
vector projected along the sensor-target direction, a favorable orientation of the slope is required: the true entity 
of the displacements can be obtained when the slope moves exactly parallel to the LOS, whereas there is no sen-
sitivity with respect to slopes that move perpendicular to the LOS. Finally, information may not be retrieved by 
means of multi-interferometric analysis over densely vegetated or snow-covered slopes.

Methods
Radar datasets employed in this study have been acquired by the Sentinel-1 constellation, which is composed 
of two satellites equipped with C-band (5.6 cm wavelength) SAR sensors featuring a right-looking acquisition 
geometry and a revisit time of up to 6 days. We employed SqueeSAR, a second-generation InSAR algorithm13, in 
order to process the interferometric images.

SqueeSAR represents the evolution of PSInSAR23,24, which is the first technique specifically implemented for 
the processing of several (at least 15 or more) co-registered, multi-temporal spaceborne SAR images of the same 
target area. This multi-interferometric analysis is able to provide highly precise ground deformation maps on 
sparse grids of stable radar targets, called Persistent Scatterers (PS). Once the ratio between the average amplitude 
of the backscattered radar signal from the observed scene and its standard deviation is established as the so-called 
“amplitude stability index”, PS are identified in correspondence of values above a predefined threshold of this 
index. The main characteristics of a PS include high electromagnetic reflectivity, high coherence values, and 
stable scattering behavior; all these features strongly reduce the occurrence of radar signal decorrelation phenom-
ena. Resolution elements containing a single dominant scatterer with the listed features correspond to a PS. The 
phase stability associated with these targets during the observation period makes it possible to discern the phase 
component related to the displacement from the other contributions. While stereoscopic and noise effects can 
be easily removed, spurious atmospheric effects are strongly correlated in space (within the same SAR scene) but 
highly decorrelated in time (i.e., among different acquisitions). The atmospheric term is estimated and removed 
through a statistical analysis of the signals and by applying specific algorithms. Due to their intrinsic features, PS 
targets generally correspond to buildings, roads, or other man-made structures, hence they are widely available 
over cities, but are less common in non-urban areas.

The SqueeSAR algorithm partially overcomes this limitation. Not only the Persistent Scatterers are included 
in the processing analysis, but also the so-called Distributed Scatterers (DS), which correspond to homogeneous 
areas spread over groups of pixels in a SAR image (rangeland, pasture, bare soils). The application of this new 
algorithm determines a significant increase in the density of radar targets, ultimately improving the ability to 
map, monitor and analyze ground deformation in non-urban areas25–28. DS are defined through different steps, 
namely: (i) selection and analysis of image pixels; (ii) statistical comparison of each pixel with the adjacent pixels; 
(iii) further processing and analysis of statistically homogenous pixels; (iv) identification of DS within statistically 
homogeneous areas. In particular, the Kolmogorov-Smirnov test is used to detect homogeneous pixels based 
on the amplitude of the co-registered and calibrated stack of SAR images. Once identified, DS are processed 
using the PSInSAR algorithm, hence producing the displacement time series of each radar target. The measured 
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displacements of the radar targets are then referred to a stable reference point. Both PSInSAR and SqueeSAR can 
achieve an accuracy of about 5–6 mm for single measurement, with a geocoding error of few meters29,30; these 
values may vary slightly from point to point, depending on the distance from the reference point and the charac-
teristics of the scatterer. Average velocities are computed through a simple linear regression of the displacement 
data over the entire monitoring interval (Figs 1–3). Multi-interferometric analyses have a limited capability of 
measuring rapid movements due to the inherently ambiguous nature of the interferometric phase. The ambiguity 
related to the discrete sampling interval of the wrapped phase can in fact remain unresolved. The theoretical max-
imum detectable LOS velocity is usually in the range of some tens of cm/y; it primarily depends on the wavelength 
and revisit time of the SAR sensor, and secondarily on the specific phase unwrapping technique being used, the 
spatial pattern of the monitored deformation phenomenon, the density of radar targets, and data noise12. An 
in-depth description of advantages and limitations of the SqueeSAR algorithm, and of multi-interferometric 
techniques in general, is beyond the scope of this paper. These can be found in other works that are specifically 
focused on these topics11,13,14,24. SqueeSAR has been used to investigate the spatial and temporal distribution of 
ground deformation in a wide range of fields related to geotechnical engineering, such as landslides30,31, slope 
stability in open-pit mines32, subsidence induced by groundwater overexploitation33 or mining34, assessment of 
damage from tunneling or other excavation activities35, and stability of buildings and infrastructures36.

We performed failure-time predictions on radar targets showing relevant precursors by means of the 
well-known inverse velocity method7,9,22,37, which is based on extrapolating the intercept point on the time axis 
in a plot of inverse velocity versus time (i.e. instant of theoretical infinite velocity). Time series of LOS velocity 
were smoothed over a 3-point moving average prior to calculation of the reciprocal values. In each regression, in 
order to use an objective criterion of analysis, we looked for the amount of consecutive data points preceding the 
failure-time that would produce the highest R2 value (typically four to seven data points). In a few instances, the 
last data point before the actual failure-time was affected by a movement in the opposite direction with respect to 
the previous trend because of obvious phase wrapping, and was therefore discarded from the regression.

Data Availability
The raw interferometric products used in this study are freely distributed to the public by the European Space 
Agency in the framework of the Copernicus Sentinel-1 mission (https://scihub.copernicus.eu/). Data have been 
processed by means of the SqueeSAR algorithm (patented by TRE ALTAMIRA) and may be available upon rea-
sonable request.
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