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An Amazon stingless bee foraging
activity predicted using recurrent
artificial neural networks and
attribute selection
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Bees play a key role in pollination of crops and in diverse ecosystems. There have been multiple reports
in recent years illustrating bee population declines worldwide. The search for more accurate forecast
models can aid both in the understanding of the regular behavior and the adverse situations that may
occur with the bees. It also may lead to better management and utilization of bees as pollinators. We
address an investigation with Recurrent Neural Networks in the task of forecasting bees’ level of activity
taking into account previous values of level of activity and environmental data such as temperature,
solar irradiance and barometric pressure. We also show how different input time windows, algorithms of
attribute selection and correlation analysis can help improve the accuracy of our model.

Bees, for dietary requirements, forage on nectar and pollen produced by plants; in doing so, plants are passively
pollinated. Bees’ total requirements on plants for nutrition means that large scale foraging results is highly effi-
cient pollinators. An estimated 35% of human food production is dependent on bees’ pollination services'.
Brazilian stingless bees are important pollinators. In Amazon, Melipona bees are well represented, they produce
honey as an attractive way for rearing by traditional people*’. Worldwide, honeybee population declines have
been reported since the 1960s'. The decline in pollinator numbers has ecological and agricultural, and subsequent
economic consequences®. Factors responsible for colony declines have not been solely implicated, but include (i)
parasites, (ii) pesticides, (iii) weather changes, (iv) monoculture farming, and (v) mismanagement of beehives®.

In order to investigate these risk factors and safeguard pollinators” health, we argue that predictive models
can aid in the identification of behavior patterns. The predictive model can aid in the following manners: (i)
Monitoring the activity level of bees when their hives are managed for pollination may indicate when they are
most visiting the crop. It can be used to avoid applying pesticides during peak activity or to evaluate if their activ-
ity matches time-related pollination requirements of the crop. (ii) When the current behavior of the bees does not
match the predicted one, it may indicate that there is something different around the hive. It may trig an action
from the farmer to verify the hive environment. (iii) Determining the environmental variables that influence bees’
behavior.

Taking into account the above-mentioned points, we address an investigation related to forecasting of bees
behavior. We employ Recurrent Neural Networks (RNNs)®” and perform an investigation with several RNNs
architectures; we also take into account different weather variables aiming to understand the impact of each
weather variable on the level of activity. Therefore, the contributions of this paper are as follow: (i) after exploiting
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several RNN architectures, we show which perform best at forecasting bee behavior, (ii) we show how different
input size windows impact on the accuracy of the forecast, and (iii) we show how algorithms of attribute selection
and correlation analysis can help in improving the accuracy of the forecast. Hence, this work extends the work
by Gomes and collaborators® by presenting a detailed new investigation on the forecast problem with RNN using
environmental data as a descriptor along with the bees’ activities. Furthermore, we exploit attribute selection
techniques, aiming to find the best environmental features to increase the forecast accuracy.

Animal behavior science is an expanding field, employing technology and analytical improvements to further
develop understanding of animal behavior. Schultz and colleagues’® present mechanisms of flight guidance in
honeybee swarms. They argue that when a honeybee swarm takes off aiming to fly to a new location for its site,
less than 5% of the bees in the swarm have visited the site. Schwager et al.’® employed clustering techniques to
understand different behaviors in groups of cows. Schaerf and colleagues'! present how the characterization of
the interactions can aid in the understanding of emergent phenomenon.

Improvements in the understanding of bee behavior are also sought by Chena et al.'?, where it is employed an
image-based tracking system. Tu ef al.'® also exploit a computer vision system to analyze the behavior of honey-
bees. Gil-Lebrero et al.'* proposes a remote monitoring system to record temperature and humidity of hives, with
very low interference in the regular behavior of the bees. In our study, we employ Radio-Frequency IDentification
(RFID) tags. The advantage about RFID is that we can observe the behavior of individual insects and it allows us
to avoid reading other insects (ants, wasps, or other species of bees) that may be entering the hive (for spoliation
for example). It also presents good results for any light and weather condition. Arruda and collaborators'® and
Gama and collaborators'® also employ the same RFID technology we use in our research. Arruda et al.'® present
a methodology to identify different species of bees by its behavior. In their investigation, the Random Forest”
algorithm presented the best results for the classification. Gama et al.' uses a time series of RFID collected data
aiming to validate a methodology to analyze behavioral anomalies where a Local Outlier Factor'® algorithm is
investigated for the anomaly detection.

Gated Recurrent Unit (GRU)® and Long Short-Term Memory (LSTM)” recurrent unit structure are investi-
gated in our work. Martens and Sutskever'® and Chung and collaborators® present evaluations of recurrent neu-
ral networks in other domains, where data appears sequentially. Chung and collaborators* highlight that “The
results clearly indicate the advantages of the gating units over the more traditional recurrent units. Convergence
is often faster, and the final solutions tend to be better. However, the results are not conclusive in comparing the
LSTM and the GRU, which suggests that the choice of the type of gated recurrent unit may depend heavily on the
dataset and corresponding task”. Furthermore, Jozefowicz and colleagues®' showed that for a great class of prob-
lems, GRU outperformed LSTM. Their study is also corroborated by Carvalho and colleagues?, were GRU units
showed lower dispersion than LSTM on the results.

Another factor which influences the capabilities of the neural networks is its number of hidden layers. In
an intend to better understand recurrent neural networks, Karpathy, Johnson, and Fei-Fei* performed several
evaluations that allowed them to argue that results are improved by the use of an at least two-level architecture.
In their evaluations, the use of a three-level architecture did not improve the results consistently, as they show
that results from a three-level or two-level were somehow similar. Besides, they show that LSTM and GRU cells
also performed with slight results differences, but outperforming the not-gated RNN. The massive exploration
of Recurrent Neural Networks performed by Britz and colleagues® showed that results from LSTM networks
outperform GRU networks. Britz and colleagues also point out that, related to training speed, both architectures
presented similar results, as the computational bottleneck in their structure was the softmax transfer function. In
summary, the best architecture depends on the case in study.

Machine learning models might be improved by selecting the best features in a given context. Altmann et al.>®
suggest a method called Permutation Feature Importance (PFI) where the features are evaluated and the best
ones receive a greater score. This technique is commonly used in Random Forests, as described by Breiman®.
Considering RNN and attribute selection mechanisms, Suhara et al.?” showed a problem where the PFI allowed
obtaining better results, by removing lower score features. In our work we also exploit the Permutation Feature
Importance score and extend it by a correlation analysis. We evaluate several topologies of LSTM and GRU neural
networks to forecast bees’ level of activities, taking into account environmental data.

Methods

Data Collection. Activities from 1280 bees were collected from August 1st to 31st, 2015. The bees were
tagged with UHF RFID tags (Hitachi Chemical, Tokyo), as shown in Fig. 1(d). The tags were glued to the thorax of
the bees using Super Glue (Henkel Corp, Diisseldorf). The tagged bees were evenly distributed between 8 hives, as
shown in Fig. 1(a). In this 4-week data collection, more than 127,000 activities we recorded. The RFID tags allow
us to track bees’ behavior, which is used to advance baseline knowledge about this species. We choose to study
the Melipona fasciculata because it is a native social bee of the Amazon region, very important for pollination and
honey production.

Figure 1 presents the system environment and Fig. 1(b) presents a frontal view of the adapted hive entrance,
containing a PVC box for storing electronic items. Figure 1(c) shows electronic system details, containing a Intel
Edison TM for RFID reader control and data storage, and the USB RFID reader. Every occasion a tagged bee pass
by the RFID reader, it records a data point with a timestamp and the individual bees’ ID number. Along with bees’
activity, we also collected data from temperature (°C), barometric pressure (hPa) and solar irradiance (kJ/m?).
Detailed hardware and software system design can be found in the work by de Souza and colleagues®.

We define the bees’ level of activity as the hourly total number of bees’ movements, divided by the number of
tagged bees. The level of activity, per bee per hour, ranges from 0.0 (no bee performing any activity) to approxi-
mately 2.0 (two movements per hour). During our data collection phase, there were between 240 and 320 tagged
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Figure 1. The system environment. (a) The eight M. fasciculata hives employed in this study. (b) Frontal view
of the adapted hive entrance: it contains a PVC box for storing electronic items. (c) Electronic system details:

(1) Intel Edison TM for RFID reader control and data storage, (2) USB RFID reader, (3) Transparent hose where
the bees pass upon the RFID reader, (4) Hive of M. fasciculata, and (5) PVC box. (d) Tagged M. fasciculata at the
hive entrance.

bees on average, per day. Figure 2 shows a section of the data employed in this research, where the time series of
activity level and weather can be observed.

The Model.  Multi-layer Perceptron Artificial Neural Networks are a machine learning method engineered as
an analogy to the brain’s behavior®*°. Simple processing units, called neurons, linked in a network, are respon-
sible for calculating mathematical functions that allow fitting inputs to outputs®'. Depending on the problem we
want to solve, different architectures (or topologies) can be exploited in the search for the best fit. Linearly sepa-
rable problems often can be solved with one layer of neurons, however, non-linear problems usually need more
layers to be able to perform best fits. Neural Networks have been applied in many contexts, such as forecasting
of drylands®, classification of human electroencephalogram??, monitoring of memory**, robotics and computer
vision®.

Recurrent Neural Networks extends regular Neural Networks by adding the capability of recurrences within
the neurons. This recurrence allows the network to handle variable-length sequences®. In doing so, the Recurrent
Neural Networks present the ability to store internal memory and to deal more naturally with dynamic temporal
behavior”’-*. In its usual form, the recurrence is represented by h”) = f(h""~ 1, x\¥; 9), where h is the hidden state
at time t. k""" represents the previous hidden state. x'"’ is the current input vector and @ is the set of shared
parameters through time. As mentioned by Gomes et al.$, originally, RNNs were difficult to train due to the prob-
lem of the vanishing gradient. It is also mentioned in the work by Chung et al.?’. Huang et al.** describe this
phenomenon in the following way: “as the gradient information is back-propagated, repeated multiplication with
small weights renders the gradient information ineffectively small in earlier layers” Hence, to overcome this prob-
lem, some methods have been proposed, as the clipped gradient presented by Chung and colleagues® and the use
of activation function with gated units. Gated units are able to monitor the quantity of data that enters the unit,
the quantity of data that is stored and the quantity of data that is forwarded to the next units. The two more effec-
tive types of gated unit are the Long Short-Term Memory (LSTM)” and the Gated Recurrent Units (GRU)®.

For the RNN deployment, we use Keras (https://keras.io) with Theano (http://deeplearning.net/software/
theano) backend. Scikit-Learn (https://scikit-learn.org/stable) was also used to allow getting metrics and methods
for normalization. The RNN was built on Python 3.7.

Exploiting RNN Topologies. In order to find the most suitable RNN topology to forecast the activity level
of bees, we initially investigate eight different recurrent neural networks, considering four topologies (with differ-
ent number of neurons and layers) and different gated units (GRU and LSTM). The designed topologies were built
with: two hidden layers with two recurrent units in each layer (2X2), two hidden layers with five recurrent units in
each layer (2x5), five hidden layers with two recurrent units each (5x2), and five hidden layers with five recurrent
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Figure 2. Section of the time series employed in this research, from August 7th to 12th, 2015. It presents hourly
values of bees’ level of activity, temperature (°C), barometric pressure (hPa) and solar irradiance (kJ/m?).
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Figure 3. One of the developed topologies: it consists of 4 neurons organized in two hidden layers. In this
figure, we show as inputs: Activity Level, Temperature, Solar Irradiance and Barometric Pressure. The output is
the forecast of Activity Level at t+ 1. Evaluated hidden layers are LSTM and GRU.

units in each layer (5x5). Hence, the eight models designed to the investigation are: {GRU2x2, GRU2x5, GRU5x2,
GRU5x5} and {LSTM2x2, LSTM2x5, LSTM5x2, LSTM5x5}. Figure 3 depicts one of the proposed architectures
(specifically 2x2).

Related to training and testing each architecture, we employ a hold-out method. We evaluate the model using
the Root Mean Square Error (RMSE), which is obtained by:

RMSE = /%Z(yi - y:_)2
i=1

where y is the observed value and  is the predicted value by the model.

In the hold-out method, the datasets are randomized, and usually, 2/3 of the data is used for the training of
the model, and the remaining 1/3 is used for the model evaluation. In our study, each model was trained and
evaluated 30 times, allowing a more confident statistical evaluation. The initial evaluation aimed to determine the
most suitable RNN topology for our data. The data were organized into a table consisting of 5 columns, the first
four being the RNN inputs (temperature, barometric pressure, solar irradiance, previous activity), and the fifth
the expected output in hours’ time (see Fig. 3).
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Table 1. Structure of the evaluated input vectors (for bees’ level of activity, barometric pressure, solar irradiance
and temperature). Related to the input vector, t, means the current time (i.e. the hour before the event to
forecast), t_, means 3 hours before the event to forecast, t_; means 6 hours before the event to forecast an so on.
Figure 4 shows a graphical representation of the input vector.
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Figure 4. Schematic diagram presenting generic inputs and outputs values to be used in the forecast model. The
points in orange represent the values to be employed as inputs of the RNN. The points in green represent output
values. Note that this is a generic time series and it is not intended to directly represent real data.

As previously mentioned, as a first step we seek to exploit several RNN architectures. After that, we evaluate
how different input size windows impact on the accuracy of the forecast. Finally, we show how algorithms of
attribute selection and correlation analysis can help in improving even further the accuracy of the forecast.

Finding the Best Size for the Input Window.  Aiming to advance the results of the forecast, a second
evaluation was performed. We employ the best architecture found in the previous step and evaluate different sizes
for the input window, that is, different amounts of preceding data to forecast the next level. It demands the RNN
the ability to keep valuable information through time. The evaluations were undertaken to employ the current
hour, 3, 6, 12, 24, 36, 48, and 60 hours prior to the event.

Henceforth, we represent current hour as ¢, and 3, 6, 12, 24, 36,48 and 60 hours as t_,, t_s, t_1;, t_53, t_35, t_47
t_so (see Table 1 and Fig. 4). We perform the same test using bees’ level of activity and environmental variables
(solar irradiance, barometric pressure and temperature). Table 1 shows the evaluated input vectors (for bees’ level
of activity, barometric pressure, solar irradiance and temperature).

Figure 4 presents a schematic diagram presenting generic inputs and outputs values to be used in the forecast
model. The figure presents the model we use, although, it does not represent real data gathered by the system. The
aim is intended to graphically represent the mean in winch the values are employed. In this figure, we represent
the window w12 which is a vector composed by the current time (¢,), 3, 6 and 12 hours prior the event to forecast.

Selecting the Best Environmental Features. Our third effort to improve the forecast accuracy was per-
formed using a technique to select the best environmental predictors. This process consists of selecting the best
time window for each variable, join them in one dataset and select the most important ones with lower temporal
correlation. As Table 1 shows, each window can have a maximum of 8 temporal values. It means that, a dataset
incorporating all 3 environmental variables could have 24 features. For this reason, we selected the best features
based on feature importance score and correlation values.

In order to calculate the feature importance score, we used the Permutation Feature Importance (PFI) method.
This algorithm works as shown in Fig. 5. After it shuffles a variable, it allows the verification of the new value of
RMSE, guiding the process of removing unnecessary or disturbing features. The PFI works by fitting the RNN
with the training set and then applying this RNN to the test data (Dt). The RMSE found is called Eo. Each input
feature is shuffled on the corresponding column Dt generating Dt'. Applying the RNN on this D¢’ will give us a
new RMSE called Ed. The difference between Ed and Eo is called the feature importance score of the “suffled”
feature. A high score means that Ed is bigger than Eo, in other words, removing the particular feature increases
the model’s RMSE.
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Figure 6. Result (RMSE) for each architecture. A Welch Two Sample t-test showed that the GRU2x2 RNN
outperforms the other topologies. The GRU2x2 RNN shows a mean RMSE of 0.208.

Results

Investigation on RNN architectures. Our first evaluation aims to understand which is the best topology
to solve our forecast problem. We take into account the current level of activity (act,) and environmental features
such as temperature (temp,), solar irradiance (rad,), and barometric pressure (press,,) to forecast the next level
of activity (act,, ;). Due to the random initialization of the network’s weights, each architecture was trained and
evaluated 30 times. Figure 6 presents the error (RMSE) for each architecture.

In order to validate which RNN architecture best suited this context, the 8 RNNs were statistically compared.
First, we used the Shapiro-Wilk normality test to verify the distribution of the results. For all the sets, except
GRU2x5, the Shapiro-Wilk showed p-values larger than 0.05, which means that the distributions can be accepted
as parametric ones (i.e. Gaussian distributions). Hence, we employed the Welch Two Sample t-test to determine
the similarity among the results. Since the GRU2x2 showed the lowest median (RMSE = 0.208), we compared it
to the others. The comparison of GRU2x2 (lowest median) with other architectures showed p-values smaller than
0.05. Thus, GRU2x2 is the most appropriate architecture for the proposed context.

Investigation on the input window size of bees’ level of activity and weather attributes. Our
second evaluation aims to determine the best size for the input window. Input attributes were analyzed individ-
ually in order to find the best temporal window size for each one. Hence, we employed the best topology found
in the previous evaluation with different windows size (input vectors wl to w60, as shown in Table 1). We took
into account the following inputs: bees’ level of activity, temperature, solar irradiance and barometric pressure.

Figure 7 shows the errors for each different input vector. Results are presented from 30 executions of each
RNN. Figure 7(a) shows the error taking into account different window size of preceding level of activity fore-
casting next levels of activity. The best (lowest) median value was found in the set Act,, with an RMSE of 0.147.
We performed a statistical test among the sets to verify if any other set is equivalent to the Act,,s. The Welch Two
Sample t-test between Act, ¢, and Act,,,, showed a p-value of 0.90. Hence, the sets can be considered as equivalent
with a confidence level of 95%. Taking into account that the set Act,,, used fewer variables and the results were
statistically equivalent to Act,,, we chose Act,,, as the best set of attributes level of activity forecasting next levels
of activity.

Figure 7(b) shows the error taking into account different window size of temperature forecasting levels of
activity. The best (lowest) median value was found in the set Temp, 3, with an RMSE of 0.249. We performed
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Figure 7. RMSE for each evaluated window size. (a) Activity. (b) Temperature. (c) Solar Irradiance.
(d) Barometric Pressure.

a statistical test among the sets to verify if any other set was equivalent to the Temp,, ;5. The Welch Two Sample
t-test between Temp,,;c and Temp,,,, showed a p-value of 0.60. Hence, the sets can be considered as equivalent
with a confidence level of 95%. Taking into account that the set Temp,,,, used fewer variables and that the results
were statistically equivalent to Temp,, 36, we chose Temp,,,, as the best set for the attribute temperature forecasting
next levels of activity. Figure 7(c) shows the error taking into account different window size of solar irradiance
forecasting levels of activity. The best (lowest) median valeu was found in the set Rad,, s with an RMSE of 0.210.
We performed a statistical test among the sets to verify if any other set was equivalent to the Rad, 5. The Welch
Two Sample t-test between Rad, 5 and Rad,,,, showed a p-value of 0.52. Hence, the sets can be considered as
equivalent with a confidence level of 95%. Taking into account that the set Rad,,,, used fewer variables and that
the results were statistically equivalent to Rad,, 4, we chose Rad,,,, as the best set for the attribute solar irradiance
forecasting levels of activity.

Finally, Fig. 7(d) shows the error taking into account different window size of barometric pressure forecasting
levels of activity. The best (lowest) median was found in the set Press, s, with an RMSE of 0.514. We performed a
statistical test among the sets to verify if any other set was equivalent to the Press,,¢,. No other set showed statis-
tical similarity, being all the comparisons presenting p-values lower than 0.05. Hence, the sets can be considered
distinct with a confidence level of 95%. Taking into account that the set Rad, 4, showed the best median value and
no other set was equivalent, we chose Press, ¢, as the best set for the attribute barometric pressure forecasting levels
of activity.

The next section presents a combination of the best sets of activity and weather variables obtained in this
evaluation, seeking to improve accuracy.

Combining Features. ~ After determining the best window size for each attribute, we extended the analysis by test-
ing various combinations of attribute predictors. Thus, the following sets were created: {Activity (A)}, {Activity,
Solar Irradiance, Temperature (ART)}, {Activity, Solar Irradiance, Temperature, Barometric Pressure (ARTP)},
{Solar Irradiance, Temperature (RT)}, {Solar Irradiance, Temperature, Barometric Pressure (RTP)}.
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Figure 8. Result (RMSE) for the feature combination incorporating the best window size for each attribute.

For theses sets, we employed the best input size windows found in the previous evaluation: activity, solar
irradiance and temperature using window =24 and barometric pressure using window = 60. We evaluate sets
with both previous activity (sets with A) or not (sets without A), since the data from activity may not always be
available - in this case, we can estimate the level of activity using weather variables alone. The main motivation
in using environmental variables to forecast bees’ activities is motivated by the fact that the RFID system is not
always available for use due to the cost and/or management aspects.

Figure 8 shows the result (RMSE) for the feature combination with the best windows size of each attribute. We
can see that using previous activity (w24) alone is the best to forecast next levels. Although it seems that the sets in
which barometric pressure is used, have decreased accuracy, a statistical comparison among RT and RTP shows
that they are statistically equivalent.

As previously defined, the activity level is calculated considering the total number of bees’ activities divided by
the number of live bees at that period. Which means that, knowing the activity levels of the preceding 24 hours,
we can forecast the level of activity with an average RMSE of 0.147. Since the activity level ranged from 0.0 to 2.0,
the mean error of this configuration is about 8%. Taking into account that the average error in the first evaluation
(GRU2x2 ARTP_w1) was 0.208 and the average error using the ACT_w24 is 0.147, we have about 30% improve-
ment in the accuracy by using ACT_w24 window size as input.

In the next section we exploit the Permutation Feature Importance algorithm and perform a Correlation
Analysis aiming to improve the forecast accuracy, employing weather variables alone.

Feature importance and correlation analisys. We aim to investigate the importance of environmen-
tal variables alone as the predictors for bees’ activity level, employing the following environmental variables:
solar irradiance (R), temperature (T) and barometric pressure (P). Therefore, we exploit the Permutation Feature
Importance algorithm and perform a Correlation Analysis. We took into account the best sets found in previous
section: Solar Irradiance and Temperature with w24 and Barometric Pressure with w60.

Figure 9 shows the feature importance score for each attribute. We can see that temperature and solar irradi-
ance present higher scores, which suggests a strong influence on bees’ activity level. Furthermore, we can see some
attributes with lower than zero score, which suggests that they are decreasing model’s accuracy. Figure 10 shows
the feature correlation heatmap. Highly correlated attributes are often considered redundant because they do not
add useful information to the model. Furthermore, they can add noise and be a confounding factor in the training
of models. Hence it is a good practice to remove highly correlated attributes.

We created 3 new datasets based on the results of feature importance (scores) and correlation values. The
first considers all features with score larger than 0.0 (named FSLO). We then evaluated the correlation among the
attributes, and created datasets removing attributes that showed correlation larger than 70% and 80% (named
CORR?70 and CORR80 [upon FSL0]). We aim to evaluate if the accuracy improves when removing highly corre-
lated attributes, given that highly correlated attributes may be a confounding factor when used in conjunction.

Figure 11 shows the result of the RNN when using sets with feature score larger than 0 (FSL0), sets removing
correlated attributes (correlation greater than 80% and 70%), and also shows the RTP found in the evaluation
of window size (R_w24, T_w24, P_w60). We used the Shapiro-Wilk normality test to verify the adequacy of the
results to parametric or non-parametric distributions. For all the sets the Shapiro-Wilk showed p-values larger
than 0.05, which means that the distributions can be accepted as parametric ones. Hence, we employed the Welch
Two Sample t-test to verify the similarity among the results. The comparison showed that both sets are distinct
from each other, since all tests showed p-value smaller than 0.05 - It means that the results are statistically distinct
with 95% of confidence. The best one is the CORR80 since it showed the lowest error.

We can see that the PFI outperforms the regular RTP since it can remove features that have a confounding
effect upon model’s accuracy. Moreover, we can see that the mapping results of correlation analysis also
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Figure 9. Feature Importance score for each attribute. Higher the score, higher the influence to improve
model’s accuracy.
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Figure 10. Feature correlation heatmap.

demonstrated that a correlation threshold of 80% was ideal in our experiment, however, it must be highlighted
that this value is likely problem dependent.

Employing weather variables alone, and using a technique to find the best window size, allowed us to obtain
an average RMSE error of 0.229 (Section “Investigation on the Input Window Size of Bees’ Level of Activity and
Weather Attributes”). After employing the PFI and performing an analysis of correlated variables, we were able to
decrease the average RMSE error to 0.212, being approximately 7.5% better. Figure 12 shows a subset of six days
of our data, presenting observed and predicted values, using environmental attributes as predictors.

Conclusion and Future Work
This work aimed to investigate RNN on the task of predicting bees’ level of activity, which can be approached
as a time-series forecasting problem. In the first step, we investigated eight different RNN upon data from bees’
activity and environmental data (temperature, solar irradiance and barometric pressure) finding that GRU out-
performs LSTM in this particular problem. It was followed by the evaluation of the best window size for each
attribute, in which we perceive that employing larger inputs help improving the accuracy of the model. For exam-
ple, knowing the activity levels of the preceding 24 hours allowed us to forecast the level of activity with an average
RMSE of 0.147, being about 30% better than using only one hour ahead attributes.

In the final step, we exploited the Permutation Feature Importance algorithm and performed a Correlation
Analysis aiming to improve the forecast accuracy employing environmental variables alone. Based on the
assumption mentioned before, the cost and/or technical aspects could make the RFID system unavailable. For
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Figure 12. Observed and predicted activity levels, using attributes with lower than 80% correlation and higher
than zero permutation feature importance score.

this reason, we investigated the importance of as predictors for bees’ activity level, employing the following envi-
ronmental variables: solar irradiance (R), temperature (T) and barometric pressure (P). Employing weather var-
iables alone, and using a technique to find the best window size, allowed us to obtain an average RMSE error of
0.229. After employing the PFI and an analysis of correlated variables, we were able to decrease the average RMSE
error to 0.212, being approximately 7.5% better.

A better understanding of bees’ behavior can contribute to the environment, fruit producers and to our lives.
In this research, we pointed out a way to improve forecast of bees’ activity by means of RNNs. Although, there are
some future work we plan to tackle in the continuity of this project; those are more related to the environmental
evaluation and the influence of (i) parasites, (ii) pesticides, (iii) weather changes, (iv) monoculture farming, and
(v) inappropriate management of beehives.

Data availability
The data we use in this study is available at https://doi.org/10.13140/RG.2.2.14287.02723. A sample source-code
can be found at https://doi.org/10.13140/RG.2.2.27938.17603.
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