
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2403  | https://doi.org/10.1038/s41598-021-82145-z

www.nature.com/scientificreports

Social media reveal ecoregional 
variation in how weather influences 
visitor behavior in U.S. National 
Park Service units
Emily J. Wilkins1,2*, Peter D. Howe1 & Jordan W. Smith1,2

Daily weather affects total visitation to parks and protected areas, as well as visitors’ experiences. 
However, it is unknown if and how visitors change their spatial behavior within a park due to daily 
weather conditions. We investigated the impact of daily maximum temperature and precipitation 
on summer visitation patterns within 110 U.S. National Park Service units. We connected 489,061 
geotagged Flickr photos to daily weather, as well as visitors’ elevation and distance to amenities (i.e., 
roads, waterbodies, parking areas, and buildings). We compared visitor behavior on cold, average, 
and hot days, and on days with precipitation compared to days without precipitation, across fourteen 
ecoregions within the continental U.S. Our results suggest daily weather impacts where visitors go 
within parks, and the effect of weather differs substantially by ecoregion. In most ecoregions, visitors 
stayed closer to infrastructure on rainy days. Temperature also affects visitors’ spatial behavior within 
parks, but there was not a consistent trend across ecoregions. Importantly, parks in some ecoregions 
contain more microclimates than others, which may allow visitors to adapt to unfavorable conditions. 
These findings suggest visitors’ spatial behavior in parks may change in the future due to the 
increasing frequency of hot summer days.

Climate change poses risks to ecosystems within parks and protected areas as well as the outdoor recreation 
opportunities they provide1–3. Visitation will likely change at most parks as temperatures continue to rise, extreme 
heat events become more common, and precipitation becomes more variable3–5. To date, projected impacts to 
visitation in response to warming temperatures and extreme heat events have only been studied at the scale of 
whole park units4,6; we are unaware of any research examining how the spatial patterns of visitation may change 
within parks. Understanding how visitation patterns may change within a park due to weather can help park 
managers plan and prepare for managing visitor flows, both on a daily scale and when thinking about future 
climate change.

The overall objective of this study is to explore how the spatial behavior of visitors to U.S. parks changes during 
the summer in response to temperature and precipitation. Visitors’ spatial behavior captures where individuals 
choose to go during their park visit. Outdoor recreationists in parks make sovereign decisions about which trails 
to hike, which rivers to float, and which scenic overlooks to stop at, among many other decisions affecting the 
location of where outdoor recreation occurs7. All of these decisions are influenced, to varying degrees, by the 
weather. This research quantifies how, and to what extent, the weather influences park visitors’ spatial behavior 
during the summer. We focus on summer because the influence of weather on the spatial patterns of visitation 
likely differ by season, and because visitation-related management challenges are most often experienced in the 
summer, when visitation tends to be highest8.

We focus on two measures of visitors’ spatial behavior: the elevation of an outdoor recreation trip and the 
distances of that trip from roads, waterbodies, parking areas, and buildings. We test the hypotheses that visitors 
may be more likely to visit higher locations and stay closer to roads, waterbodies, parking areas, and buildings 
on extremely hot days, particularly in the warmest ecoregions. We hypothesize this because previous research 
shows there is a threshold that visitors consider too hot in parks, which may make visitors more likely to stay 
near infrastructure or seek cooler temperatures at higher elevations6,9. On days with high precipitation, we expect 
that visitors will stay at lower elevations and be closer to roads, parking areas, and buildings.
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To test these hypotheses, we used geotagged social media to understand exact dates and locations of visits 
within 110 U.S. National Park Service (NPS) units. NPS units include national parks, national recreation areas, 
national monuments, and national seashores, among others; these are all considered different designations of 
parks10. Because of the geographic diversity of NPS units, the influence of weather on visitor behavior is likely to 
be highly variable. Warmer than average temperatures may cause visitors to travel farther from roads in relatively 
cool climates, but may cause visitors to stay closer to roads in hot climates. To account for this variability, we 
examine the proposition that the impact of weather on visitors’ spatial patterns within parks varies by ecoregion. 
Ecoregions represent areas in North America where the ecosystems are generally similar11. Figure 1 shows the 
categories of ecoregions used in this study; it also shows the 110 NPS units in this study.

We used geotagged social media from Flickr to understand spatial patterns of visitation given the fine spatial 
and temporal resolution of these data. Flickr is a photo-sharing application that has been previously used to 
understand park visitation and spatial patterns of visitors in parks13. We connected the dates and locations of 
posts to daily weather data at each place and time, and compared spatial distributions of visitors on cold, average, 
and hot days, as well as on days with precipitation compared to no precipitation. Our work is informed by both 
the growing body of research examining the influence of weather on outdoor recreation, as well as the literature 
on using social media data to understand park visitors4,6,13,14.

The impact of weather on outdoor recreation
Outdoor recreationists often select their destinations and the timing of their trips based on the climate15. Once 
on-site, weather influences the types of activities chosen, the length of stays, and the amount of satisfaction 
obtained16. However, tourists’ sensitivities to and preferences for weather differ depending on the climate of 
their destination17. For instance, tourists in mountain areas or urban areas believe the ideal temperature is lower 
than the ideal temperature desired by beach tourists18,19. There is substantial variation found in the literature 
for optimal temperatures and thresholds for outdoor recreation, largely because outdoor recreation settings and 
the activities they support vary widely, and many studies tend to be focused on one or two specific settings20,21. 
For example, precipitation was found to be negatively correlated with summer visitation to a forested and beach 
park in Canada, and temperature positively correlated with visitation, up to a threshold of 33 °C, after which 
visitation declined14. A different study in five desert U.S. national parks found visitation declined at three parks 
once a threshold of 25 °C was reached, while two parks did not exhibit a temperature threshold6. We utilize 
nationwide visitation and weather data to analyze the impact of daily weather on the spatial behavior of visitors 
across multiple settings.

Figure 1.   Locations of the 110 NPS units used in this study and continental U.S. ecoregions used to categorize 
parks. Figure created in R version 3.6.1 (www.r-proje​ct.org) with the tmap package12.

http://www.r-project.org
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Changing temperature and precipitation patterns are likely to directly impact both the supply of and demand 
for outdoor recreation opportunities, although the impacts will also differ by activity and geographic region3,22. 
For example, previous research has found the impact of monthly weather averages on visitation to Australian 
parks varied by climate region23. Increased temperatures due to climate change have already expanded the length 
of the peak season in U.S. national parks24. Warmer than average temperatures generally equate to longer seasons 
in which individuals can participate in warm-weather recreation activities1. However, the ways in which weather 
impacts park visitation is likely to be dependent upon the geographic features of particular parks. Some outdoor 
recreation destinations may see visitation decline after reaching a certain temperature threshold (e.g., 25–33 °C), 
while parks with a greater number of different microclimates accessible to visitors (e.g., mountain parks or those 
with deep canyons) may continue to experience visitation increases above the threshold6.

Most studies to date have not taken into account different microclimates within a single destination. For 
example, Rutty and Scott25 found that coastal tourism areas contained varying microclimates, with thermal 
conditions differing up to 4 °C at various areas of a particular resort. Although some outdoor recreation desti-
nations may appear “too hot” under altered climatic conditions4, it is unknown whether visitors may adapt by 
visiting different areas within a park (e.g., higher altitudes or near bodies of water). By joining the location and 
date of social media posts with historical weather data, we provide the first high-resolution understanding of 
how temperature and precipitation impact the spatial behaviors of outdoor recreationists within parks in the U.S.

Using social media data in parks
Over the last decade, researchers have found social media data to be helpful to inform outdoor recreation 
management in parks and protected areas13,26,27. Social media can be used as a relatively accurate estimation of 
visitation to parks and protected areas at annual and monthly scales28–30. For example, social media from Flickr 
was found to be useful to discern monthly trends in visitation to national parks in the western U.S.29. Although 
many land management agencies in the U.S. estimate visitation through surveys, administrative data, and traffic 
counters31, social media data are unique in that they allow for visitation estimates at fine spatial and temporal 
resolutions. The NPS only produces visitation estimates at the monthly scale31, whereas social media data can 
show temporal trends in visitation at the hourly resolution32,33. This is because the timestamp that the photo was 
taken, and the geographical coordinates of the photo, are recorded in metadata automatically recorded by and 
stored on individuals’ smartphones34. For instance, one study used multiple years of geotagged Flickr data to 
understand trends in what time of day, and what day of the week, people tend to visit a national park in Spain32. 
Additionally, geographic coordinates of posts are typically accurate within 5 m if photos are taken with a GPS-
enabled device35, making the spatial resolution higher than other sources of visitation data.

Researchers have also leveraged the spatial specificity of geotags to show trends in where visitors go within 
parks and protected areas32,36–38. By mapping social media along with other geospatial data, researchers can 
better understand what factors relate to visitor demand within a park36,39,40. For example, previous research has 
concluded the spatial patterns of Flickr posts in parks differ by season, and the presence of trails was the most 
important factor predicting Flickr photos in the summer in national parks36. The resolution of geotagged social 
media can be leveraged to understand how visitation patterns relate to infrastructure, like trails and roads, as 
well as environmental factors like weather.

Results
Correlations between flickr data and NPS‑reported visitation.  The correlation between Flickr 
Photo-user-days (PUDs) and NPS-reported visitation across 108 units was Rs = 0.707 (n = 108, p < 0.001). At the 
monthly scale, the correlation was Rs = 0.709 (n = 540, p < 0.001). These data are summed from 2006 to 2018 and 
include the months of May–September. This correlation is similar to other studies comparing social media posts 
in parks to other sources of visitation data27. Thus, results suggest geotagged Flickr data are a useful proxy for 
summer visitation in NPS units.

Descriptive statistics.  Table 1 shows all the means and standard deviations by ecoregion for daily maxi-
mum temperature at the visitor centers and Flickr points, daily precipitation at the visitor centers and Flickr 
points, and elevation at the visitor centers and Flickr points. Mean maximum daily temperature at visitor cent-
ers was highest in the warm desert ecoregion (37.1 °C) and lowest in the marine west coast forest ecoregion 
(22.5 °C). Mean daily precipitation at visitor centers was highest in the tropical wet forest ecoregion (6.3 mm) 
and lowest in the Mediterranean California ecoregion (0.1 mm). Overall, there was not much variation in the 
amount of daily precipitation at visitor centers compared to Flickr points. Elevation at visitor centers was high-
est for the cold deserts ecoregion (1829.0 m), and highest for Flickr points in the Northwest forested mountains 
ecoregion (1999.2 m). Flickr points in the Northwest forested mountains ecoregion had the largest standard 
deviation for elevation, indicating this ecoregion has the largest range of elevations visitors frequent. Elevation 
was lowest in the tropical wet forests ecoregion (1.2 m at the visitor centers, and 1.1 m at Flickr points).

Table 2 shows the means and standard deviations by ecoregion for the distance from each Flickr point to the 
nearest road, waterbody, parking area, and building. Mean distance to roads ranged from 9.3 m (Southeastern 
USA plains) to 165.2 m (temperate Sierras). Across all ecoregions, the mean distance to roads was 63.0 m, and 
the median distance to a road was 10.9 m. This indicates many visitors to NPS units stay very close to roads in 
the summer. In most ecoregions, visitors were farther from buildings and designated parking areas compared 
to roads. These results suggest many visitors may take photos from their cars, or from pullout areas on the side 
of roads.
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Microclimates within parks.  Figure 2 shows the distributions for the difference in daily maximum tem-
perature between the visitor center and individual Flickr point locations. Wider distributions (e.g., Northwest 
forested mountains ecoregion) indicate more microclimates within the parks, while narrower distributions (e.g., 
Southeastern USA plains) indicate daily temperatures are similar across the whole park unit. These microcli-
mates represent the differences in temperature between where people visit compared to the visitor center; they 
do not necessarily represent differences in daily temperature across all park areas. Since some places may be 
inaccessible, we only explored temperature differences, and thus microclimates, in park areas that receive visita-
tion.

Overall, there is less variation in the difference in daily precipitation between the visitor centers and Flickr 
point locations. At least 50% of the Flickr points had the same daily precipitation as the visitor centers in every 

Table 1.   Means and standard deviations (in parenthesis) for all weather data and elevation by ecoregion. 
Values represent data from May to September.

Ecoregion Flickr n
Max. temp at visitor 
centers (°C)

Max. temp at Flickr 
post (°C)

Precip. at visitor 
centers (mm)

Precip. at Flickr post 
(mm)

Elevation at visitor 
centers (m)

Elevation at Flickr 
post (m)

Warm deserts 25,784 37.1 (6.6) 35.2 (7.2) 0.3 (2.0) 0.3 (2.3) 478.3 (403.1) 722.2 (560.0)

Southern semi-arid 
highlands 1258 33.5 (4.6) 33.1 (5.7) 1.2 (3.5) 1.2 (3.7) 1088.9 (284.1) 1100.6 (479.3)

Tropical wet forests 2157 32.3 (1.6) 32.4 (1.6) 6.3 (10.3) 6.9 (12.7) 1.2 (0.4) 1.1 (0.9)

Southeastern USA 
plains 1391 29.6 (3.8) 29.5 (3.8) 3.9 (9.2) 3.9 (9.1) 210.4 (88.4) 197.9 (89.7)

Temperate Sierras 797 29.5 (4.9) 29.3 (5.5) 1.3 (4.8) 1.3 (4.7) 1506.5 (197.5) 1521.3 (350.2)

Mississippi alluvial and 
southeast USA coastal 
plains

18,337 27.6 (4.2) 27.8 (4.3) 3.5 (10.8) 3.2 (9.9) 5.1 (3.8) 3.7 (7.0)

Cold deserts 86,804 27.3 (6.1) 27.4 (6.0) 1.1 (3.1) 1.0 (3.1) 1829.0 (467.1) 1830.8 (501.7)

Ozark, Ouachita-
Appalachian forests 17,830 27.1 (3.9) 25.3 (4.6) 4.1 (8.3) 4.6 (8.9) 387.0 (106.2) 770.3 (492.3)

Great plains 24,901 26.3 (5.0) 26.3 (5.0) 2.6 (6.9) 2.8 (7.4) 375.3 (241.0) 385.2 (258.0)

Mixed wood plains 14,228 24.1 (4.2) 23.8 (4.3) 3.1 (7.6) 3.3 (7.9) 99.0 (86.8) 172.5 (128.8)

Northern forest 6035 24.0 (4.2) 24.0 (4.2) 3.1 (7.7) 3.0 (7.9) 265.6 (93.3) 211.1 (47.0)

Northwest forested 
mountains 209,173 23.7 (6.7) 21.0 (6.0) 0.9 (2.8) 1.0 (3.0) 1606.8 (685.1) 1999.2 (770.6)

Mediterranean Cali-
fornia 76,508 23.0 (4.3) 22.5 (4.2) 0.1 (1.2) 0.1 (1.3) 77.7 (63.3) 82.9 (137.6)

Marine west coast 
forest 3858 22.5 (3.2) 21.7 (3.4) 0.7 (2.8) 0.7 (2.7) 47.5 (0.0) 97.1 (126.1)

Table 2.   Means and standard deviations (in parenthesis) for all distance measures by ecoregion. Values 
represent data from May to September. We did not use road or parking data for three units (Channel Islands, 
Isle Royale, and Apostle Islands) because these parks are islands that do not have publicly accessible roads or 
parking.

Ecoregion Flickr n Dist. to road (m) Dist. to water (m) Dist. to parking (m) Dist. to building (m)

Warm deserts 25,784 83.9 (279.6) 3697.9 (9165.7) 1181.9 (4547.2) 462.9 (1131.6)

Southern semi-arid highlands 1258 26.0 (66.2) 355.4 (587.0) 347.0 (944.7) 402.7 (828.2)

Tropical wet forests 2157 120.4 (401.7) 319.9 (643.9) 666.4 (1216.9) 452.0 (1134.9)

Southeastern USA plains 1391 9.3 (17.2) 145.5 (268.7) 552.3 (1331.9) 174.2 (447.1)

Temperate Sierras 797 165.2 (287.4) 5829.1 (2924.4) 626.9 (1557.0) 612.4 (1586.6)

Mississippi alluvial and southeast 
USA coastal plains 18,337 161.7 (787.5) 73.1 (108.7) 594.2 (1377.0) 102.2 (222.1)

Cold deserts 86,804 72.3 (351.4) 941.8 (1918.5) 549.2 (1465.6) 574.0 (1201.2)

Ozark, Ouachita-Appalachian forests 17,830 17.3 (32.5) 213.6 (352.8) 505.5 (1329.1) 197.2 (537.2)

Great plains 24,901 9.3 (95.9) 881.6 (1975.9) 309.2 (3307.9) 262.2 (793.2)

Mixed wood plains 14,228 57.6 (348.0) 87.1 (128.3) 430.0 (2109.3) 265.2 (679.5)

Northern forest 6035 77.0 (425.1) 56.5 (92.1) 752.1 (1431.1) 599.9 (1530.6)

Northwest forested mountains 209,173 72.2 (258.5) 119.9 (213.4) 417.6 (1078.5) 297.9 (546.6)

Mediterranean California 76,508 25.9 (110.3) 80.5 (164.7) 100.6 (252.2) 548.1 (847.9)

Marine west coast forest 3858 15.1 (20.8) 222.3 (262.8) 259.9 (412.8) 497.4 (543.2)
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ecoregion. However, there are still some differences in precipitation between Flickr points and visitor centers, 
with the Mississippi alluvial/Southeastern coastal plains ecoregion having the largest differences.

Differences in visitation patterns between hot and cold days.  The cutoff points for what was 
defined as a cold day, average day, and hot day differ by park unit and can be found in Supplementary Table A1. 
The effect of maximum temperature on visitors’ elevation and distance to roads, waterbodies, parking areas, and 
buildings varied by ecoregion (Fig. 3). There is not a consistent trend in how temperature impacts the spatial 
patterns of visitation across ecoregions for any variable. In some ecoregions (e.g., tropical wet forests, mixed 
wood plains), visitors stay closer to parking areas and buildings on cold days, but in other regions (e.g., cold 
deserts, warm deserts), visitors travel farther from infrastructure on cold days. Visitors tend to frequent lower 
elevations on cold days in most ecoregions, but there is not a consistent trend in elevation on hot days. Although 
temperature does affect visitors’ spatial distributions within parks, the effect sizes were all very small or small.

Boxes without values in Fig. 3 indicate there was no statistical differences across the three temperature clas-
sifications for that particular ecoregion; this does not necessarily mean no difference exists. Some ecoregions had 
smaller sample sizes (e.g., temperate Sierras at n = 797), while some had very large sample sizes (e.g., Northwest 
forested mountains at n = 209,173). Statistical power is higher when sample sizes are larger, so we were inherently 
more likely to detect significant differences in ecoregions with larger sample sizes. Sample sizes for each ecore-
gion based on temperature and precipitation grouping are available in Supplementary Table B1, and additional 
statistical information associated with Fig. 3 is available in Supplementary Table C1.

Figure 4 shows examples of how spatial distributions differ during cold and hot days for two parks: Yosemite 
National Park (Northwest forested mountains ecoregion) and Death Valley National Park (warm deserts ecore-
gion). These maps suggest some trails or regions are more popular on hot days, while others are more popular 
on cold days. In Yosemite, the map shows visitors are more likely to stay closer to roads on cold days. This is 
consistent with findings from the results in Fig. 3 from the Northwest forested mountains ecoregion, that visitors 
stay 19.6 m closer to roads on cold days compared to average days. In Death Valley, visitors appear more likely 
to stay near roads on hot days, consistent with results from the warm deserts ecoregion that shows visitors stay 
12.1 m closer to roads on hot days, and 20.4 m farther from roads on cold days, compared to average days. Maps 
showing general spatial distributions of visitors in each study site, as well as spatial distributions on cold versus 
hot days, are available online41.

Differences in visitation patterns between wet and dry days.  The effect of daily precipitation on 
visitors’ elevation and distance to roads, waterbodies, parking areas, and buildings also varied by ecoregion, 
although there are some trends across ecoregions (Fig. 5). Overall, on rainy days, visitors were more likely to stay 
near roads, waterbodies, parking areas, and buildings. However, this trend does not hold for some of the warm-
est ecoregions (e.g., warm deserts), where visitors were farther from infrastructure on rainy days. In the warmer 
ecoregions, visitors went to higher elevations on rainy days, but in the cooler ecoregions, visitors stayed at lower 
elevations on rainy days. Although rain does impact visitors’ spatial behavior in all ecoregions, the effect sizes are 

Figure 2.   Boxplots of the distributions by ecoregion for the difference in daily maximum temperature (°C) 
between visitor centers and individual Flickr points within each park. Boxes represent the interquartile range, 
with black lines representing the medians; black dots represent outliers. Negative values indicate visitors are 
going to places within the park that are colder than the temperature at the visitor center.
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mostly very small, with a few effects being small or medium. Additional statistical information associated with 
Fig. 5 is available in Supplementary Table D1.

Figure 3.   Differences in means on cold days, compared to average days (left side), and differences in means on 
hot days, compared to average days (right side). Positive values represent higher elevations and farther distance 
from features on cold or hot days (compared to average); negative values represent lower elevations and closer 
distance to features on hot or cold days.

Figure 4.   Spatial distribution of visitors in Yosemite National Park and Death Valley National Park on cold days 
(blue dots) compared to hot days (red dots). Solid black lines represent roads, and dotted black lines represent 
trails downloaded from OpenStreetMap. Figures created in R version 3.6.1 (www.r-proje​ct.org) with the ggmap 
package42.

http://www.r-project.org
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Discussion
Our results suggest visitors do change where they go within NPS units based on daily temperature and precipita-
tion. The effect of temperature on elevation and distance to a road, distance to a waterbody, distance to a parking 
area, and distance to a building varied by ecoregion, with no consistent trends across all ecoregions. Overall, 
visitors were more likely to stay near infrastructure and waterbodies on days with precipitation, although this 
is not true in every ecoregion. However, the effect sizes of the differences are mostly very small, indicating that 
maybe only a subset of visitors are impacted by weather. Weather impacts visitors differently depending on their 
activity type and demographic characteristics, so some visitors may be more or less impacted by the weather43. 
The majority of visitors stay very close to roads (i.e., over half are within 11 m from a road); it is possible weather 
may have less of an impact on visitors who plan to stay near roads, most likely very close to (if not in) a vehicle. 
More research is needed to determine if and why only certain groups of visitors alter their spatial behavior within 
parks based on the weather.

Climate change is expected to alter the total number of visitors to parks, with the majority of parks in the U.S. 
expected to see an increase in visitation4. This could strain park resources and cause overcrowding in some parks. 
Since most visitors stay close to roads, it is important to maintain the roads and infrastructure that are already 
present. Accommodating visitation demand may not require substantial increases in some types of outdoor 
recreation infrastructure (e.g., trails), but rather a re-thinking of what the typical park experience is for most 
visitors. With most visitors choosing to stay extremely close to existing park infrastructure, capital investments 
should be focused on infrastructure upgrades and developments (e.g., remodeling and expanding visitor centers) 
that are better able to serve the needs and desires of more visitors in the future.

Previous work has found total visitation to parks is influenced by daily and monthly weather conditions6,9. 
Our findings suggest some visitors will respond to warmer than average temperatures by adapting where they 
go within a park. For example, some visitors may go to higher elevations on warm days, while other parks may 
see more visitors at lower elevations, possibly in cooler canyons or near the ocean. In some ecoregions, visitors 
may also choose to stay closer to roads or bodies of water on exceptionally hot days. Once a visitor is already at 
a park unit, they can respond to adverse weather by not visiting (i.e., staying in nearby towns), visiting a differ-
ent location in the park, or changing activities43. More research is needed to understand how visitors decide to 
respond in different ways, and how that varies by user group. Park managers can help visitors adapt to extreme 
temperatures by providing information on which areas of the park, that are accessible by road, are comparatively 
cooler. However, not all parks contain microclimates that may allow for adaptation.

Parks in some ecoregions have more microclimates than others. Our analyses showed parks in the warm 
deserts, cold deserts, and the Northwest forested mountains ecoregions had wide distributions in the difference 
in temperature between visitors’ locations in the park and the temperature at the visitor center. In other ecore-
gions, such as the Southeast USA plains, visitors were almost always at a location in the park that had the same 
temperature as the visitor center. Visitors may therefore have a greater ability to adapt and spatially substitute 
outdoor recreation settings within park boundaries at some parks compared to others. However, we only inves-
tigated microclimates with regards to where people currently visit; it is possible that some parks in this study do 
have microclimates within their boundaries that are not currently visited, but may see visitation in the future. 

Figure 5.   Differences in means on days with precipitation, compared to days with no precipitation. Positive 
values represent higher elevations and farther distance from features on days with precipitation; negative values 
represent lower elevations and closer distance to features on days with precipitation.
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In parks that do not have varying microclimates, visitors may be less likely to visit on days with unfavorable 
temperatures rather than change their spatial behavior within the park. This is consistent with previous research 
showing visitation declined in some Utah national parks once temperatures were above 25 °C, but visitation 
continued to increase above this threshold in parks that seemingly had more microclimates6.

Although this analysis only covered the summer season, it is likely that some trends may be attributed to 
within-season variability. For instance, it is more likely to be cold in May and September, and hot in July and 
August. In some mountainous parks, certain roads or trails may be closed at the beginning of the summer season 
until snow melts. Therefore, visitors may not have had the option to visit some park areas on colder than average 
days. Parks in the Northwest forested mountains ecoregion are the most likely to have areas closed due to snow, so 
these managerial factors are likely to have the biggest influence in this ecoregion. In some parks, visitors’ spatial 
behavior may be driven by managerial factors (i.e., closed roads or trails) rather than solely visitors’ decisions.

As with any data source, social media has its limitations. Social media may not be representative of the spatial 
patterns of all park visitors, since only a small portion of total visitors post photos to Flickr32,44. Additionally, 
some parks tend to have substantially more social media posts than other parks, indicating the most popular 
parks were overrepresented in this analysis. We explored the impact of weather on visitors at the ecoregion level; 
however, future research is needed to determine if there is additional variation across parks within the same 
ecoregion. OpenStreetMap was an excellent resource for large-scale volunteered geographic information, but the 
accuracy of this data source does vary by location and feature45–47. While the road and water features appeared 
to be complete across all NPS units in this study, the parking and building datasets were likely not entirely com-
plete. In other words, some buildings and parking areas were missing, but all of the parking areas and buildings 
documented on OpenStreetMap did exist in that location. Therefore, the estimates for distances to parking and 
buildings likely represent high estimates. In addition, distances to features do not necessarily indicate how far a 
visitor hikes or ventures; a visitor could hike for over 500 m and still be within 10 m of a road.

Our investigation began with an effort to understand how weather may impact visitors’ spatial behavior 
across NPS units. Further studies could explore if weather changes spatial patterns of visitors outside park 
boundaries, such as to gateway towns and surrounding parklands. Additionally, future work could explore how 
weather impacts spatial patterns of visitors to parks in other countries. This approach of using social media data 
to understand spatial patterns could be replicated in other locations that have daily weather data. We found that 
the effect of daily weather on visitation patterns was not homogenous across the U.S. Our results indicated large 
differences across ecoregions, so results from one ecoregion cannot necessarily be extrapolated onto parks with 
differing climates or topography. We would expect parks in other countries may exhibit comparable results to 
the ecoregion that has the most similar climate and topography; however, this needs additional research. In 
addition, this analysis demonstrates the utility of social media for revealing visitation patterns within parks at 
high spatial and temporal resolutions, which can be useful to understand visitor behavior beyond the context 
of weather-dependencies13.

Conclusions
In certain ecoregions, visitors alter the locations they go to within NPS units based on daily weather conditions. 
The effect of temperature and precipitation on visitors’ spatial behavior varies by ecoregion, likely because the 
climates, topography, and availability of microclimates within parks differ by these ecoregions. Some parks may 
see an increase in visitors to higher elevations on hot days, while other parks may see more visitors at lower 
elevations on hot days. Visitors are overall more likely to stay near infrastructure on rainy days. Park managers 
should expect spatial distributions of summer visitors within parks to change in the future due to increasing 
numbers of hot days. In parks that contain more microclimates, visitors may have a greater ability to adapt to 
adverse temperature conditions by spatially substituting one outdoor recreation setting for another.

Methods
Study sites.  Study sites include all NPS units in the continental U.S. larger than 10,000 acres (4047 hectares). 
NPS units include national parks, national monuments, national recreation areas, and national seashores, among 
others. Each park unit was assigned both a level I and a level II ecoregion based on the location of the centroid of 
the unit. Level I ecoregions represent the most general category, while level II ecoregions are more detailed. For 
nearly all ecoregions we used the level I ecoregions. However, two level I ecoregions (North American deserts 
and Eastern temperate forests) were split into their level II ecoregions due to their vast size and the number of 
study sites contained within them. Figure 1 shows the study sites along with the ecoregion categories used in 
this paper; a full list of all NPS units included in this study and their ecoregion classifications can be found in 
the Supplementary Table E1.

Data collection and processing.  All data used in this paper are publicly available. Table 3 lists all datasets 
used along with their sources. In cases where an R package is listed as a source, we downloaded the data directly 
through R, using the specified packages to interact with the Application Programming Interfaces (APIs). All R 
code written for data collection, processing, and analysis is available41.

We downloaded Flickr data within the study sites between May and September, from 2006 to 2018, from 
the Flickr API using Python. We downloaded these data in October 2019. We deleted any photos by the same 
user, on the same day, within 10 m of another photo posted by the same user; therefore, we only retained one 
photo per user, per location. This is similar to the concept of PUDs29,30, except we only deleted duplicates in 
close proximity rather than duplicates anywhere within the unit. We did this believing it was important to retain 
posts by the same user if they were in different locations within the park. Sample sizes by unit are available in 
Supplementary Table F1.
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We joined each Flickr point to the daily weather on that day at that location using weather data from Daymet. 
Daymet contains weather data for every location in the continental U.S., which is modeled from individual 
weather station data, and has a high accuracy53,59. Our analysis does not include any Flickr points tagged in an 
ocean (e.g., off the coast of a national park) because Daymet does not provide weather estimates over oceans. 
We also connected each Flickr point to the elevation at that particular location. We downloaded data on roads, 
waterbodies, parking areas, and buildings from OpenStreetMap in December 2019 (specific information on 
download criteria is in Supplementary Table G1). For each Flickr point, we calculated the straight-line distance 
to the nearest road, waterbody, parking area, and building.

Analysis.  Social media data validation.  We compared the number of Flickr PUDs within each unit between 
the months of May and September from 2006 to 2018 to the NPS-reported visitation for each unit during the 
same time period to ensure the Flickr data are a reliable and representative indicator of visitation. PUD indicates 
that only one photo per visitor was counted each day; duplicate posts by the same visitor on the same day were 
removed even if they were in different areas of the park. Subsequent analyses used the full dataset filtered to 
include just one photo per user, per location. We obtained Spearman’s correlation coefficient as a measure of 
association between Flickr PUD and NPS-reported visitation. We used Spearman’s rank correlation because the 
distributions were found to be non-normal after running a Shapiro–Wilk test. Two parks were not included in 
this analysis because NPS did not have visitation data for these parks during this time period.

Understanding how weather impacts visitors’ spatial behavior.  We first explored if and how individual parks 
have different microclimates (i.e., the park offers different areas where visitors can go that may have slightly 
different climates). We recorded the differences between the daily maximum temperature and precipitation at 
Flickr points compared to the main visitor center on that day. We plotted distributions of differences by ecore-
gion to see if visitors were going to places within parks that have substantially different weather than at the visitor 
centers.

We then investigated the effect of maximum temperature and precipitation on visitors’ spatial behavior by 
grouping visitors by the weather during the day they visited. For maximum temperature, visitors were grouped 
into three categories: cold day, average day, or hot day, based on the temperature at the visitor center on the day of 
the visit. Average days were defined as those within one standard deviation from the unit-specific seasonal mean 
maximum temperature. Cold days were defined as days with a maximum temperature lower than one standard 
deviation below the unit-specific seasonal mean maximum temperature. Hot days were classified as days with 
a maximum temperature greater than one standard deviation above the unit-specific seasonal mean maximum 
temperature. We grouped these observations by unit rather than ecoregion to reduce bias. For instance, one 
park within an ecoregion could be warmer than the others; grouping by unit avoids having all data from one 
park classified in the same temperature category. Precipitation was split into two groups based on whether or 
not there was precipitation at the visitor center on the day of the visit.

We tested if maximum temperature or precipitation affected: (1) the elevations visitors were traveling to within 
a park; (2) their distance to roads; (3) their distance to waterbodies; and (4) their distance to designated parking 
areas or buildings. We ran Welch’s ANOVA tests to determine if there were differences in the spatial patterns 
between cold, average, and hot groups. If the results were significant at the 0.05 level, we ran Games-Howell 
post-hoc tests to determine where the significant differences were (i.e., if differences were between the cold and 
average group, hot and average, hot and cold, or all three). We used Games–Howell tests because they do not 
require the assumptions of equal variances or equal sample sizes to be met60. Additionally, if there were significant 

Table 3.   Datasets and sources used in this paper. a These data also include raw polygon files (representing loop 
roads) that were converted to line features.

Data Type of data Source Citation

NPS spatial boundaries Polygons NPS 48

NPS unit centroids Table (turned into points from lat/long) NPS 49

Main visitor center for each NPS unit Table (turned into points from lat/long) Manually compiled via Google Maps and NPS unit 
websites Dataset made available at41

Acreage of NPS units Table NPS 50

Visitation at NPS units Table NPS 51

Ecoregions levels I and II Polygons EPA 11

Geotagged Flickr posts (2006–2018) Points Flickr API (via Python code) 52

Daily temperature and precipitation (2006–2018) Raster (1 km resolution) Daymet
R package: daymetr

53

R package:54

Elevation Raster (1/3 arcsec resolution) USGS
R package: elevatr

55

R package:56

Roads Linesa

OpenStreetMap
R package: osmdata

57

R package:58
Parking areas Polygons and multipolygons

Bodies of water Polygons, multipolygons, and lines

Buildings Polygons and multipolygons
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differences between groups, we reported Cohen’s d to measure how large the effect size was. For precipitation, we 
ran Welch’s t-tests with Cohen’s d effect sizes. Welch’s tests were used rather than Student’s t-tests and standard 
ANOVAs because much of the data violated the assumption of equal variances61. We ran separate tests for each 
ecoregion, given weather may impact visitors differently by ecoregion. To visually compare how distributions 
may differ, we mapped spatial distributions in parks on cold days compared to hot days.

Data availability
The individual datasets are all publicly available, as described in Table 3. The final compiled dataset used in this 
paper, and the code written for this analysis, can be found at: https​://doi.org/10.3886/E1191​91V1.
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