npj | Digital Medicine

COMMENT

www.nature.com/npjdigitalmed

W) Check for updates

Empowering clinical research in a decentralized world
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The COVID-19 pandemic has been a catalyst for the implementation of decentralized clinical trials (DCTs) enabled by digital health
technologies (DHTs) in the field while curtailing in-person interactions and putting significant demands on health care resources.
DHTs offer improvements in real-time data acquisition remotely while maintaining privacy and security. Here, we describe the

implications of technologies, including edge computing, zero-trust environments, and federated computing in DCTs enabled by
DHTs. Taken together, these technologies—in the setting of policy and regulation that enable their use while protecting the users

—extend the scope and accelerate the pace of clinical research.
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RANDOMIZED CONTROL TRIALS: AN ANALOG TOOL IN A
DIGITAL WORLD

The gold standard of clinical research has been the randomized
controlled trial (RCT). RCTs remain the most important approach to
establish causality, addressing challenges of confounding and
bias. However, only incremental improvements have been made
since experiments were first conducted in medical research’. The
coronavirus disease of 2019 (COVID-19), or the pandemic, by
rapidly shifting clinical trials from analog to hybrid or full
decentralized clinical trials (DCTs), has catalyzed the development
and implementation of digital health technologies (DHTs) to
support clinical research. This article describes the technologies
that are modernizing clinical research, including DCTs.

RCTs were optimized for an “analog” world. Specifically, DHTs
offer opportunities to advance clinical research along the axes of
data acquisition or how data are collected and processed.
Currently, data are processed in many instances via manual paper
workflows, and new approaches for measuring digital endpoints
and processing data on a trial participant’s device broadens
possibilities for acquiring data more frequently or even con-
tinuously. Moreover, DHTs may enhance trial participants’ privacy
to an extent not possible with manual workflows. Modern DCTs
enabled by DHTs may enhance trial participant engagement
through more active and secure bidirectional communication,
leveraging digital technologies. Inan and colleagues® lay a
framework for digitalizing clinical trials that is extended in this
paper. Specifically, we instantiate one version of DCTs enabled by
DHTs and differentiate our work by describing privacy-preserving
or “zero-trust” approaches to collect clinical data from digital
endpoints to measure the effect of an intervention in situ via
federated learning (FL).

THE NEW VISION AND METHODOLOGY: BRIDGING THE
EFFICACY-EFFECTIVENESS GAP

Historically, clinical trials have been designed with a site
investigator-centric approach. Trial participants traveled to aca-
demic health centers where investigators and diagnostic technol-
ogies were concentrated in brick-and-mortar clinical trial sites on
episodic schedules dictated by operational convenience rather
than by disease natural history. The centralized trial approach,
confined to unrealistic settings, generates theoretically unbiased

findings (i.e., laboratory efficacy)®. However, beyond this setting,
trial participants with multiple co-morbidities and imperfect
adherence live in highly heterogeneous environments. Unsurpris-
ingly, the “unbiased” findings of clinical trials do not always
translate into real-world effectiveness®.

New technologies for trial participants and remote data
acquisition, processing, and analysis are increasingly available’.
These DHTs are catalyzing the transition from centralized to
remote settings in DCTs, enabling a remote-first paradigm in
modern clinical trials. This paradigm offers a rapid evolution of
clinical research in the coming years (Fig. 1).

Yet how to implement modern clinical trials such as DCTs using
DHTs remains uncertain. Numerous considerations exist, including
the selection of parameters for trial design, approval from
institutional review boards, monitoring of trial participant’s safety
and adherence, and the analysis of the data blinded to the trial
team. As with traditional clinical trials, the privacy of trial
participants and security of their data must be ensured.

The implications of using emerging technologies on trial
participant’s privacy and security

DHTs (e.g., smart devices, new wearables, and environmental
sensors) are rapidly evolving. Already they play a significant role in
enabling trial participants’ experience in modern clinical trials®.
These technologies facilitate multiple trial-related activities:
communication, enrollment, recruitment, consent, and continuous
data acquisition. The validated capabilities to record novel digital
endpoints have also been key to their use’. However, these new
technologies may serve to provide new avenues to violate trust.
“Zero-trust architectures”®® or networks assume that none of the
DHTs used outside an organization’s network (in this case, the DHT
network) can be trusted and require mutual authorization from
the DHT client and server devices (Table 1).

Integrating clinical data obtained from DCTs (i.e., real-world
settings) may add additional context between remote and in-
person clinical interactions. Further, use of federated computing
(FC) and zero trust approaches ensure trial participants’ privacy
and deployment of complex digital endpoint-based machine
learning (ML) algorithms while enabling classic double-blinded
trial designs. The following section discusses the opportunities
and challenges associated with these technological advances.
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Process diagram for the decentralized execution of federated clinical trials. A A protocol is created and is digitally disseminated to

consenting participants-to-be in a DCT, B Participants in a DCT are randomly exposed to a medical intervention, C Participants process their
own data (e.g., digital biomarkers), D Findings are aggregated from each participant, and E The overall effect of the intervention is estimated

as overall estimate, aggregated, and sent back.

Remote capture of high-throughput biomarkers and
endpoints

Per U.S. Food and Drug Administration, “a biomarker is a piece of
anatomical, physiological, or biochemical data that is used to
diagnose or develop a treatment plan for a patient. A digital
biomarker is simply a biomarker that is developed from data that
are analyzed using advanced analytics and artificial intelligence
(Al) to extract previously invisible insights.”’%. An example of a
biomarker is blood sugar which if detected with an electronic
glucometer is a digital biomarker. In contrast, digital endpoints are
measurements that capture an observable physiological “char-
acteristic” of a participant through a DHT (e.g.,, an image or a
signal). A standard or novel digital endpoint measures a biomarker
that has clinical relevance. Examples of digital endpoints include
the appearance, heat, or pallor of skin. Examples of standard
digital endpoints are measurements for blood pressure or heart
rate. Examples of novel digital endpoints include measurements
for composite endpoints, such as the synergistic combination of
heart rate and movement intensity'".

To determine the efficacy and safety of an investigational
medical product, novel digital endpoints'> may complement
standard endpoints, both because of their predictive capabilities
and their feasibility of inclusion in DCTs'?,

New techniques from ML may play a critical role in deriving
utility from information-dense digital endpoints gathered from
DHTs. Complex digital signals such as images that allow for the
derivation of new clinical endpoints (such as for diabetic
retinopathy'® or cancerous skin lesions'®) have shown promise,
reaching clinician-grade quality in multiple novel trials.

Other DHTs capable of digital endpoint monitoring include low-
risk, consumer-grade devices that may measure clinically relevant
endpoints, such as blood oxygen saturation, pulse, respiratory rate,
and temperature. These technologies may also engage signal
processing and ML algorithms that operate either on- or off-device
(i.e., in the cloud and separated from the signal-capturing DHT)" "',

The environmental and contextual sensory capabilities of
DHTs may support novel trial designs

A well-designed clinical trial should characterize the efficacy of an
intervention after accounting for environmental and social
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determinants. However, traditional clinical research methods
rarely account for these determinants. In contrast, DHTs often
have sensors capable of automatically collecting location-based
contextual factors related to participants, giving investigators
additional visibility into the underlying determinants of observed
endpoints.

Examples of such factors—collectively, the “exposome”—
include air pollution (such as ozone or carbon monoxide) or
particulate matter (such as pollen or nanometric plastics)'’.
Modalities such as satellite imaging may render additional
insights, such as characteristics of the built environment, including
access to green spaces for physical activity, and quality of food
and water sources'®. Digital tracking of the exposome may
enhance the generalizability of clinical research findings into real-
world settings.

Data-intensive challenges exist for transforming digital
biomarkers into digital endpoints

There are significant challenges associated with characterizing
digital biomarkers (Table 1) and transforming them into validated
digital endpoints in novel trial designs. First, digital biomarkers
must be accurate indicators of disease status reliably measured as
digital endpoints based on rigorous good clinical practice
standards: reliably and accurately indicating changes in disease
onset, progression, or improvement.

Additionally, there may be challenges in participants’ recruit-
ment and adherence to investigational medical interventions
captured using DHTs'?"2". Clinical investigations have faced issues
ensuring adherence of remote trial participants to an experimental
treatment regimen. Existing strategies, such as automated
electronic reminders, may help mitigate non-adherence and
reinforce the viability of digital endpoints?*23,

FEDERATED COMPUTATION AND ZERO-TRUST TECHNIQUES
FOR DCTS

A major advantage of DCTs is the availability of numerous digital
biomarkers and digital endpoints that can be measured remotely
and continuously. These are in turn useful to derive novel digital
(composite) endpoints with improved predictive potential. A
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Table 1. Glossary of key technical concepts.

Term

Definition

Implications

Digital biomarker

Digital endpoints

Digital health
technologies

Digital twins

Edge computing

Federated
learning (FL)

Real-world data

Zero trust

Biomarkers are defined characteristics that are measured as
indicators of health, disease, or a response to an exposure or
intervention, including therapeutic interventions and can help
diagnose a disease, or predict future disease severity or
outcomes, like measurements of blood pressure as an indicator
of cardiovascular risks or measurements of blood sugar in
diabetes. Biomarkers also are used to identify the best
treatment for a patient, to monitor the safety of a therapy, or to
find out whether a treatment is having the desired effect on
the body. Digital refers to the method of collecting
information: objective, quantifiable physiological and
behavioral data are collected and measured by means of
digital devices, such as portables, wearables, implantables, or
digestibles

Digital measurements of biomarkers that capture disease state
from device data, such as sensors (image or audio based or
biochemical assay)

Digital health technologies refer to the use computing
platforms, connectivity, software, and sensors for health care
and related uses. These technologies span a wide range of
uses, from applications in general wellness to applications as a
medical device. They include technologies intended for use as
a medical product, in a medical product, as companion
diagnostics, or as an adjunct to other medical products
(devices, drugs, and biologics). They may also be used to
develop or study medical products

A computational approach, such as propensity score matching,
that matches pairs of individuals exposed and unexposed to an
intervention when a random allocation is not possible

Machine learning architectures, tools, and approaches capable
of performing on-device analytics for sensing and/or biomarker
measurement

A computer engineering approach enabling multiple parties to
re-train a shared model without sharing their data: an FL model
processes and aggregates data from a private device without
the data leaving the device

According to the FDA?, real-world data are the data relating to
patient health status and/or the delivery of health care
routinely collected from electronic health records (EHRs),
insurance claims, disease registries, and mobile devices

A security trust framework that insists on verifying everything
that needs to connect to corporate resources before
granting access

Compared to traditional biomarkers, digital
biomarkers rely less often on human operators to
collect data and, depending on the use case, may
enhance self-collection (e.g., Patient Reported
Outcome Measures), which can diversify the types of
monitoring

Continuous collection of clinical endpoints possible
to enhance monitoring and power

DHTs enable the collection of clinical data remotely,
frequently, or continuously outside the brick-and-
mortar clinical trial site and while keeping trial
participants at their homes or in the ecosystems
where they live

Reduces experimental biases by correcting for
confounding, mitigating the chances that a
difference in outcomes observed during the trial is
attributable to non-intervention factors

Removes need to transfer on-device data to central
servers for data processing, enhancing data security,
and participant anonymity

Removes need to transfer on-device data to central
servers for model training to enhance security

Increases efficiency of collection of clinical
endpoints and predictor variables from
administrative sources

Improves the safety of patient data in a significant
way by conducting internal security protocols on
devices and servers beyond peripheral ones alone

*https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence.

second advantage is the ability to monitor adverse events in real
time directly through linked electronic health records. A third
advantage includes reduced costs of clinical assessments during
clinical trial follow-up, with numerous digital endpoints collected
continuously via DHTSs.

The promise of federated computation and zero-trust
platforms for DCTs

Advances in FL (Table 1) may ensure trial participants’ privacy
while enabling computation-intensive administration of DCTs,
including the need to continuously monitor digital endpoints,
perform linkage of remote data, and apply ML on digital
endpoints®*,

We present a conceptual schematic that demonstrates the
process (Fig. 1). First, a “master” compute node becomes
responsible for administering the trial, encoding the logic behind
the trial design (Fig. 1A). This master node transmits a baseline
model to trial participant nodes. The intervention is deployed
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randomly or prospectively (Fig. 1B). Next, individual client
processing trial participant data, such as generating a digital
endpoint (Fig. 1C) to input into a FL algorithm, which learns an
output for a trial participant (Fig. 1D) while optimizing the overall
population-level effect of the intervention (Fig. 1E). Specifically,
the federated learner is optimizing overall the trial participant
nodes securely (no data leaves the device). The learnings are
aggregated and sent back to the master compute node. Zero-trust
authentication (Table 1) occurs among all respective nodes of the
network. One emerging technology to achieve zero-trust archi-
tectures in health care is via blockchain-based technologies® and
this has been evaluated in medical image sharing?®.

Ensuring trial participant privacy

The most significant advance that FC brings to DCTs is the
groundwork to enable computationally intensive encryption for
trial participants’ privacy.

npj Digital Medicine (2021) 102


https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.fda.gov%2Fscience-research%2Fscience-and-research-special-topics%2Freal-world-evidence&data=04%7C01%7CRodriguezChavezIsaac%40prahs.com%7Cab43d70bcd56409b6e9208d8ad254939%7C1cef9a5962ec418a96662b3afc2d2cb0%7C0%7C0%7C637449722951319017%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=huQ9NafQTzaSGMgpBikurO2Dj%2F%2BkWFH6iI%2FQD5GtIAw%3D&reserved=0

np)

W. De Brouwer et al.

Federated edge computing enables medical data portability
(Table 1). Designs derived from edge models could then be used
for powering key use cases such as improving cost of care models
or for proactive risk management for a variety of end users—
including payors, pharmaceutical companies, providers, and
clinical research organizations. For example, pharmaceutical
companies could use horizontal federation to introduce synthetic
control arms, while providers could use vertical federation to
combine medical data clouds between sources of clinical care to
advance biomedical science and improve trial participant care.

Potential limitations of DCTs enabled by DHTs

We anticipate three near- to longer-term limitations of DCTs
enabled by DHTs. First, while participant recruitment may be
potentially more accessible and cheaper via DCTs, trial participant
retention could be a major challenge. Incentivizing trial participant
engagement via ownership requires validation. Second, many
primary outcomes of current trials will need to be newly designed
for DCTs, and further still, many primary outcomes may not have a
DCT analog. Third, DCT-related digital endpoints and infrastruc-
ture will need extensive verification and validation along with big
data-processing capabilities. Fourth, clinical data standards for
portability and interchangeability from multiple e-sources should
be implemented to ensure data integrity and quality and to
ensure widespread adoption.

These limitations might be addressed by four approaches in the
coming years. First, we need more sophistication, refinement, and
variety of DHTs to measure digital endpoints remotely. Second, we
require a stronger emphasis on the verification, validation,
justification, and usability of DHTs (i.e., wearables) to ensure data
quality, integrity, interchangeability, and portability obtained from
measuring digital endpoints. Third, health care and clinical
research policies need to evolve simultaneously across multiple
jurisdictions and countries to support the broad inclusion and
recognition of DHTs and digital endpoints in all therapeutic areas
by payers and regulatory agencies. Fourth, we must foster
improvements in real-time data analysis by integrating outputs
of digital endpoints and clinical data derived from multiple e-
sources with AlI/ML. This will allow a more comprehensive and
holistic understanding of the health status of individual patients
and participants in DCTs. Collectively, these actions can help us
achieve the vision of health research advanced by DCTs enabled
by DHTs.

CONCLUSION

Traditional trials are costly?’?%, laborious, and time-consuming?®,
often evaluating investigational medical products under stringent
conditions. Moreover, during COVID-19, the operational feasibility
of these trials has been challenged, predicting irreversible changes
after the pandemic.

In contrast, DCTs enabled by DHTs exploit heterogenous and
continuous data collection in real-world settings, allowing
investigators to better evaluate disease status relative to a novel
medical intervention and while determining the safety and
efficacy of an investigational medical product. These trials may
use technologies such as FL and edge computing to analyze data,
advance clinical research, and enhance trial participants’ welfare.
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