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† Background and Aims To date chloroplast genomes are available only for members of the non-protein amino acid-
accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the
‘inverted repeat-lacking clade’, IRLC). It is thus very important to sequence plastomes from other lineages in
order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plas-
tome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly
studied legume group.
† Methods The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing.
Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other
Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine
the origin of a large inversion identified in L. luteus.
† Key Results The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb
inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the
Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted
from a flip–flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses
of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid
rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation
into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of
remarkably variable regions.
† Conclusions This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids.
Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for
molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide
new insights into the evolutionary landscape of the legume plastome.

Key words: Lupinus luteus, European yellow lupine, legume, Genistoid clade, chloroplast genome evolution,
structural plastid rearrangement, 36-kb inversion, inverted repeats, flip–flop recombination, lineage-specific marker,
functional gene transfer, Papilionoidae, repeated plastid sequences, sequence divergence, plastome hotspots,
Fabaceae phylogeny.

INTRODUCTION

Legumes (Fabaceae) are the third largest angiosperm family,
with 727 genera and about 20 000 species (Lewis et al., 2005).
They are characterized by a wide biological and ecological
diversity (Cronk et al., 2006), and they are of great economic im-
portance, particularly for human consumption or as animal
forage. This family is composed of two main groups (Fig. 1):
Caesalpinioideae sensu lato (s.l.; including Mimosoideae) and

Papilionoideae (Wojciechowski et al., 2004; Cardoso et al.,
2012). The Papilionoideae is divided into six major clades: the
Genistoids, Dalbergioids, Mirbelioids, Millettioids, Robinioids
and the inverted repeat lacking clade (IRLC) (Cronk et al.,
2006). Within the Genistoids, Lupinus displays particular func-
tional properties compared with other legumes, such as active ni-
trogen metabolism and the production of allelopathic substances
of ecological and agronomical interest (Guillon and Champ,
2002; Magni et al., 2004; Pilvi et al., 2006). Additionally,
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Lupinus is the only known legume that does not form mycor-
rhizal symbioses (Sprent, 2007). Theyalso have considerable po-
tential for phytoremediation due to their ability to metabolize
nitrogen pollutants such as atrazine (Garcinuno et al., 2003).

Plastome organization is highly conserved among most flower-
ingplants (JansenandRuhlman,2012),mosthavingaquadripartite
structure composed of two copies of an inverted repeat (IR) sepa-
rated by large and small single-copy regions (LSC and SSC).
However, a few angiosperm families, including the Fabaceae,
present an unusual plastome structure and evolution. In this
family, the loss of one IR in the Papilionoideae (Wojciechowski
et al., 2004), the presence of many repetitive sequences (Saski
et al., 2005; Magee et al., 2010), the occurrence of relatively
large inversions (Palmer and Herbon, 1988; Perry et al., 2002;
Magee et al., 2010) and the presence of a localized hypermutable
region (Magee et al., 2010) have been detected. Aberrant DNA
repair was inferred as a possible cause for these plastomic rearran-
gements and accelerated rates of nucleotide substitutions (Jansen
et al., 2007).

Although most photosynthetic angiosperm plastomes contain
79 protein-coding genes, various derived lineages exhibit slightly

fewer genes. Most of these rare chloroplastic gene losses occurred
in species whose plastomes are highly rearranged relative to the
ancestral angiosperm plastome (Jansen et al., 2007). Since the
emergence of the Fabaceae, there has been loss of five different
chloroplastic genes: accD, psaI, rpl23, rps16 and ycf4 (Jansen
et al., 2007; Magee et al., 2010). It is very likely that the genes
lost from the plastome were previously functionally transferred
to the nucleus or replaced by a nuclear gene of prokaryotic or
eukaryotic origin. For example, the chloroplast accD gene was
functionally transferred to the nucleus in Trifolium species
(Magee et al., 2010) and the plastidic rps16 gene was functionally
replaced by a nuclear-encoded rps16 gene of mitochondrial origin
in Medicago truncatula (Ueda et al., 2008).

During the last decade, knowledge of the organization and
evolution of legume plastomes has rapidly expanded with the de-
velopment of next-generation sequencing (NGS) technologies.
Ten legume plastomes have now been sequenced: Cicer arietinum
(Jansen et al., 2008), Glycine max (Saski et al., 2005), Lathyrus
sativus (Magee et al., 2010), Lotus japonicus (Kato et al., 2000),
M. truncatula (NC_003119), Millettia pinnata (Kazakoff et al.,
2012), Phaseolus vulgaris (Guo et al., 2007), Pisum sativum
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no plastome sequence exists, including the core Genistoid clade (boxed) targeted in this study.
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(Magee et al., 2010), Trifolium subterraneum (Cai et al., 2008) and
Vigna radiata (Tangphatsornruang et al., 2010). The sequencing of
these plastomes confirmed previous observations of major rearran-
gements in this family, including a 50-kb inversion present in most
papilionoids (Palmer and Thompson 1982; Lavin et al., 1990;
Doyle et al., 1996; Wojciechowski et al., 2004; Jansen et al.,
2008) and the loss of one copy of the IR region in one of the papi-
lionoidclade, called the IRLC (Palmerand Thompson,1982; Lavin
et al., 1990; Wojciechowski et al., 2004; Jansen et al., 2008).
However, all the Papilionoideae plastomes sequenced to date
belong to three clades (Millettioids, Robinioids and IRLC) within
the non-protein amino acid-accumulating clade (NPAAA clade;
according to Cardoso et al., 2012). Thus it is essential to investigate
representatives from other Papilionoid lineagestobetter understand
plastome evolution within the Papilionoideae, and more broadly
within legumes. In this context, the genus Lupinus is a good candi-
date to represent the core Genistoids (Wojciechowski et al., 2004;
Cronk et al., 2006; Cardoso et al., 2012) that is one of the poorly
studied legume lineages. Although considerable strides have been
made in elucidating the evolutionary history of the Fabaceae
using plastid DNA sequence-based phylogenies (Wojciechowski
et al., 2004; Cardoso et al., 2012), there is still a great need to elu-
cidate more accurately relationships at other taxonomic levels
among and within lineages of the 50-kb-inversion Papilionoid
clade, including within the Genistoids and in the genus Lupinus
(Ainouche and Bayer, 1999; Ainouche et al., 2004; Hughes and
Eastwood, 2006; Drummond, 2008; Mahé et al., 2011a, b).
Therefore, the lupine plastome sequence not only provides the
raw material to extend understanding of legume genome organiza-
tion and evolution, but also provides an important source of phylo-
genetically informative plastid molecular markers, which have
the advantage of being uniparentally (maternally) inherited and
generally non-recombinant (Jansen et al., 2007; Moore et al.,
2007, 2010).

Herewe report the complete sequence of the chloroplast genome
of Lupinus luteus, the first sequenced in the core Genistoids. After
reconstruction and annotation, this genome has been compared
with other Fabaceae and extra-Fabales plastomes, allowing the
identification of a noteworthy 36-kb inversion. A PCR and sequen-
cing survey of this inversion across various legume representatives
provided evidence that this inversion represents a novel genomic
rearrangement, characterizing the core Genistoids. The gene
content within the L. luteus plastome has also been compared
with that of other Fabaceae and closely related species in order to
identifychloroplastgenes lost from the L. luteusplastome.We veri-
fied that the chloroplast genes missing in the Lupinus plastome
were functionally transferred to the nucleus. Finally, we evaluated
the sequence divergence between the lupine and other Fabaceae
plastomes at different levels (exon, intron and intergenic) in
order to better understand the unusual plastome evolution and to
suggest potentially useful plastid regions for molecular phylogen-
etic analyses in Fabaceae.

MATERIALS AND METHODS

DNA extraction, high-throughput sequencing and isolation
of chloroplast sequences

Genomic DNA was extracted from fresh leaves of an individual
sample (Lab. collection ref. number: M6¼EGSM6Llu2) from a

natural population of Lupinus luteus collected at Bou Tlelis,
Oran in Algeria, North Africa. DNA extraction was performed
using a NucleoSpinw Plant II kit (Macherey Nagel) following
the manufacturer’s instructions.The genomic DNAwassubjected
to two high-throughput methods of sequencing: one run using
pyrosequencingwith the GS-FLX (454 Life Science, Roche) plat-
form (OSUR/biogenouest; Université de Rennes-1) that gener-
ated 799 732 reads of approx. 400 bases, and one flow cell lane
performed with an Illumina HiSeq 2000 platform (BGI, Hong
Kong) that yielded 11.46 million 2 × 100-base paired-end reads
from a library of approx. 500 base DNA fragments. Reads
corresponding to plastome sequences were extracted from
the Roche-454 data set using a blast similarity search (e-value
10– 6, 90 % identity) against the fully sequenced plastomes of
G. max (NC_007942), M. truncatula (NC_003119), L. japonicus
(NC_002694), C. arietinum (NC_011163), P. sativum (NC_
0147057), T. subterraneum (NC_011828), L. sativus (NC_01
4063), M. pinnata (NC_016708), V. radiata (NC_013843),
P. vulgaris (NC_009259), Populus trichocarpa (NC_009143)
and Arabidopsis thaliana (NC_000932). A total of 21 018 reads
corresponding to plastid sequences were obtained from the 454
sequencing and 509 962 paired-end reads from Illumina.

Plastome assembly and annotation

De novo assembly was performed from filtered Roche-454
reads using Newbler (v. 2.5.3, 454 Life Science). A total of 45
contigs ranging from 450 to 25 000 bases were obtained and
organized using the G. max plastome as a reference. Illumina
paired-end reads having at least one mate mapping with
Bowtie (Langmead et al., 2009) on the 45 contigs were extracted
from the Illumina data set. The draft plastome sequence as well as
the junctions between contigs were verified and corrected with
the 509 962 paired-end Illumina reads extracted using Mira
v. 3.4.0 (Chevreux et al., 1999) and Bowtie (Langmead et al.,
2009). The 454 and Illumina data sets allowed a 73× (s.d. 53)
and 884× coverage (s.d. 466) of the newly reconstructed
L. luteus plastome, respectively.

Plastome annotation was conducted in four steps. (1)
Identification of protein-coding sequences by aligning (blastp,
e-value threshold 10– 5) G. max protein-coding sequences
obtained from the ChloroplastDB (Cui et al., 2006) against chlor-
oplastic open reading frames (ORFs) extracted from the Lupinus
plastome sequence using the perl script get_orf.pl designed by
Paul Stothard (University of Alberta). (2) Identification of
rRNA and tRNA sequences by direct alignment of G. max
tRNAs and rRNAs against the Lupinus plastome sequence. (3)
Verification of the identification of all plastomic genes using
DOGMA (Wyman et al., 2004). (4) Verification of the annota-
tion by performing manual alignment using BioLign and mul-
tiple contig editor (v. 4.0.6.2). A graphical representation of
the chloroplast genome was performed using the CIRCOS soft-
ware (Krzywinski et al., 2009).

To determine the presence of codon bias, the number of
codons ending with A–T or C–G was tallied and a x2 test was
performed for each amino acid. These tests were subjected to a
Bonferroni correction for multiple testing performed with the
R software package (http://www.r-project.org).
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Identification of repeat elements

The number and location of repeated elements (tandem, palin-
drome, dispersed direct and dispersed inverted repeats) in the
L. luteus plastome were determined using REPuter (Kurtz
et al., 2001). We used the same parameters as previously used
for other Fabaceae species (Saski et al., 2005; Cai et al., 2008;
Tangphatsornruang et al., 2010). More precisely, we searched
for repeated elements with a minimum size of 30 bp and a
Hamming distance of 3 (sequence identity of ≥90 %). One
copy of the IR was removed before performing the analysis.

Identification and origin of the 36-kb inversion by PCR screening
and sequencing

In order to identify the putative presence of large structural
variation (.1 kb) within the L. luteus plastome, breaks of
synteny were searched between plastomes of L. luteus, other
legumes and two outgroup taxa (Cucumis sativus from the
Cucurbitales and Prunus persica from the Rosales) by perform-
ing dot plots using the Gepard software (Krumsiek et al., 2007).

To determine the origin of the large inversion observed in
L. luteus, its presence/absence was surveyed by PCR in Lupinus
and in representatives of various genera more or less closely
relatedto the lupines in thecoreGenistoids:Argyrolobiumuniflorum,
Chamaecytisus mollis, Crotalaria saharae, Echinospartum bois-
sieri, Genista florida, Genista tricuspidata, Laburnum anagyroides,
Lupinus microcarpus, Retama sphaerocarpa, Sophora japonica,
Thermopsis rhombifolia and Ulex minor. Outgroup taxa were also
screened for the presence/absence of this inversion, for instance:
Cercis siliquastrum that is basal in the legume family; Acacia deal-
bata that belongs to the Mimosoids; and Cladrastis lutea, a
Papilionoid that is sister to the 50-kb-inversionclade.A PCR strategy
usingprimerpairsdiagnostic for thepresenceorabsenceof the inver-
sion was conducted. The primer pairs were designed in either con-
served ycf3 and psbI, or rps4 and ycf3 protein-coding sequences,
which are flanking the inversion endpoints, to allow the assessment
of the presence or absence of the inversion.

Each PCR amplification was performed in a total volume of 50
mL containing 10mL of 5× Go taq green buffer (Promega), 5mL
of 2 mM deoxyribonucleotide mix, 4 mL of each primer (5 mM),
0.2 mL of Go Taq polymerase (5 U mL– 1) and 20 ng of template
DNA. Cycling conditions were 94 8C for 2 min, followed by 35
cycles of 94 8C for 45 s, 55 8C for 30 s and 72 8C for 90 s, and a
final extension of 72 8C for 7 min. The primer pairs used to detect
the absence or presence of the 36-kb inversion were: rps4-bef-F
(5′-CAATCAAATAATAGATAGTAAATGGGTTG-3′)andycf3-
bef-R (5′-GGAATTATTCGTAATAATATATTGGCTAC-3′);
and ycf3-inv-F (5′- CGTAATAAGATATTGGCTAC-3′) and
psbI-int-R (5′-CTCTTTTCATCTTCGGATTC-3′). The PCR
products were then purified using the NucleoSpin Gel and PCR
Clean-up purification kit (Macherey-Nagel) and sequenced dir-
ectly in both directions (Macrogen Europe, Amsterdam).

Evolution of the gene content in the Fabaceae plastome and
identification of genes functionally transferred to the nucleus
in Lupinus

In order to determine whether L. luteus has recently lost chlor-
oplastic genes, its plastome was compared with those of ten other

legume species (M. pinnata, V. radiata, G. max, P. vulgaris,
T. subterraneum, M. truncatula, L. japonicas, C. arietinum,
P. sativum and L. sativus) and two ougroup species available in
GenBank. During Fabaceae evolution, five chloroplastic genes
(accD, psaI, rpl22, rpl23 and rps16) have been lost from the plas-
tome of various lineages, of which three (accD, rpl22 and rps16)
were shown to have been independently functionally relocated to
the nucleus or replaced by a nuclear gene in different Fabaceae
(Gantt et al., 1991; Millen et al., 2001; Ueda et al., 2008;
Magee et al., 2010). We searched for putative functional transfer
to the nucleus (functional relocation or intermediate stage) of
these five plastid genes within transcriptomic data available
from our laboratory for Lupinus mariae josephi (unpubl. data).
The identification of these putative functional transfers was per-
formed by blasting (e-value threshold: 10– 10) the following
sequences against the transcripts of L. mariae josephi: the
Trifolium repens nuclear accD (Magee et al., 2010) and the
L. luteus plastidic accD genes; the P. sativum nuclear rpl22
sequence (Gantt et al., 1991); the plastidic psaI, rpl23 and ycf4
genes from various Fabaceae (L. luteus, L. japonicus and
P. vulgaris); and the M. truncatula nuclear-encoded rps16
genes of mitochondrial origin (Ueda et al., 2008). The presence
of a transit peptide-encoding sequence within the identified
chloroplastic genes functionally replaced in the nucleus was
then predicted using BaCelLo (Pierleoni et al., 2006), Predotar
(Small et al., 2004) and TargetP (Emanuelsson et al., 2000) soft-
ware programs. To confirm that the nuclear rpl22 gene identified
in L. mariae josephi results from an early functional transfer to
the nucleus in the common ancestor of all flowering plants, as
demonstrated with P. sativum by Gantt et al. (1991), we aligned
these sequences (Lupinus and Pisum) with the rpl22 amino acid
sequences from eubacteria, algae, bryophytes and land plants
using the Geneious package (http://www.geneious.com/). After
excluding the extreme 5′ and 3′ ends of the sequences, a data
matrix of 98 amino acids was subjected to phylogenetic analyses
using PHYML (Guindon and Gascuel, 2003) and Neighbor–
Joining (Saitou and Nei, 1987). The tree was rooted using the eu-
bacteria Mycoplasma. Bootstrap values were performed with
1000 replicates (Felsenstein, 1985).

Evaluating sequence divergence between the complete lupine
plastid genome and those from other legumes and Fabids

Sequence divergence between L. luteus and ten other
Fabaceae plastomes was evaluated independently for each hom-
ologous regions aligned with MUSCLE (Edgar, 2004). Pairwise
distances were calculated with the ape R-cran Package (Paradis
et al., 2011, available at http://cran.r-project.org/web/packages/
ape/ape.pdf ) using the Kimura-2-parameters (K2p) evolution
model (Kimura, 1980). The mean sequence divergence rate of
the different genetic categories [i.e. intergenic spacers (IGSs),
introns, rRNA and tRNA, and exons] was compared using
Mann–Whitney test with Bonferroni correction. Additionally,
sequence divergence of coding-protein genes (exons) was esti-
mated using the synonymous (Ks) and non-synonymous (Ka) nu-
cleotide substitution rates with the yn00 method (Yang and
Nielsen, 2000) from the PAML package (Yang, 2007). Finally,
fast-evolving sequences were identified. Only the protein-
coding, intronic or intergenic regions presenting a higher evolu-
tionary rate than the regions most commonly used for
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evolutionary studies in Fabaceae (rbcL and matK genes, the
5′trnK and trnL introns, and the trnK_trnF, trnL_trnT and
trnS_trnG IGSs) and a minimum size of about 300 bp were
retained.

A list of all the software programs used in this study, their
purpose and availability can be found in the Supplementary
Data Table S1.

RESULTS

Organization, gene content and characteristics of the L. luteus
plastome

The Lupinus luteus plastome (deposited in GenBank: KC695666)
has a length of 151 894 bp, with a quadripartite structure com-
posed of two IRs (25 860 bp) separated by an SSC (17 847 bp)
and an LSC (82 327 bp) region (Fig. 2). It contains 111 different
genes, including 77 protein-coding genes, 30 tRNA genes and
four rRNA genes (Table 1). Protein-coding genes, tRNA and
rRNA represent, respectively, 51.6, 1.8 and 6.0% of the plastome.
Non-coding DNA, including IGSs and introns, represents 40.6%
of the genome. The overall GC content of the L. luteus plastome
is 36.6%. It is higher in tRNA and rRNA (53.3 and 55.3%, respect-
ively), slightly higher in protein-coding genes (37.3%), similar in
introns (36.3%) and lower in IGSs (30.3%).

The L. luteus plastome contains 18 different intron-containing
genes (of which six are tRNA), as in most Fabaceae species. All
intronic genes contain one intron, apart from two genes (clpP and
ycf3) that contain two introns. Within the IR, four rRNA, seven
tRNA and five protein-coding genes are repeated. Only the 5′

end of the ycf1 gene (519 bp) is present in the IR, and the gene
rps12 is trans-spliced, with the 5′ exon in the LSC and the
remaining two exons in the IR.

Thirty different tRNA are present in the L. luteus plastome.
They correspond to 28 different codons, at least one for each
amino acid. Seven of the 28 different anticodon tRNAs encoded
in the Lupinus plastome correspond to the most common codon
(where synonymous codons exist). The codon usage is biased
towards a high representation of A and T at the third position
(Supplementary Data Table S2).

Repeat elements in the L. luteus plastome

All repeat sequences that present a minimum size of 30 bp and
withasequence identity≥90%were identified in theL. luteusplas-
tome using REPuter (Kurtz et al., 2001). A total of 31 repeats were
found (Supplementary Data Table S3), including 13 dispersed
short inverted repeats (sIRs), nine palindromes, six dispersed
direct repeats and three tandem repeats.

All the palindromic repeats observed in the L. luteus plastome
are localized in IGSs (except one in the ycf1 coding sequence)
and tandem repeats are mainly found in coding sequences (ycf2).

Most repeats (93.55%) are 30–50 bp long. The largest repeat
in the plastome is a 288 bp dispersed direct repeat corresponding
to a fragment of ycf2 duplicated in each IR, between rpl23 and
tnrI_CAU. This repeated element is absent from extra-Fabales
plastomes (C. sativus and P. persica) or from IRLC plastomes
in the Papilionoideae, but is present in other non-IRLC
Papilionoideae plastomes (G. max, L. japonicus, P. vulgaris
and V. radiata), as previously observed by Guo et al. (2007).

Origin of a 36-kb inversion detected in L. luteus

Global alignment and comparison of gene order between the
plastomes of L. luteus and other legumes, as well as with out-
groups, revealed an inversion of about 36 kb between the
trnS-GCU and trnS-GGA genes inL. luteus (Fig. 3).This inversion
is highlighted by dot plot analyses that compared the plastome of
L. luteus with that of either G. max or C. sativus (Supplementary
Data Fig. S1). This unique 36-kb inversion is embedded within
the 50-kb inversion that occurred earlier in the Papilionoideae
after the divergence between the Cladrastis clade and the rest of
the more derived papilionoid legumes (Doyle et al., 1996).

Toverify the existence of this inversion in Lupinusand to screen
other Genistoids and legume species for the presence orabsence of
this 36-kb inversion, two diagnostic primer pairs were designed.
The localization of these primers is indicated in Fig. 3. PCR amp-
lification was expected from the primers located in the rps4 and
ycf3 protein-coding sequences only for the species without the in-
version, whereas PCR amplification using primers within the ycf3
and psbI genes was only expected in species with the inversion.
Since the 36-kb inversion identified in L. luteus is not present in
the plastomes available for extra-Fabaceae taxa or in the derived
Fabaceae (representative of the Millettoid, Robinoid and IRLC
clades), it most probably occurred after the emergence of the
Genistoids. For the 11 core Genistoid species screened here (in-
cluding representatives of the Sophoreae, Thermopsidae and
Genisteae tribes), amplifications were only successful when
using the diagnostic primers pair for the presence of the inversion.
In contrast, all non-core Genistoids tested gave amplification only
whenusing the diagnostic primerspair for the absenceof the36-kb
inversion (Fig. 4). In both cases, the results were confirmed by se-
quencing of the PCR products (deposited in GenBank:

TABLE 1. Lupinus luteus plastome characteristics

Plastome characteristics

Size (bp) 151 894
LSC size in bp (%) 82 327 (54.2)
SSC size in bp (%) 17 847 (11.7)
IR length in bp (%) 25 860 (34.1)
Size in bp (%) of coding regions 90 217 (59.4)
Size in bp (%) of protein-coding regions 78 363 (51.6)
Size in bp (%) of introns 19 136 (12.6)
Size in bp (%) of rRNA 9056 (6)
Size in bp (%) of tRNA 2798 (1.8)
Size in bp (%) of IGSs 42 541 (28)
No. of different genes 111
No. of different protein-coding genes 77
No. of different tRNA genes 30
No. of different rRNA genes 4
No. of different genes duplicated by IR 17
No. of different genes with introns 18
Overall % GC content* 36.6
% GC content in protein-coding regions* 37.3
% GC content in introns* 36.3
% GC content in IGSs* 30.3
% GC content in rRNA* 55.3
% GC content in tRNA* 53.3

*The sequence of the two inverted repeats were taken into account for this
analysis.
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KC695667–KC695681) and alignment of the sequences with the
homologous plastidic region from other Fabaceae plastomes, in-
cluding L. luteus.

Several multiple alignments of the sequences surrounding the
endpoints of the 36-kb inversion using Papilionoideae species
with or without the 36-kb inversion allowed determination of

the exact location of the inversion (Supplementary Data Fig. S2).
It occurred between the 3′ end of the trnS-GGA and the
trnS-GCU genes that are identical for the last 29 bp and are in
inverse orientation (Fig. 5; Supplementary Data Table S3). A
similar sIR also exists between trnS-GGA and trnS-UGA that are
9 kb distant.
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Gene content and gene transfers to the nucleus in Lupinus
compared with other Fabaceae

The protein-coding gene content of the L. luteus plastome was
compared with those of ten other Fabaceae and two outgroup
taxa. The aim of this comparison was to examine whether the
lupines (representing the core Genistoids) have lost or retained
the chloroplast genes known to have lost their functionality in
the plastome of various lineages during legume evolution
(reviewed in Magee et al., 2010) such as: accD, psaI, rpl22,
rpl23, rps16 and ycf4 (as indicated in Fig. 6). Out of these six
plastidic genes lost from legume lineages, only rpl22 is
missing in the plastome of L. luteus. The functional transfer of
this gene to the nucleus, already demonstrated in P. sativum
(Gantt et al., 1991), was verified in a lupine species (L. mariae
josephi) by the identification of a nuclear rpl22 transcript that
is similar to the nuclear rpl22 transcript found in P. sativum.
The presence of a chloroplast target peptide was predicted in the
L. mariae josephi nuclear rpl22 transcript using a variety of soft-
ware (data not shown). The alignment and phylogenetic analysis
of nuclear and chloroplastic rpl22 sequences (Supplementary
Data Fig. S3) showed that the nuclear rpl22 gene observed in
LupinusandPisumderives fromthe sametransferevent,whichoc-
curred in the common ancestor of all flowering plants (Gantt et al.,
1991). Concerning the other chloroplast genes lost during
Fabaceae evolution, investigations were performed to determine
whether they could be at an intermediate stage of functional trans-
fer to the nucleus. We identified nuclear rps16 transcripts in
L. mariae josephi that were similar to the M. truncatula nuclear
rps16 genes (Ueda et al., 2008), but no nuclear accD, psaI,
rpl23 or ycf4 transcripts could be detected.

Sequence divergence between the plastome of L. luteus and other
Fabaceae

A comparison of pairwise distances (K2p) calculated for
non-coding regions between L. luteus and other legumes
(Supplementary Data Table S4) revealed that, as expected, IGSs
evolvesignificantlymorerapidly thanintrons.Theslowestevolving
regions are tRNAs and rRNAs (Supplementary Data Table S4). For
introns (Fig. 7A), the mean sequence divergence ranged from 0.028

(for the rps12 intron) to 0.270 (for clpP intron1). The two main
introns previously used for phylogenetic inference in legumes
showed relatively low rates of variation: 0.100 for the trnL intron
(501 bp length) and 0.148 for the trnK 5′ intron (318 bp length).
Among introns, seven exhibited a higher level of divergence
(Fig. 7A): the trnG-UCC intron (K2p¼ 0.183; 698 bp), rpoC1
intron (0.164; 766 bp), clpP intron 2 (0.230; 739 bp), clpP intron
1 (0.270; 655 bp), petD intron (0.224; 743 bp), rpl16 intron
(0.195; 1155 bp) and ndhA intron (0.215; 1171 bp). The highest
mean sequence divergence of IGS regions corresponds to the
accD_psaI region (0.473). Among IGSs and in comparison with
the IGS regions most used for legume phylogeny (trnL_trnF,
mean K2p ¼ 0.255; trnL_trnT, 0.352; trnS_trnG, 0.316), five
IGSs .300 bp showed divergence rates slightly or significantly
higher than trnL_trnT, i.e. ycf4_cemA (0.357; 317 bp), rpl36_rps8
(0.357; 453), psbZ_trnG-GCC (0.357; 345 bp), trnV-UAC_ndhC
(0.355; 497 bp) and accD_psaI (0.473; 293 bp (Fig. 7A). For
protein-coding regions (Fig. 7B; Supplementary Data Table S5),
the evolutionary rates have been evaluated by comparison of their
synonymous (Ks) nucleotide substitution rates (Fig. 7B). The
mean divergence rate between L. luteus and the other legume
genes ranged fom 0.072 (for rpl23; 282 bp) to 0.667 (for rps16;
47 bp), with most loci presenting mean Ks values lower than those
of the two protein-coding genes used for phylogenetic inference in
legumes, matK (0.235; 1521 bp) and rbcL (0.367; 1428 bp).
Fourteen genes displayed Ks values higher than rbcL, of which
nine are .300 bp: rpoC2 (0.419; 4149 bp), rps16 (0.667; 407 bp),
accD (0.538; 1497 bp), ycf4 (0.659; 555 bp), rps8 (0.388; 405 bp),
rpl14 (0.441; 369 bp), ycf1 (0.518; 5296 bp), ndhH (0.394; 1182)
and ndhF (0.454; 2241 bp). For most loci (65/77), the non-
synonymous nucleotide substitution (Ka) values calculated
between Lupinus and the other legumes were ,0.1 (Supple-
mentary Data Table S6). Among the 12 remaining loci, only five
displayed higher values than the reference matK gene (mean
Ka¼ 0.132): rpl32 (0.147), rps16 (0.169), accD (0.184) and par-
ticularly ycf1 (0.306) andycf4 (0.398). Regarding these low values
of Ka, the Ka/Ks ratio calculated for each protein-coding gene
(Supplementary Data Table S7) was ,1 and even ,0.5 for
almost all loci, indicating that plastidic genes are under a high
negative (i.e. purifying) selective constraint (Kimura, 1977;
Messier and Stewart, 1997). Nevertheless, it can be noted that
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the three ycf genes (ycf1, ycf2 and ycf4) exhibit remarkably higher
Ka/Ks values (0.601, 0.682 and 0.649, respectively) than all the
other genes, indicating an increase in their sequence evolutionary
rate.

Altogether, theseanalysesallowcircumscriptionof fast-evolving
regions in the legumeplastomes,as inferred frompairwisecompari-
son of Lupinus with the other available legume plastomes (high-
lighted in Supplementary Data Fig. S4). Among these regions,
three are remarkable: one in the SSC, between ycf1 and the ndhA
intron (9043 bp); two in the LSC, around the rpl36-rpl16 genes
(3178 bp), and the accD-ycf4_cemA region (2968 bp) that exhibits
the highest rates of sequence divergence for genes (rps16, accD and
ycf4) and IGSs (accD_psaI and ycf4_cemA). The latter region,
which includestheycf4gene,wasshowntohaveadramatic increase
in its evolutionaty rate in the NPAAA clade (including Millettioids,
Robinioids, and IRLC) and most particularly in Lathyrus (Magee
et al., 2010). To investigatewhether such acceleration also occurred
in the lupine lineage, maximum likelihood phylogenetic analyses
using legume ycf4 gene sequences (including L. luteus ycf4) and
based on Ks and Ka substitution rates were performed. Our
results (Supplementary Data Fig. S5) do not provide evidence of
such acceleration in the ycf4 gene in Lupinus, in accordance with
the previous results obtained by Magee et al. (2010) using a few
Genistoid members (Crotalaria, Goodia and Laburnum).

The other regions showingpeaks ofdivergencewhencomparing
Lupinus with other legume plastomes include some isolated genes

(rpoC2 and ndhF), introns (trnG-UCC, rpoC1 and petD) and IGSs
(trnV_ndhC and psbZ_trnG-GCC) that were not previously
detected as fast-evolving regions in NPAAA clade members.

DISCUSSION

In this work the plastome of Lupinus luteus has been sequenced
using NGS technologies. Its size and gene content are within the
range found in plastomes containing two IRs (Raubeson and
Jansen, 2005). It is AT rich (with the exception of rRNA and
tRNA genes) and the codon usage is biased toward a high repre-
sentation of A and T at the third position as previously observed
by Clegg et al. (1994). This sequence, which represents the first
plastome sequenced in the core Genistoids, is of major interest
because all legume plastomes sequenced so far belong to only
three Papilionoid clades, the Millettioids, the Robinioids and the
IRLC, which derive from within the NPAAA clade (Cardoso
et al., 2012). Thus it was essential to sequence plastomes from
representatives of other Papilionoid lineages in order to have a
better understanding of the unusual plastome evolution observed
in legumes (Jansen and Ruhlman, 2012). Most photosynthetic
angiosperms have a highly conserved plastome organization,
except the Campanulaceae, Fabaceae and Geraniaceae families
that exhibit remarkable and extensive rearrangements (Jansen
and Ruhlman, 2012). Within the Fabaceae, one of the most re-
markable inversions that occurred after the emergence of the
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FI G. 4. Phylogenetic position of the 36-kb inversion rearrangement (solid black circle) detected in the plastomes of Lupinus and representatives of the core Genistoid
clade (Papilionoidae; Fabaceae). All taxa screened by PCR and sequencing for the presence or absence of this inversion have their names labelled in bold. The taxa for
which the plastome sequence is publicly available and for which the 36-kb inversion is absent belong to the Millettioids, Robinioids and IRLC (labelled in grey). The

phylogenetic tree is redrawn from Cardoso et al. (2012).
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family is the 50-kb inversion, which is shared by most papilionoid
taxa (Doyle et al., 1996). The plastome sequences of three IRLC
species, L. sativus (Magee et al., 2010), P. sativum (Palmer and
Herbon, 1988) and T. subterraneum (Cai et al., 2008), revealed
that, relative to the ancestral angiosperm plastome organization,
and after the 50-kb inversion event, six, eight and fifteen inver-
sions occurred, respectively (Magee et al., 2010). Within the
50-kb clade, our study reveals that the L. luteus plastome experi-
enced an additional 36-kb inversion internal to the 50-kb inver-
sion, which most probably occurred at the origin of the core
Genistoids. Previous molecular characterization of large plas-
tomic inversionendpoints inafewplant families orgenera, includ-
ing the 50-kb inversion present in most Papilionoideae (Doyle
et al., 1996), the 22-kb inversion in Asteraceae (Kim et al.,
2005), the 42-kb inversion in Abies (Tsumura et al., 2000) or the
21-kb inversion in Jasminae (Lee et al., 2007), showed that
these large plastomic inversions were often associated with sIRs
present within, or adjacent to, a tRNA. The detailed survey of
the regions surrounding the 36-kb inversion endpoints in core
Genistoids allowed us to determine that this inversion is most
likely to be due to the presence of sIR motifs (29 identical
nucleotides) at the 3′ end of trnS-GGA and trnS-GCU. The role
of repeated elements present in inverse orientation in promoting
flip–floprecombinationresulting in inversionshasbeenpreviously
demonstrated using tobacco transplastomic lines (Rogalski
et al., 2006). Such repeated elements can promote plastid
DNA inversions which may vary in size from a few base pairs
to several kilobases (reviewed in Downie and Palmer, 1992).

Minor inversions are more common than major ones and
mainly occur in non-coding regions, IGSs and introns
(Palmer, 1985). Interestingly the sIR motif in trnS-GGA and
trnS-GCU, which caused the 36-kb inversion in the core
Genistoids, is present in almost all Rosids (Supplementary
Data Table S8) and is separated by at least 30 kb. Thus, even
though this 36-kb inversion was only observed in the core
Genistoids, it could have occurred in any other rosid species.

The L. luteus plastome contains fewer repeats (31) than other
Fabaceae species, such as V. radiata, L. japonicus, G. max or
M. truncatula that have 50, 67, 104 and 191 repeats, respectively
(Saski et al., 2005; Tangphatsornruang et al., 2010). Most
L. luteus repeats are relatively small in size (90% are 30–50 bp
in size). The longest repeat observed in L. luteus is a 288 bp
direct repeat (within the IR) that is also present in the non-IRLC
Papilionidae (G. max, L. japonicus, P. vulgaris and V. radiata)
but not in the IRLC or outgroup taxa (C. sativus and P. persica).
The low numberof repeatsobserved inLupinus is in starkconstrast
to the T. subterraneum plastome that contains a high number of
large repeatsandshowsa high rateof rearrangement:14 inversions
occurred since its divergence with other IRLC species (Cai et al.,
2008; Magee et al., 2010). The number of large repeats was
demonstrated to be positively correlated to the degree of plastome
rearragements in plants (Maul et al., 2002; Pombert et al., 2005;
Guisinger et al., 2011). Within the repeats observed in Lupinus,
42% (13/31) are dispersed sIRs (6–66 kb distant) that could
promote inversions. However, apart from the dispersed sIR at
the origin of the 36-kb inversion in the core Genistoid and
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another repeat between trnS-UGA and the trnS-GGA (9 kb
distant), all the others would presumably lead to the loss of func-
tionality of one or several genes in the case of an inversion event
and thus may be deleterious (Ruf et al., 1997: Drescher et al.,
2000). Whilst the above 9-kb region is potentially prone to inver-
sion, to date no evidence of such an event has been observed from
this or previous studies in other Fabaceae species.

The rarityofplastomicrearrangements infloweringplantsmakes
these characters powerful phylogenetic markers (Kim et al., 2005)
since they present an extremely low level of homoplasy (Cosner
et al., 2004). The 36-kb inversion identified in this study is
present in all core Genistoid species surveyed (12) and therefore
provides a robust additional synapomorphy supporting monophyly
of the core Genistoids (Crisp et al., 2000). Further screening of
representatives from Brongniartieae and Bowdichia clades,
shown to be closely related to the core Genistoids (Cardoso et al.,
2012),willdeterminewhether this36-kb inversion is strictlyspecif-
ic to the core Genistoids or whether it occurred earlier or at the base
of the large Genistoid s.l. assemblage (includes Brongniartieae and
Bowdichia clades). Thus, after the 50-kb inversion that is shared by
a majority of Papilionideae (Doyle et al., 1996), and the 78-kb in-
version supporting the Papilionoid subtribe Phaseolinae (Bruneau
et al., 1990) in legumes, this 36-kb inversion represents an addition-
al example highlighting the phylogenetic usefulness of plastidic
inversions. Such clade-demarcating inversions were also detected
inotherAngiospermfamilies.Within theAsteraceae,a22-kbinver-
sionallowed identificationof thesubtribeBarnadesiinaeasthemost
primitive lineage in the family (Jansen and Palmer, 1987). In the
Campanulaceae, which also have highly rearranged plastomes, re-
liable phylogenetic relationships could be reconstructed within the

family only based on the use of the numerous rearrangements
(including inversions) as characters (Cosner et al., 2004).
Interestingly, there is also evidence of specific mutational and re-
structuring events that affected the nuclear genome of Lupinus
(Mahé et al., 2011a), which suggests that the Genistoids experi-
enced noteworthy genomic changes, in both the plastid and the
nuclear genomes, after their divergence from the NPAAA papilio-
noid lineages (approx. 50–56 million years ago).

Gene content is highly conserved among photosynthetic
angiosperm plastomes (Timmis et al., 2004). However, within
the Fabaceae, several chloroplastic genes (accD, psaI, rpl22,
rpl23, rps16 and ycf4) have been lost recently and independently
in various lineages (Magee et al., 2010). However, within the
L. luteus plastome, only the rpl22 gene is missing, which is in ac-
cordance with the previous finding of Gantt et al. (1991) who
demonstrated that the functional transfer of this gene from the
chloroplast to the nucleus occurred in a common ancestor of all
flowering plants, and thus preceded its loss from the chloroplast
genome by about 100 million years (Supplementary Data
Fig. S3). Among the chloroplast genes that have been lost in
legume lineages following their divergence from the common
ancestor with lupines, we found that the rps16 gene is at an inter-
mediate stage of functional replacement in the Lupinus nuclear
genome, as it is still represented by a functional copy in the
chloroplast genome while another is in the nucleus. This nuclear-
encoded rps16 gene targeted to the plastid is of mitochondrial
origin and was transferred prior to the monocot–dicot diver-
gence (Ueda et al., 2008).

The evaluation of sequence divergence betweenLupinusand the
other sequenced legumes allowed identification of fast-evolving
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transfer of rpl22 in Lupinus luteus detected in this study. The grey triangle indicates the functional replacement of the plastomic rps16 gene by a mitochondrial gene
functionally transferred to the nucleus (Ueda et al., 2008). White triangles show the plastid genes lost during Fabaceae evolution and for which no functional replace-
ment in the nucleus has been observed. The independent losses of ycf4 in Lathyrus sativus and Pisum sativum were inferred from the results of Magee et al. (2010) who

showed the presence of intact ycf4 genes in some Lathyrus species.
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sequences (Fig. 7; Supplementary Data Fig. S4). This information
is essential fora better understanding of the dynamic nature of plas-
tome evolution in legumes and for improving legume phylogeny,
especially within the Genistoids and the genus Lupinus
(Eastwood et al., 2008; Mahé et al., 2011a; Cardoso et al.,
2012). As expected, most coding regions are well conserved, par-
ticularly in the IR region, and in most cases IGSs are evolving
faster than introns, in accordance with previous observations
(Clegg and Zurawski, 1991; Raubeson et al., 2007). Compared
with the plastid sequences used in legume evolutionary studies,
we have detected several sequences (Fig. 7) that exhibit higher
rates of divergence: (1) seven introns (trnG-UCC, rpoC1, rpl16,
ndhA, petD and clpP introns 1 and 2); (2) five IGSs (ycf4_cemA,
rpl36_rps8, psbZ_trnG-GCC, trnV-UAC_ndhC and accD_psaI);
and (3) eight protein-coding genes (rpoC2, accD, ycf4, rps8,
rpl14, ycf1, ndhH and ndhF). Interestingly, most of these variable
regions have not been or have rarely been employed in legume
phylogeny [e.g. the trnS-trnG region in Lupinus by Drummond
(2008); ycf1 in Astragalus by Bartha et al. (2013)], and thus repre-
sent a new set of markers to explore evolutionary relationships
within legumes. Each of these sequences needs to be tested in
order to evaluate at which taxonomic level and in which lineages
they could be more informative and useful. As an example, the re-
markable increase in theevolutionary rateobserved in theycf4gene
is specific to the IRLC, Robinioid and Millettioid lineages
(NPAAA clade), and occurred after the divergence of the latter
from the other legumes (Magee et al., 2010). Thus, this region is
most probably a good candidate for the NPAAA clade but seems
less interesting for phylogenetic inference within the Genistoids
and earlier legume lineages. In contrast, we have detected several
loci exhibiting an increase in their evolutionary rate that is specific
to the lupine/genistoid lineage. These loci include the rpoC2 and
ndhF genes, the trnG-UCC, rpoC1 and petD introns, and the
trnV_ndhC and psbZ_trnG-GCC IGSs. Regardless of the specifi-
city and degree of utility of each locus, altogether these variable
sequences constitute an important source of novel characters for
single- or multigene-based reconstruction of evolutionary patterns
in legumes at various taxonomic levels.

These variable sequences (mentioned above) are distributed in
well-circumscribed fast-evolving regions that shape the legume
plastome landscape (Fig. 7; Supplementary Data Fig. S4).
Interestingly, three of these variable regions are located at bound-
aries of the 50-kb inversion (rps16_ycf4 region), the 36-kb inver-
sion (trnS-GCU_trnG-UCC region) and the IR region (ycf1
region) (Fig. 7). As previously pointed out by Magee et al.
(2010), these fast-evolving regions include gene and intron
losses, such as genes lost from the rps16_ycf4 region (rps16,
accD, psaI, rpl23 and ycf4) and introns lost from the
clpP_rps12 and the rpl16 regions (Fig. 7). This suggests that
these regions are most probably involved in structural rearrange-
ments and thus represent unstable regions or hotspots that con-
tribute significantly to the evolutionary dynamics of legume
plastomes. Future research on the efficiency of the four classes
of nuclear-encoded genes that are involved in chloroplast DNA
repair and the maintenance of plastome stability (Maréchal and
Brisson, 2010; Guisinger et al., 2011) may reveal whether one
or several of these four genes are implicated in legume plastome
evolution. Additionally, this study demonstrates that it is essen-
tial to sequence plastomes from other papilionoid and earlier
legume lineages that remain unexplored to date in order to

have a better understanding of the atypical plastome evolution
observed in this family.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford
journals.org and consist of the following. Table S1: list of soft-
ware used in this paper. Table S2: codon usage bias. Table S3:
repeated elements in the Lupinus luteus chloroplast genome.
Table S4: sequence divergence (K2p) between L. luteus and
ten other Fabaceae plastomes. Table S5: synonymous mutation
rate between L. luteus and ten other Fabaceae plastome protein-
coding sequences. Table S6: non-synonymous mutation rate
between L. luteus and ten other Fabaceae plastomes. Table S7:
Ka/Ks ratio between L. luteus and ten other Fabaceae plastomes.
Table S8: identification of the presence of inverted repeated ele-
ments in trnS-GGA and trnS-GCU genes within rosid plastomes.
Fig. S1: dot matrix plots showing the presence of a 36-kb inver-
sion in the Lupinus luteus plastome. Fig. S2: comparative plas-
tomic maps showing the presence of a 36-kb inversion in
Lupinus luteus in comparison with other Papilionoideae. Fig.
S3: phylogenetic analysis of plastidic and nuclear rpl22 protein
sequences. Fig. S4: pairwise distance between Lupinus luteus
and other Fabaceae orthologous plastomic regions. Fig. S5: syn-
onymous and non-synonymous divergence in legume chloro-
plast ycf4 gene.
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