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Abstract

Traditionally, the tribe Sophoreae sensu lato has been considered a basal but also hetero-

geneous taxonomic group of the papilionoid legumes. Phylogenetic studies have placed

Sophoreae sensu stricto (s.s.) as a member of the core genistoids. The recently suggested

new circumscription of this tribe involved the removal of traditional members and the inclu-

sion of Euchresteae and Thermopsideae. Nonetheless, definitions and inter- and intra-taxo-

nomic issues of Sophoreae remain unclear. Within the field of legume systematics, the

molecular characteristics of a plastid genome (plastome) have an important role in helping

to define taxonomic groups. Here, we examined the plastome of Maackia fauriei, belonging

to Sophoreae s.s., to elucidate the molecular characteristics of Sophoreae. Its gene con-

tents are similar to the plastomes of other typical legumes. Putative pseudogene rps16 of

Maackia and Lupinus species imply independent functional gene loss from the genistoids.

Our overall examination of that loss among legumes suggests that it is common among all

major clades of Papilionoideae. The M. fauriei plastome has a novel 24-kb inversion in its

large single copy region, as well as previously recognized 50-kb and 36-kb inversions. The

36-kb inversion is shared by the core genistoids. The 24-kb inversion is present in the eight

genera belonging to three tribes: Euchresteae, Sophoreae s.s., and Thermopsideae. The

phylogenetic distribution of this 24-kb inversion strongly supports the monophyly of mem-

bers of Sophoreae s.s. with Euchresteae and Thermopsideae. Hence, it can be used as a

putative synapomorphic characteristic for the newly circumscribed Sophoreae, including

Euchresteae and Thermopsideae. However, plastome conformation suggests a slightly

narrower taxonomic group because of heterogeneous results from Bolusanthus and

Dicraeopetalum. The phylogenetic analysis, based on plastome sequences from 43

legumes, represents well our understanding of legume systematics while resolving the gen-

istoid clade as a sister group to an Old World clade. It also demonstrates the value that plas-

tomes are powerful marker for systematic studies of basal papilionoid legumes.
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Introduction

Fabaceae (legumes) is the third largest angiosperm family, with approximately 751 genera and

20,000 species [1–2]. Three subfamilies—Mimosoideae, Papilionoideae, and Caesalpinioideae

—are typically recognized although the first two are generally placed within the latter, which is

paraphyletic. Papilionoideae is the most diverse and includes economically important legume

crops. Recent comprehensive molecular phylogenies [3–4] have provided strong support for

the relationships and composition of many major Papilionoideae clades. However, a system-

atic understanding is lacking for “basal papilionoids” [5] or “early-branching papilionoids”

[3], which include tribes Swartzieae, Sophoreae, Dipterygeae, and Dalbergieae [2]. In particu-

lar, the polyphyletic tribe Sophoreae is in a systematics state of flux.

The taxonomic circumscription of tribe Sophoreae has been debated during last several

decades. The traditional tribe Sophoreae sensu lato (sensu Polhill; hereafter, ‘Sophoreae s.l.’)
has been circumscribed as a vast and heterogeneous assemblage of taxa that are considered

basal papilionoid legumes [6–7]. This has led to taxonomic disputes about how Sophoreae

relates to early-branching papilionoid tribes [8–10]. Modern molecular phylogenies [3–5, 11–

13] have shown that Sophoreae s.l. is indeed a polyphyletic group comprising genera [Sophor-

eae pro parte (p.p.)] that are scattered throughout the phylogenetic tree of the Papilionoideae

(Fig 1). Meanwhile, as established by Crisp et al. [14], Sophoreae sensu stricto (s.s.) is consid-

ered a member of the core genistoids that include the tribes of Genisteae, Crotalarieae,

Euchresteae, Podalyrieae, and Thermopsideae. Recently, Cardoso et al. [4] suggested a new cir-

cumscription of Sophoreae (hereafter, ‘new Sophoreae’) that includes 122 species of 14 genera

that were formerly treated as Sophoreae s.s. (Ammodendron Fisch. ex DC., Ammothamnus
Bunge, Bolusanthus Harms, Dicraeopetalum Harms, Maackia Rupr. & Maxim, Platycelyphium
Harms, Salweenia Baker f., and Sophora L.), Euchresteae (Euchresta Benn.), and Thermopsi-

deae (Ammopiptanthus S.H. Cheng, Anagyris L., Baptisia Vent., Piptanthus Sweet, and Ther-
mopsis R. Br. ex W.T. Aiton). This new circumscription involved huge rearrangement of

genera of Sophoreae s.l. and inclusion of all genera belonging to Euchresteae and Thermopsi-

deae except Pickeringia Nutt. ex Torr. & A. Gray. However, their taxon sampling did not cover

all genera of new Sophoreae (nine of 14 genera were included) and other studies [15–16] dem-

onstrated that most Thermopsideae genera could also be a monophyletic group independent

from Sophoreae s.s. Moreover, new Sophoreae lacks morphological criteria that can define it

in the core genistoids. Thus, its taxonomic boundary remains unclear.

The plastid genome (plastome) is generally conserved among seed plants based on its quad-

ripartite architecture [a pair of inverted repeats (IRs), small single copy (SSC) region, and large

single copy (LSC) region], gene content, and order [17]. Plastomes are also generally free of

recombinants, maternally inherited, and have a slow rate of evolution [18–19]. Thus, the

sequence variations associated with a plastome are useful tools for studies that are phylogeo-

graphic [20–23], phylogenetic [4, 24–26], or phylogenomic [27–30] in nature. For example,

within the legume phylogeny, IR losses (IRLC; Inverted Repeat-Lacking Clade); large inver-

sions such as a 50-kb inversion (valid for all papilionoid tribes except some members of Swart-

zieae, Sophoreae s.l., and Dipterygeae); and gene and/or intron losses serve as important

taxonomic characters [17, 31]. For genistoids, a 36-kb inversion which is embedded within

50-kb inversion and caused by flip-flop recombination from short repeat sequences of the trnS
(GGA) and trnS (GCU) regions has been proposed as proof of molecular synapomorphy

among a core genistoid clade [32].

Morphologically Sophoreae s.l. has been a "tribe of convenience" rather than a natural

group that is clearly distinctive from both Caesalpinioideae and Papilionoideae [6]. Its non- or

imperfect papilionaceous flower, with 10 free stamens, has been considered a taxonomically
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significant characteristic [6, 33]. However, taxa with more specialized floral features are now

dominant element of new Sophoreae sensu Cardoso et al. [4]. Although such morphological

characters can provide critical and fundamental evidence when determining taxonomic

boundaries, convergent evolution of their morphology is often problematic, especially at

higher taxonomic levels [34]. Therefore, it is difficult to elucidate evolutionary relationships

Fig 1. Simplified schematic phylogeny of Papilionoideae, originally published as Figure 1 in Cardoso et al. [4]. Phylogenetic

positions are shown for new Sophoreae (incl. Euchresteae and Thermopsideae). *; evolutionary group that includes some former

members of Sophoreae s.l. (sensu Polhill [6–7]).

https://doi.org/10.1371/journal.pone.0173766.g001
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and delimit taxonomic boundaries based only on morphology [35]. The distinct plastome

characteristic has been used as a powerful marker for systematic evaluations of legumes [17,

31]. Thus, plastome studies could be promising for testing the validity of the new Sophoreae.

Here, we sequenced and analyzed the first plastome of Sophoreae s.s. from Maackia fauriei
(H. Lév.) Takeda, a large tree endemic to Jeju Island, Korea. Although a single plastid genome

sequence is not sufficient to answer all of the taxonomic problems surrounding Sophoreae s.l.,
we did identify a distinct plastome organization from M. fauriei and then screened those fea-

tures in representatives of genistoid and Sophoreae s.l. We also reconstructed a legume phylog-

eny based on the plastome sequences found in our current study as well as those reported

recently by other researchers.

Materials and methods

Ethics statement

Maackia fauriei is not an endangered or protected species in Korea. We did not collect plants

from the protected areas that required permission.

Plastid genome sequencing

Leaves of Maackia fauriei were collected from Jeju Island, Korea, and preserved with silica gel.

Voucher specimen (J.Y. Lee & I.S. Choi 1208046) were deposited in the Herbarium of Inha

University (IUI), Incheon, Korea. Genomic DNA was extracted from the dried tissues by a

protocol that utilized the DNeasy Plant Mini Kit (Qiagen, Seoul, Korea). The quantity and

quality of the extracted genomic DNA were assessed by gel electrophoresis and spectroscopy

with a NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE, USA). The gDNAs

were then fragmented into 500-bp segments for library construction per the manufacturer’s

instructions (Illumina Inc., San Diego, CA, USA), and were sequenced using the Illumina

HiSeq 2000 System (Illumina Inc.) at the BML Co. in Daejeon, Korea.

Plastid genome assembly

The sequencing run produced 25,318,060 paired-end reads (101 bp each). Poor-quality

sequences were removed by Trimmomatic 0.32 [36]. To isolate plastid-related reads and

assemble the plastome, we largely followed the method described by Wang and Messing [37].

Briefly, the paired-end reads were mapped on the reference genome of Lupinus luteus L. (Gen-

Bank Accession Number NC_023090) using Geneious ver. 7.1.3 (Biomatters Ltd., Auckland,

NZ). The mapped reads were then reassembled de novo using Geneious and the generated

plastome contigs were re-aligned to the plastome of L. luteus to identify gaps among the con-

tigs. This generated four contigs (two for LSC and two each for the SSC and IR regions) with a

total length of approximately 154 kb. To fill those gaps, we used purified DNA and performed

polymerase chain reactions (PCRs) with primers designed via Primer3 [38].

Gene annotation

The complete plastome for M. fauriei was annotated using DOGMA [39] and Geneious. The

tRNAs were confirmed by tRNAscan-SE [40]. Other protein-coding regions were checked

based on data from the NCBI (http://blast.ncbi.nlm.nih.gov/), and manual corrections were

made for the start and stop codons. Particular gene features of the plastome were illustrated

with the Web-based tool OGDraw [41].
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Investigation of rps16 among legume plastomes

The loss of rps16 was investigated in complete plastomes from 33 legume species (Table 1).

Each rps16 gene was extracted from the available sequenced genomes and sequences were

Table 1. Comparison of features from legume plastomes selected for this study.

Subfamily Tribe Species Accession number rps16 Total genome size (bp)

Caesalpinioideae Cercideae Cercis canadensis KF856619 intact gene 158,995

Caesalpinioideae Detarieae Tamarindus indica KJ468103 intact gene 159,551

Caesalpinioideae Caesalpinieae Ceratonia siliqua KJ468096 intact gene 156,367

Caesalpinioideae Cassieae Chamaecrista fasciculata KP126855 partial genome

Caesalpinioideae Caesalpinieae Caesalpinia coriaria KJ468095 intact gene 158,045

Caesalpinioideae Caesalpinieae Haematoxylum brasiletto KJ468097 intact gene 157,728

Mimosoideae Mimoseae Prosopis glandulosa KJ468101 intact gene 163,042

Mimosoideae Mimoseae Leucaena trichandra NC_028733 intact gene 164,692

Mimosoideae Mimoseae Desmanthus illinoensis KP126868 partial genome

Mimosoideae Ingeae Inga leiocalycina NC_028732 intact gene 175,489

Mimosoideae Acacieae Acacia ligulata NC_026134 intact gene 174,233

Papilionoideae Amorpheae Amorpha canescens KP126852 partial genome

Papilionoideae Dalbergieae Arachis hypogaea KJ468094 complete deletion 156,395

Papilionoideae Genisteae Lupinus albus KJ468099 putative pseudogene 154,140

Papilionoideae Genisteae Lupinus luteus NC_023090 putative pseudogene 151,894

Papilionoideae Sophoreae Maackia fauriei KX388160 putative pseudogene 154,541

Papilionoideae Thermopsideae Baptisia alba KP126860 partial genome

Papilionoideae Thermopsideae Baptisia bracteata KP126854 partial genome

Papilionoideae Indigofereae Indigofera tinctoria KJ468098 intact gene 158,367

Papilionoideae Millettieae Millettia pinnata NC_016708 intact gene 152,968

Papilionoideae Phaseoleae Apios americana KF856618 complete deletion 152,828

Papilionoideae Phaseoleae Pachyrhizus erosus KJ468100 intact gene 151,947

Papilionoideae Phaseoleae Glycine max NC_007942 intact gene 152,218

Papilionoideae Psoraleeae Pediomelum argophyllum KP126866 partial genome

Papilionoideae Psoraleeae Psoralidium tenuiflorum KP126859 partial genome

Papilionoideae Phaseoleae Phaseolus vulgaris NC_009259 truncated gene 150,285

Papilionoideae Phaseoleae Strophostyles leiosperma KP126853 partial genome

Papilionoideae Phaseoleae Vigna unguiculata KJ468104 intact gene 151,866

Papilionoideae Robinieae Robinia pseudoacacia KJ468102 truncated gene 154,835

Papilionoideae Loteae Lotus japonicus NC_002694 intact gene 150,519

Papilionoideae Millettieae Wisteria floribunda NC_027677 putative pseudogene 130,960

Papilionoideae Galegeae Glycyrrhiza glabra NC_024038 truncated gene 127,943

Papilionoideae Galegeae Astragalus mongholicus var. nakaianus NC_028171 truncated gene 123,633

Papilionoideae Galegeae Oxytropis lambertii KP126858 partial genome

Papilionoideae Cicereae Cicer arietinum NC_011163 truncated gene 125,319

Papilionoideae Trifolieae Melilotus albus KP126850 partial genome

Papilionoideae Trifolieae Medicago truncatula NC_003119 complete deletion 124,033

Papilionoideae Trifolieae Trifolium aureum NC_024035 truncated gene 126,970

Papilionoideae Trifolieae Trifolium subterraneum NC_011828 truncated gene 144,763

Papilionoideae Fabeae Pisum sativum NC_014057 complete deletion 122,169

Papilionoideae Fabeae Lathyrus sativus NC_014063 complete deletion 121,020

Papilionoideae Fabeae Vicia faba KF042344 truncated gene 123,722

Papilionoideae Fabeae Lens culinaris NC_027152 complete deletion 123,096

https://doi.org/10.1371/journal.pone.0173766.t001
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aligned by MUSCLE 3.8.31 [42] using default parameters. We re-analyzed and categorized this

gene in four ways, as in Kim et al. [43]: 1) intact gene (full-length and in-frame), 2) putative

pseudogene (mutation in start or stop codon or frame shift-inducing indels), 3) truncated

gene (significant deletion), and 4) complete deletion.

Whole-genome alignments

Other plastome sequences for relevant legumes (Table 1) were obtained from GenBank. Single

IR copies were manually removed. Afterward, the complete plastome of M. fauriei and other

sequences [Tamarindus indica L. (KJ468103), Arachis hypogaea L. (KJ468094), and Lupinus
luteus (NC_023090)] were aligned using genome alignment software Mauve 2.3.1 [44] to

check for inversion events.

Survey of inversion events among genistoids and Sophoreae s.l.

To verify the distribution of 36-kb and 24-kb inversions on the phylogenetic tree, we used

methods based on PCR amplifications. In all, 16 representative species were selected that

belong to five tribes and 15 genera (Table 2). They roughly cover the genistoids and Sophoreae

s.l. group. Those plant materials had been collected from East Asia (China, Korea, and Japan)

and deposited at the IUI herbarium. Other DNA samples were obtained from the DNA Banks

of the Royal Botanic Gardens, Kew (http://apps.kew.org/dnabank/homepage.html) and the

University of Johannesburg (UJ), South Africa (http://acdb.co.za/index.php/dna-bank/

introduction-2.html). The remaining materials needed for this study were also collected

Table 2. Taxa sampled to screen for inversions.

Taxon Classification Inversion

events

Voucher information

Polhill (1981 and 1994)

[6–7]

Lewis et al. (2005)

[1]

Cardoso et al. (2013)

[4]

36-kb 24-kb

Cladrastis wilsonii Sophoreae Sophoreae p.p. Cladrastis clade - - I.S. Choi & D.P. Jin 1209001 (IUI)

Styphnolobium japonicum Sophoreae Sophoreae p.p. Cladrastis clade - - B.H. Choi 1317 (IUI)

Camoensia brevicalyx Sophoreae Sophoreae s.s. Camoensieae - - Champluvier 5205 (K)(Kew 33888)

Crotalaria capensis Crotalarieae Crotalarieae Crotalarieae + - O. Maurin et al. OM2692 (JRAU)(UJ

05004)

Lupinus luteus Genisteae Genisteae Genisteae + - ABH 31123 (ABH)(Kew 15870)

Bolusanthus speciosus Sophoreae Sophoreae s.s. Sophoreae + - O. Maurin et al. OM240 (JRAU)(UJ

00040)

Dicraeopetalum

mahafaliense

Sophoreae Sophoreae s.s. Sophoreae + - D. Puy et al. 1029 (Kew 13059)

Anagyris foetida Thermopsideae Thermopsideae Sophoreae + + Crespo & E. galante 38544 (ABH)

(Kew 15865)

Baptisia australis Thermopsideae Thermopsideae Sophoreae + + I.S. Choi 1405001 (IUI)

Piptanthus nepalensis Thermopsideae Thermopsideae Sophoreae + + H. Sun s.n. (GCU)(MPRBP 01013)

Thermopsis fabacea Thermopsideae Thermopsideae Sophoreae + + B.H. Choi & I.S. Choi 1406001 (IUI)

Maackia fauriei Sophoreae Sophoreae s.s. Sophoreae + + J.Y. Lee & I.S. Choi 1208046 (IUI)

Salweenia bouffordiana Sophoreae Sophoreae s.s. Sophoreae + + H. Sun s.n. (GCU)(MPRBP 01012)

Sophora koreensis Sophoreae Sophoreae s.s. Sophoreae + + J.Y. Lee & B.H. Choi s.n. (IUI)

Sophora flavescens Sophoreae Sophoreae s.s. Sophoreae + + S.G. Jung s.n. (IUI)

Euchresta japonica Euchresteae Euchresteae Sophoreae + + B.H. Choi 99078 (IUI)

For inversion events: + indicates presence of inversion; –, absence. DNA bank numbers are in parentheses after voucher information.

https://doi.org/10.1371/journal.pone.0173766.t002
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through KNRRC (Medicinal Plants Resources Bank NRF-2010-0005790), supported by the

Korea Research Foundation and the Ministry of Education, Science and Technology in 2014.

Vouchers were deposited at the herbarium of Gachon University (GCU). The gDNAs were

extracted from silica gel-dried leaves, as described above. All PCRs were conducted with a

GeneAmp1 PCR System 2700 Thermal Cycler (Applied Biosystems, Foster City, CA, USA)

according to a program of initial denaturation that was followed by 30 cycles of 10 s at 98˚C, 7

s at 58˚C, and 2 min at 72˚C; and then a final extension for 5 min at 72˚C. Each 50-μL reaction

mixture included 1 μL of genomic DNA (~ 20 ng), 1 μL each of forward and reverse primers

(10 pMol), and 25 μL of PrimeSTAR HS Premix (TaKaRa, Seoul, Korea). The existence of the

36-kb inversion was tested using primer pairs designed by Martin et al. [32]. The pair of

rps4-bef-F and ycf3-bef-R was used for determining its absence while ycf3-inv-F and psbI-int-

R were used to detect its presence. Three primers were designed to test for the 24-kb inversion:

the pair of FGA-ndhJ-F and FGA-trnF-R for its absence and the pair of FGA-ndhJ-F and

FGA-trnC-R for its presence (Table 3). The PCR products were visualized on 2% agarose gels,

purified by PCR quick-spin TM (iNtRON Biotechnology, Seongnam, Korea), and sequenced

with an ABI 3100 Genetic Analyzer and an ABI BigDyeTM Terminator Cycle Sequencing

Ready Reaction Kit (Applied Biosystems) at the Macrogen, Seoul, Korea.

Phylogenetic analysis

A phylogenetic tree was constructed using 43 complete or partial plastomes for legumes, as

collected from the GenBank database (Table 1). The outgroup included Morus mongolica
(Bureau) C.K. Schneid. (KM491711), Fragaria vesca L. (NC_015206), Castanea mollissima
Blume (NC_014674), and Cucumis sativus L. (DQ119058), as described by Schwarz et al. [45].

The final data set from these 47 plastomes comprised 71 conserved plastid protein-coding

genes: atpA, B, E, F, H, and I; ccsA; cemA; clpP; matK; ndhA, B, C, D, E, F, G, H, I, J, and K;

petA, B, D, G, L, and N; psaA, B, C, I, and J; psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, and Z;

rbcL; rpl2, 14, 16, 20, 23, 32, 33, and 36; rpoA, B, C1, and C2; rps2, 3, 4, 7, 8, 11, 12, 14, 15, and

19; and ycf3. The alignments were made with MAFFT (v. 7.017) and default parameters. Poorly

aligned regions were either refined or deleted using Geneious. A maximum likelihood (ML)

analysis of the complete, final alignment of all taxa was conducted with RAxML Blackbox [46],

using the gamma model of rate heterogeneity and an ML search.

Results

Plastome sequence of Maackia fauriei and variation in rps16 loss among

legumes

The complete plastome of Maackia fauriei (GenBank Accession No. KX388160) is 154,541 bp

long and has two IR regions (25,494 bp each) that are separated by LSC and SSC regions of

Table 3. PCR primers used for screening of inversion events.

Primer Sequence Source

rps4-bef-F 50-CAATCAAATAATAGATAGTAAATGGGTTG-30 Martin et al. [32]

ycf3-bef-R 50-GGAATTATTCGTAATAATATATTGGCTAC-30 Martin et al. [32]

ycf3-inv-F 50-CGTAATAAGATATTGGCTAC-30 Martin et al. [32]

psbI-int-R 50-CTCTTTTCATCTTCGGATTC-30 Martin et al. [32]

FGA-ndhJ-F 50-CGTTCCCAATGTGCCTAT-30 This study

FGA-trnF-R 50-TGGTAGAGCAGAGGACTG-30 This study

FGA-trnC-R 50-CAAATCCTTTTTCCCCAGTT-30 This study

https://doi.org/10.1371/journal.pone.0173766.t003
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85,140 bp and 18,413 bp, respectively (Fig 2). Approximately 57.9% of the sequence is com-

posed of protein-coding regions while the remaining 42.1% contains non-coding sequences

that include introns and intergenic spacers (IGS). The AT and GC contents are 63.5% and

36.5%, respectively. Among the 135 recognized genic features are four unique rRNAs, 31

tRNAs, and 76 protein-coding genes. The rpl22 loss, which is typical legume plastomes, is

Fig 2. Map of Maackia fauriei plastome. Genes on outside of outer circle are transcribed in clockwise direction; those on inside of outer

circle are transcribed in counterclockwise direction. Functional categories of genes are color-coded. Dashed area in inner circle indicates

GC content of plastid genome.

https://doi.org/10.1371/journal.pone.0173766.g002
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shared by Maackia. The rps16 is a putative pseudogene caused by “AAAC” duplication in

exon2 that results in a frame shift mutation and internal stop codon.

We also investigated the loss of rps16 among 33 complete legume plastomes (Table 1) and

found that the gene was intact in 15 species, a putative pseudogene in four species, truncated

pseudogene in eight species, and deleted in six species. All of the Caesalpinioideae and Mimo-

soideae samples contained intact rps16. The types of losses varied for rps16 and were restricted

to Papilionoideae. We considered the rps16s from Lupinus L. species as putative pseudogenes

similar to that of M. fauriei due to several indel events on the exons and an approximately

200-bp deletion of intron sequences (Fig 3).

The 36-kb and 24-kb inversion events and their phylogenetic distribution

among genistoids and Sophoreae s.l.

The legume species used for our comparisons revealed only subtle differences in their gene

content. However, the gene order for Maackia fauriei did not resemble that of any other spe-

cies. To trace these evolutionary changes, we selected four legume plastomes based on the

results of phylogenetic analysis. Our Mauve alignment of the LSC region among M. fauriei and

other legumes generated seven locally collinear blocks (LCBs) that represented a homologous

region without rearrangement (Fig 4). These LCBs indicated that M. fauriei experienced at

least three inversion events: 1) a 50-kb inversion between IGSs near accD and trnK (UUU),

Fig 3. Sequence alignment of intact genes and putative pseudogenes of rps16. A, intact rps16 in papilionoids; B, putative

pseudogene rps16 in genistoids, with comparison to Glycine max (L.) Merr. Frameshift-inducing indels are shaded in red.

https://doi.org/10.1371/journal.pone.0173766.g003
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which is the major landmark in most papilionoid legume plastomes; 2) a 36-kb inversion situ-

ated between the 29-bp identical sequences of trnS (GGA) and trnS (GCU), a feature shared by

Lupinus among core genistoids and Robinia L. in the robinioids; and 3) a 24-kb inversion

embedded in the 50-kb inversion region, an event that is newly discovered from the M. fauriei
plastome and which occurs between IGSs near trnC (GCA) and trnF (GAA).

To verify the distribution of these 36-kb and 24-kb inversions on our phylogenetic tree, we

used PCR-screening with 16 representative species belonging to five tribes—14 genera of gen-

istoids and the Sophoreae s.l. group. All sequences were deposited in GenBank (Accessions

KX430180 through KX430211). This strategy demonstrated that three genera—Cladrastis Raf.,

Styphnolobium Schott, and Camoensia Welw. ex Benth.–did not have those inversions (Table 2

and Fig 5). However, the 36-kb inversion was distributed within the five tribes of core genis-

toids while the 24-kb inversion was shared by eight genera in three genistoid tribes—Euchres-

teae, Sophoreae s.s., and Thermopsideae. Two other genera from Sophoreae s.s.—Bolusanthus
and Dicraeopetalum—did not share the 24-kb inversion and had only 36-kb inversions in their

plastomes.

Phylogenetic analysis

Our data set for the phylogenetic analysis contained 71 protein-coding genes from 47 taxa,

including 43 legumes and four outgroups. This accounted for 53,307 nucleotide positions. The

ML analysis of those 47 taxa resulted in a single best-scoring tree with—lnL = 358979.245.

Bootstrap analyses indicated that, except for two nodes outside of Papilionoideae, all nodes

were supported by values of 100%. The ML phylogeny indicated that Caesalpinioideae was

basal and paraphyletic and that Mimosoideae and Papilionoideae formed monophyletic

Fig 4. Plastome alignment of LSC regions from Maackia fauriei and other legume species.

https://doi.org/10.1371/journal.pone.0173766.g004
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groups nested within the Caesalpinioideae (Fig 6). We also recognized five sub-clades of papi-

lionoids, i.e., dalbergioid s.l., genistoid, indigoferoid/millettioid, robinioid, and IRLC. The dal-

bergioid s.l. was the first diverging clade, followed by genistoids. Branch lengths were very

short between nodes of dalbergioid s.l. and the genistoids. Maackia fauriei was nested within

the genistoids with Thermopsideae (Baptisia) and Genisteae (Lupinus). The remaining three

sub-clades formed the Old World clade, with indigoferoid/millettioid being the first to branch,

followed by robinioid and IRLC. Among the 22 tribes of legumes examined here, six (Caesalpi-

nieae, Mimoseae, Millettieae, Phaseoleae, Galegeae, and Trifolieae) were deemed non-mono-

phyletic. Overall, the relationships within legumes were in agreement with recently described

phylogenies [2–4]. The exception was the genistoids, which were resolved as a sister group to

the Old World clade.

Fig 5. Phylogenetic distribution of 36-kb and 24-kb inversion events in plastomes, as surveyed in our study. All taxa and their

classifications are detailed in Table 2. Arrangement of taxa is based on current understanding about phylogenies of these taxa [3–4, 14–

16, 25, 47].

https://doi.org/10.1371/journal.pone.0173766.g005
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Fig 6. Maximum likelihood phylogeny tree of legume species inferred by RAxML Blackbox. Phylogenetic relationships among

taxa were generated from concatenated matrix of 71 protein-coding genes with combined aligned length of 53,307 characters. Values at

nodes are shown when bootstrap support values are not 100%. Asterisks mark taxa that are not monophyletic.

https://doi.org/10.1371/journal.pone.0173766.g006
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Discussion

Characteristics of the Maackia fauriei plastome and independent rps16

loss in genistoids

The complete plastome of Maackia fauriei includes four rRNA, 31 tRNA, and 76 protein-cod-

ing gene species. As with the other legume plastomes [45], this genome lacks rpl22, which is

transferred to the nucleus [48]. Moreover, this genome has sequences consistent with the pres-

ence of a putative pseudogenized rps16. Using slot blot hybridization with various legume spe-

cies, Doyle et al. [49] found multiple and independent rps16 losses among papilionoids.

Schwarz et al. [45] suggested that these losses have independently occurred at least five times

in Papilionoideae, but not in genistoids. However, our analysis of rps16 loss patterns demon-

strated that the plastomes of genistoids also experienced independent loss events. We catego-

rized rps16 as an intact gene, putative pseudogene, truncated gene, or complete deletion

(Table 2). The plastomes of Caesalpinioideae, Mimosoideae, and some of the Papilionoideae

(i.e., Indigofera L., Millettia Wight & Arn., Pachyrhizus Rich. ex DC., Glycine L., and Lotus L.)

have intact rps16s that have no internal indels in the exons except at the ends. Truncations

occur sporadically in papilionoid legumes and are largely attributed to the severe deletion of

exon2. Exon1 of rps16 is relatively conserved in papilionoid legumes, except for complete dele-

tions, as observed with Arachis L., Apios Fabr., and most members of Fabeae. Putative pseudo-

genes are relatively rare and only observed within Wisteria Nutt. and genistoid species (Fig 3).

The rps16 of Lupinus species has previously been annotated as in-frame and is regarded as an

intact gene [32, 45]. However, it does not seem to be functional because of severe frame-shifts

and deletions in the intron revealed by our investigation. Overall, rps16 losses exist for the five

major clades—dalbergioid s.l., genistoid, indigoferoid/millettioid, robinioid, and IRLC—and

all feature 50-kb inversions in their plastomes.

Systematic implications of plastome inversions in genistoids and

Sophoreae

The genistoid is an informal taxonomic group of legumes that are characterized by quinolizi-

dine alkaloids and a base chromosome number of n = 9 [5, 12, 50]. The tribes Genisteae, Cro-

talarieae, Euchresteae, Podalyrieae, Sophoreae s.s., and Thermopsideae are consistently

resolved as a monophyletic group within genistoids, and are considered the core genistoids

[3–4, 12, 14]. We found evidence here that the plastome of Maackia fauriei, belonging to

Sophoreae s.s., has undergone three inversion events (50-kb, 36-kb, and 24-kb) based on our

Mauve alignment with other legume species (Fig 4). Martin et al. [32] examined the distribu-

tion of the 36-kb inversion and their taxon sampling included two species outside of the genis-

toids [i.e., Cladrastis lutea (Michx.) K. Koch and “Sophora japonica”], plus nine genera of core

genistoids belonging to one genus within Thermopsideae (Thermopsis) and eight genera

within Genisteae (Argyrolobium Eckl. & Zeyh., Lupinus, Chamaecytisus Link, Laburnum Fabr.,

Retama Raf., Ulex L., Echinospartum Fourr., and Genista L.). They have argued that the 36-kb

inversion is potentially a molecular synapomorphy for core genistoids. In the current study,

we examined 16 representative species (Table 2) that included five core genistoid tribes (Crota-

larieae, Euchresteae, Genisteae, Sophoreae s.s., and Thermopsideae), and also Sophoreae s.l.,
that are outside of core genistoid [Cladrastis wilsonii Takeda, Styphnolobium japonicum (L.)

Schott (= Sophora japonica L.), and Camoensia brevicalyx Benth.]. The 36-kb inversion is

absent from species outside of the core genistoid, including those in its putative sister group,

Camoensia. The genus Camoensia was once treated as a core genistoid [3] because it was

thought to be a member of Sophoreae s.s. [35]. However, Cardoso et al. [4] resurrected
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Camoensia as being in the monotypic tribe Camoensieae and treated it as part of a sister group

instead. Our findings that differ from those of Martin et al. [32] are the plastome conformation

and classification for Styphnolobium japonicum (= Sophora japonica) which is clearly not in

the core genistoid group [5, 50–53]. Instead, our research indicates that S. japonicum lacks the

36-kb inversion, similar to its close relative Cladrastis. Three genera—Cladrastis, Pickeringia,

and Styphnolobium—are currently known as being free from plastome rearrangements and

forming a sister clade to vast papilionoid legume taxa marked by 50-kb inversion [2, 4]. Thus,

this contrast with the report by Martin et al. [32] might be an outcome of mistakes made dur-

ing the earlier experimental process rather than being an independent parallel-inversion event

at the intra-species level. Unlike the case of Styphnolobium, the 36-kb inversion has occurred

independently for the genus Robinia, which is thought to be distantly related evolutionarily

but includes 50-kb inversion in its plastome [45]. Thus, the possible existence of a parallel

36-kb inversion from evolutionarily close taxa means that its value in molecular synapomor-

phy is questionable among genistoids. Additional plastome sequences from other early-diverg-

ing papilionoid legumes are warranted. Nevertheless, the absence of such an inversion in

Camoensia but its presence in all core genistoid tribes tested here is distinct evidence that sup-

ports the recent research on core genistoids [4].

The Sophoreae s.l. have largely included the taxa with least specialized flowers that are simi-

lar to those within Caesalpinioideae [6–7] even though its type genus, Sophora, has more spe-

cialized and papilionaceous floral characteristics than other basal papilionoid legumes [33].

Recent molecular phylogenetic studies [3–5, 11–13] have also demonstrated that Sophoreae s.
s. is more closely related to tribes of Euchresteae and Thermopsideae, which share specialized

papilionaceous flowers. Likewise, our study demonstrated that the Sophoreae s.s. has a more

specialized plastome organization (Fig 4) that has resulted from the combination of three

inversion events (i.e. 50-kb, 36-kb, and 24-kb). This characteristic is also shared with Euchres-

teae and Thermopsideae. The new Sophoreae sensu Cardoso et al. [4] includes the merger of

Euchresteae and Thermopsideae into Sophoreae and removal of a large number of genera that

were traditionally considered members of Sophoreae. The formal taxonomic revision for new

Sophoreae remains to be done and a synapomorphic characteristic for this group was lacking.

Hence, the distinct plastome organization revealed from our study could be a putative molecu-

lar synapomorphy for new Sophoreae. In contrast, it is also conceivable that a 24-kb inversion

occurred at distantly related lineages, as was the case for 36-kb parallel inversions [45]. How-

ever, the plastome conformation of Sophoreae s.s. is not likely to be a homoplasious character-

istic. Researchers have assumed that the 36-kb inversion (39-kb inversion for Robinia) was

mediated by flip-flop recombination between the conserved 29-bp repeats of two trnS genes

[32, 45]. By comparison, the breakpoints of 24-kb inversion are IGSs near trnC (GCA) and

trnF (GAA), which are not conserved sequences. Furthermore, the plastome conformation of

Sophoreae s.s. was not formed by a single inversion but, combinationally and sequentially,

through three independent inversion events. Hence, a 24-kb inversion seems to be unique to a

monophyletic group that comprises Sophoreae s.s. and its closely related tribes Euchresteae

and Thermopsideae.

Two genera, Bolusanthus and Dicraeopetalum, that are distributed in the Afro-Madagascan

region, have long been included in Sophoreae (whether sensu stricto or lato) [4, 6–7, 35]. How-

ever, we found a heterogeneous plastome conformation (i.e., lack of a 24-kb inversion) when

those two were compared with other Northern Hemisphere genera (Anagyris, Baptisia, Pip-
tanthus, Thermopsis, Maackia, Salweenia, Sophora, and Euchresta) (Table 2 and Fig 5). The

presence of a 36-kb inversion in Bolusanthus and Dicraeopetalum and recent phylogenetic evi-

dence [3–4] indicate that they are members of the core genistoid clade. However, inclusion of

either into the new Sophoreae (incl. Euchresteae and Thermopsideae) needs more careful
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consideration. The ITS phylogeny suggests that inclusion of Bolusanthus and Dicraeopetalum
into new Sophoreae could make this tribe polyphyletic because those genera reside within a

clade only distantly related to other Sophoreae s.s., and they are grouped with other Afro-Mad-

agascan genera, Neoharmsia R. Vig. and Platycelyphium [54]. Furthermore, some morphologi-

cally disparate characteristics of Dicraeopetalum, e.g., radially symmetrical flowers, could make

new Sophoreae too complicated to be a natural group. Hence, extensive analyses of morphol-

ogy and molecular phylogeny based on nuclear as well as plastid data are needed to accomplish

formalization of new Sophoreae.

Legume phylogeny with a “plastome-scale data set”

Recent progress in the sequencing of legume plastomes has provided a great deal of valuable

data [30, 32, 45, 55–59] that can be used to make phylogenetic inferences based on a “plas-

tome-scale data set” [29]. Those approaches have become more common since the develop-

ment of next-generation DNA sequencing [28, 30, 60]. Moreover, the usefulness of plastomes

in phylogenetic analyses has proven to show good resolution among evolutionarily puzzling

taxa [17]. In our study, we examined 43 legumes belonging to 22 tribes, based on 71 conserved

protein-coding genes in their plastomes (Fig 6). Previously, the plastome-scale phylogeny that

featured the most comprehensive sampling for legumes had been made by Schwarz et al. [45].

They included 32 plastomes belonging to 16 tribes. When one considers the wide diversity

inherent to legumes, our sample size was still small. Most tribes (14 of 22) have not been suffi-

ciently sampled to test monophyly. Nevertheless, our ML analysis produced a phylogenetic

tree that is very representative of the current understanding about legume phylogeny among

higher taxa [2]. This is certainly true for the monophyly of informal groups and the non-

monophyly of some legume tribes. For example, large informal taxonomic groups of Papilio-

noideae (dalbergioid s.l., genistoid, indigoferoid/millettioid, robinioid, and IRLC) are resolved

as a monophyletic group with 100% bootstrap support. However, the subfamily Caesalpinioi-

deae and six of the 22 legume tribes are not monophyletic (i.e., Caesalpinieae, Mimoseae, Mill-

ettieae Phaseoleae, Galegeae, and Trifolieae). In that sense, we believe it is notable that our

phylogenetic analysis supports genistoids as sister to the Old World clade and dalbergioid as

an earlier diverging lineage. Although the individual groupings of dalbergioid and genistoids

are well-established, their phylogenetic positions and interrelationship are still ambiguous.

The topology we describe here may have resulted from taxon sampling bias, due to a lack of

enough basal papilionoids. However, the high bootstrap values and overall concordance in

topology of Old World clades reported previously in other published studies at least suggest

that additional plastome sequences for basal papilionoids will be promising data for investigat-

ing the higher-level systematics of legumes.

Conclusion

The first plastome from a member of the tribe Sophoreae s.s. (Maackia fauriei) that we have

presented here illustrates the additional, independent loss of rps16 genes from genistoids.

Along with the recent discovery of a 36-kb inversion [32], the novel 24-kb inversion described

here is critical evidence of the systematics of genistoids and new Sophoreae sensu Cardoso

et al. [4]. Our plastome phylogeny demonstrates its potential usefulness when investigating

early-diverging groups of Papilionoideae. Thus, sequence variations and the structural rear-

rangement of these plastomes will serve as a powerful marker when making formal taxonomic

treatments for currently known non-monophyletic tribes of legumes and, most importantly,

the new Sophoreae of genistoids.
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