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Abstract

Metagenomics uses nucleic acid sequencing to characterize species diversity in different

niches such as environmental biomes or the human microbiome. Most studies have used

16S rRNA amplicon sequencing to identify bacteria. However, the decreasing cost of

sequencing has resulted in a gradual shift away from amplicon analyses and towards shot-

gun metagenomic sequencing. Shotgun metagenomic data can be used to identify a wide

range of species, but have rarely been applied to fungal identification. Here, we develop a

sequence classification pipeline, FindFungi, and use it to identify fungal sequences in public

metagenome datasets. We focus primarily on animal metagenomes, especially those from

pig and mouse microbiomes. We identified fungi in 39 of 70 datasets comprising 71 fungal

species. At least 11 pathogenic species with zoonotic potential were identified, including

Candida tropicalis. We identified Pseudogymnoascus species from 13 Antarctic soil sam-

ples initially analyzed for the presence of bacteria capable of degrading diesel oil. We also

show that Candida tropicalis and Candida loboi are likely the same species. In addition, we

identify several examples where contaminating DNA was erroneously included in fungal

genome assemblies.

Introduction

Fungi represent one of the major Kingdoms of the Eukaryotic domain of life. Some species are

of great economic importance, providing antibiotics, fermenting foods such as beers and

breads, and degrading cellulose. It is estimated that there are millions of fungal species,

although only a small number have been characterized [1]. The lack of characterized species

results from a number of factors, such as phenotypic diversity, genome plasticity, and the

inability to culture the majority of species [2, 3].
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In recent years, there has been a gradual shift from studying isolated species to studying

their interactions in an environment that is more representative of their ecological niche. This

shift is reflected in the increased use of nucleic acid sequencing directly from an environmental

sample with no prior knowledge of the species that are present. The collection of microbial

organisms that are found in any particular environment is known as the microbiota, whereas

the microbiome refers to all genetic material in the microbiota, and metagenomics is the study

of the genetic material within the microbiota [4]. The terms metagenome and microbiome are

often used interchangeably.

The mycobiome is the fungal component of the microbiome. The term was first used in

2010, in reference to the human oral mycobiome [5]. The number of mycobiome publications

has increased at an average rate of ~60% each year since 2012 (as of late 2017). Nevertheless,

this area remains understudied compared to bacterial microbiomes [6]. Most published work

has focused on the human [7, 8] or soil [9] mycobiome. However, several recent studies sug-

gest that animals can carry potentially zoonotic fungi. For example, Candida species were dis-

covered on ticks from a seabird colony in Ireland, in pigeon feces from Gran Canaria, and in

bat droppings [10–12]. Animals could represent significant fungal reservoirs for human fungal

infection. In addition, we often do not know the environmental reservoir of fungal microbes,

and microbiome studies can greatly contribute to this field.

Two sequence-based methods are generally used to identify fungal species in a mycobiome.

The most common is PCR amplification of internal transcribed spacer (ITS) regions of rRNA

operons, in particular ITS2 between the 5.8S and 28S genes, followed by sequencing. ITS2

sequences are highly variable and have been adopted as the universal fungal barcode sequence

for fungi [13]. Several pipelines have been developed to identify specific fungal species and cal-

culate the frequency of each species from ITS data, including Plutof, Clotu, PIPITS, and CloV-

R-ITS [14–17]. BioMaS, Mothur and Qiime can be used with both bacterial and fungal

amplicon reads [18–20].

The second approach identifies species from shotgun metagenomes. Most tools use cus-

tom-built databases, together with search algorithms such as BLAST, USEARCH and

UBLAST, GhostX, and DIAMOND [21–24]. These tools identify the database sequence most

similar to a read from a metagenome. Alternatively, algorithms such as KAIJU and Kraken

assign reads to a lowest common ancestor (LCA) [25, 26]. KAIJU translates reads and com-

pares them against a reference protein database, whereas Kraken compares nucleotide queries

to a nucleotide database. Both KAIJU and Kraken are fast because they use exact k-mer

matches, as opposed to slower alignment based approaches.

Some metagenomics databases implement their own pipelines to simultaneously host and

analyze datasets. MG-RAST provides detailed graphical analyses of user-uploaded datasets

using an incrementally updated pipeline [27], and has been used to identify fungi in grain dust

from a swine facility [28]. However, the ability of the pipeline to detect eukaryotic DNA is

based on comparing sequence reads to rDNA, ignoring all non-rDNA reads. The European

Bioinformatics Institute also hosts a metagenomics database with an associated pipeline, called

EBI Metagenomics [29]. EBI Metagenomics contains a large number (~16,000) of well-curated

datasets, but only began identifying eukaryotic DNA following version 4.0 release (4th Septem-

ber 2017). Less than 1% of the EBI Metagenomics datasets have been analyzed using pipeline

v4.0, and like MG-RAST, only rDNA sequences are used. The Joint Genome Institute has

developed IMG/M to facilitate the storage and analysis of genomics and metagenomics data-

sets [30]. These resources are in their infancy and are updated regularly, and likely represent

the future for metagenomics dataset analyses.

Here, we describe FindFungi, a pipeline for identifying fungal species in shotgun metage-

nomics datasets, without relying on rDNA amplicons. We combine read identification using
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Kraken [26] with an analysis of read distribution across the target genome, which greatly

reduces false positives. The method has high sensitivity and specificity. We use FindFungi to

identify fungal species (including potential zoonotic fungi such as Candida tropicalis) in ani-

mal metagenomes. All code for FindFungi (version 0.23) is available on Github at https://

github.com/GiantSpaceRobot/FindFungi-v0.23.

Results and discussion

Pipeline construction and testing

To find the best method for identifying fungal species from sequence reads in metagenomics

datasets, we first compared the search algorithms BLAST, DIAMOND, Kaiju and Kraken [21,

24–26]. BLAST and DIAMOND both align full reads, whereas Kaiju and Kraken use exact k-

mer matches. Kaiju and Kraken map k-mers to the Lowest Common Ancestor (LCA) of all

organisms whose genomes contain that k-mer. We tested two versions of Kraken, one with the

default k-mer setting of 31 (Kraken 31), and one with a k-mer setting of 16 (Kraken 16).

A test database was constructed from nine bacterial genomes, and one fungal genome.

Three simulated metagenomics datasets (Standard, Spiked, and RNA-seq) were generated

using Art [31] as shown in Table 1. The Standard dataset was generated from the species in the

database. Two additional fungal genomes, and two additional bacterial genomes, not present

in the test database, were added to the Spiked dataset. The RNA-seq dataset was generated

from only the protein-coding regions from the species from the Standard dataset, and repre-

sents a metatranscriptomics experiment. Five tools (BLAST, DIAMOND, Kraken (two ver-

sions), and Kaiju [21, 24–26] were tested for their ability to classify reads from the three

simulated datasets.

The BLAST and Kraken tools were used with databases containing all available nucleotides

(‘Genome’, Table 1), whereas the DIAMOND and Kaiju tools were used only with predicted

proteins (translated ‘Exome’, Table 1). True positives were defined as reads simulated from a

Table 1. Species used to generate three simulated read datasets.

Species1 Accession Numbers Number of bp Simulated dataset (reads)

Genome Exome Standard Spiked RNA-seq

Bacillus subtilis NC_000964.3 4215606 3697728 421560 421560 348870

Bacteroides fragilis NC_006347.1/NC_006297.1 5310990 4787184 531090 531090 455540

Bifidobacterium bifidum NC_014638.1 2214656 1853190 221460 221460 176810

Lactobacillus acidophilus NC_006814.3 1993560 1741788 199350 199350 165210

Bacillus anthracis NC_003997.3 5227293 4234317 522720 522720 397230

Bartonella henselae NC_005956.1 1931047 1386678 193100 193100 131170

Leptospira borgpetersenii NC_008508.1/NC_008509.1 3931782 3023346 393170 393170 285500

Staphylococcus aureus NC_007795.1 2821361 2352093 282104 282110 221610

Yersinia pestis NC_003131.1/NC_003132.1/NC_003134.1/NC_003143.1 4829855 3852405 482980 482980 365300

Candida albicans� calb_Chr_1 (assembly 19) 3188548 2014897 317216 317172 194026

Pseudomonas aeruginosa§ NC_002516.2 6264404 - - 626440 -

Azotobacter vinelandii § NC_012560.1 5365318 - - 536530 -

Tortispora caseinolytica�§ KV453841.1 3117240 - - 309088 -

Schizosaccharomyces pombe�§ NC_003424.3 5579133 - - 557880 -

1Only one chromosome was used from each of the fungal genomes.

�Denotes fungal species.
§Denotes species not included in the test database.

https://doi.org/10.1371/journal.pone.0192898.t001
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genome that were correctly assigned back to that genome. False positives were defined as reads

incorrectly assigned to a genome. True negatives were defined as reads not simulated from a

genome that were not assigned to that genome. False negatives were defined as reads simulated

from a genome that were not assigned back to that genome. For each method, the sensitivity is

defined as the ratio of True Positive to (True Positive + False Negative), and the specificity as

the ratio of True Negative to (True Negative + False Positive). Table 2 shows that Kraken 16

displayed the highest sensitivity with all three datasets. However, the specificity is lower than

the other methods, especially when used with the Spiked dataset. BLAST and Kraken 31 also

had high sensitivity, and higher specificity than Kraken 16 when analyzing the Spiked dataset.

DIAMOND and Kaiju both use protein databases, which reduces sensitivity when dealing

with untranslatable reads. Kaiju and Kraken were consistently the fastest tools. We chose Kra-

ken 31 to form the basis of the FindFungi pipeline based on its speed, the combination of high

sensitivity and specificity, and its ability to assign an LCA prediction to each read.

Construction of fungal reference databases

A fungal genome reference database was constructed by downloading all fungal genomes from

GenBank. An in-house python script was used to gather all ‘representative’ and ‘reference’

genomes using the GenBank ‘assembly_summary.txt’ file (as of 22-2-17). In total, 949 fungal

genomes were collected (32.4 Gb). These genomes were modified to append Kraken taxid

(NCBI taxon identification number) identifiers.

To use Kraken, the entire database must be loaded into memory prior to use. However,

the storage of 949 fungal genomes in memory is not practical given the memory available on

most servers. Therefore, the Kraken database was split into 32 separate databases, and 32

results files were generated for each dataset, using a cluster composed of 32 operational nodes,

each with 16 Intel(R) Xeon(R) CPU E5-2670 0 (2.60GHz). To construct the databases, each

Table 2. Comparison of classification tools using simulated datasets from Table 1.

Dataset Tool1 TP2 FP2 TN2 FN2 Sensitivity3 Specificity3 Time (sec) 4

Standard BLAST 3501029 4 31509237 63779 0.982108714 0.999999873 1144.06

Standard DIAMOND 2625609 5598 23675230 939199 0.736535881 0.999763606 631.34

Standard Kraken 31 3554377 31 32082661 10431 0.997073896 0.999999034 135.4

Standard Kraken 16 3563611 41 32082651 1197 0.999664218 0.999998722 219.47

Standard Kaiju 2942976 2332 32080360 621832 0.825563677 0.999927313 126.2

RNA-seq BLAST 2706255 0 24356295 35011 0.987228164 1 813.14

RNA-seq DIAMOND 2537754 120 22840746 203512 0.92575985 0.999994746 497.66

RNA-seq Kraken 31 2734158 0 24671394 7108 0.997407037 1 93.38

RNA-seq Kraken 16 2741261 2 24671392 5 0.999998176 0.999999919 243.92

RNA-seq Kaiju 2723973 333 24671061 17293 0.993691601 0.999986503 92.1

Spiked BLAST 3501363 2646 31536017 63477 0.982287271 0.999914998 1445.13

Spiked DIAMOND 2626340 170647 25167565 938500 0.729845366 0.993133657 831.33

Spiked Kraken 31 3554057 2582 52379078 10783 0.997034142 0.999950159 177.79

Spiked Kraken 16 3563615 1288299 51093361 1225 0.999688747 0.975408061 424.59

Spiked Kaiju 2944335 66520 52315140 620505 0.819370262 0.99871138 280.58

1For Kraken 31, the test database was divided into 32 individual databases.
2Number of reads classified as TP: true positives, FP: false positives, TN: true negatives, FN: false negatives.
3sensitivity: TP/(TP + FN), specificity: TN/(TN + FP)
4CPU time in seconds. The best sensitivity, specificity, and time for each dataset are highlighted in bold.

https://doi.org/10.1371/journal.pone.0192898.t002
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chromosome/contig in each fungal genome was split into 32 fragments with an overlap of

zero, and placed into individual FASTA files. Kraken databases were built from all 32 files.

Fungal sequences smaller than 1,100 nucleotides were discarded, amounting to 656 kb or 2%

of the total. This conservative cut-off was used to avoid biases from poorly assembled short

genomic sequences. In total, the 32 Kraken databases contained 31.8 Gb from the 949 fungal

species.

Because 32 different Kraken databases were used in parallel, each read had 32 predictions.

These were consolidated using a Python script. The most common prediction was used

where possible. If there was no common prediction, the k–mer scoring predictions were

concatenated, and the most common k-mer prediction was chosen.

Using skewness scores to remove false positives

A preliminary version of the FindFungi pipeline predicted some fungal species in almost all

metagenomics datasets, including Puccina triticina (the causative agent of wheat leaf rust [32])

and Talaromyces islandicus (a mold found on stored rice and cereals [33]). Subsequent analysis

showed that these are artifacts, or false positive predictions. For example, BLASTN analysis of

a subset of the reads classified as P. triticina showed that they were derived from a 4,283 bp

fungal contig, which matched the wheat genome (Triticum aestivum) at 368 different sites, all

with at least 92% identity. This sequence is likely to be a Copia transposable element (TE) from

T. aestivum [34] which was incorrectly assembled in the P. triticina genome (Fig 1).

To address this problem, we examined the distribution of reads from the metagenomics

dataset on the genome of the identified species. Reads from a species that is truly present in the

dataset are likely to be randomly distributed across the fungal genome, whereas reads from a

false positive might show a genomic bias. Fig 2 shows that reads from datasets ERR675617 and

ERR670622 that map to Candida tropicalis mapped in a random manner across the genome,

and likely represent a true positive identification. In contrast, all of the T. islandicus reads from

dataset ERR675670 mapped to two small contigs (CVMT01000034.1 and CVMT01000042.1).

Contig CVMT01000034.1 is most similar to the genome of the bacterium Streptomyces

Fig 1. Sequence reads assigned to the fungal pathogen Puccinia triticina are derived from a transposable element.

Maximum likelihood tree comparing the Copia transposable element from a number of plant genomes and the fungus

P. triticina (shaded). Bootstrap values out of 100 are shown at nodes. Species, chromosome accession, and nucleotide

coordinates are displayed. The tree was generated in SeaView using PhyML with the generalized time-reversible (GTR)

evolution model using Gblocks and 100 bootstraps.

https://doi.org/10.1371/journal.pone.0192898.g001
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xinghaiensis, and CVMT01000042.1 to the genome of the bacterium Lactobacillus gasseri. It is

therefore likely that the T. islandicus genome assembly contains bacterial contigs.

A read distribution step was therefore incorporated in the FindFungi pipeline. For each of

the 949 fungal genomes used to create the Kraken database, all chromosomes/contigs were

concatenated into a single super-chromosome, and then divided into 20 pseudo-chromo-

somes of approximately equal length. BLAST databases were generated for each of these

restructured fungal genomes (949 in total). Reads assigned to a particular species by Kraken

were compared to the respective BLAST database using an e-value cutoff of 1E-20. The best

hit for each read was collected, and the number of reads mapping to each pseudo-chromo-

some was determined. Pearson’s coefficient of skewness was determined ((mean-median)/

standard deviation) using the mean, median, and standard deviation of reads per pseudo-

chromosome for each species. The fraction of pseudo-chromosomes that the reads mapped

to was also determined.

S1 Fig shows the effect of applying cut-offs based on pseudo-chromosome coverage and

skewness score for one dataset, ERR675624. We chose to remove predictions with skewness

scores <-0.2 or >+0.2, and reads that mapped to less than 70% of pseudo-chromosomes.

Dadi et al [36] also found that determining the distribution of reads from a metagenomics

dataset can help to identify false positives. However, some true positives will be lost (S1 Fig),

and not all false positives will be removed, particularly those associated with transposable ele-

ments or Horizontal Gene Transfer. The cut-offs may therefore be changed to suit different

datasets.

A graphical overview of FindFungi is shown in Fig 3.

Fig 2. Distinguishing true and false positives using genomic read distribution. (A) Reads classified as C. tropicalis mapped against the C.

tropicalis MYA-3404 genome. The reads (6,656) were gathered by combining all reads assigned to C. tropicalis from the datasets ERR675617 and

ERR670622. (B) Reads classified as T. islandicus mapped against the T. islandicus genome. The reads (7,000) are from the dataset ERR675670.

All reads in each analysis were concatenated into a single pseudo-chromosome (orange chromosome with the shortest radius) with 20

ambiguous nucleotides (N) separating each read. The chromosomes in both A and B are colored with a red-to-blue color spectrum. The T.

islandicus label names are abbreviated (e.g. 12.1 displayed instead of CVMT010000012.1). BLAST hits are shown as green links connecting a

read with a genomic sequence. The plots were generated using Circos [35].

https://doi.org/10.1371/journal.pone.0192898.g002
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Identification of fungi in metagenomics datasets

The FindFungi v0.23 pipeline was applied to 57 metagenomics datasets from the ‘Host-associ-

ated—Mammals’ collection of metagenomics datasets at the EBI Metagenomics database, and

13 additional datasets selected from the MG-RAST database [27]. In total, the 70 datasets con-

tained 2.5 billion reads.

FindFungi predicted the presence of 77 fungal species in 39 datasets (total of 1.2 million

fungal reads) (Table 3). To determine if these included any false positive predictions, a subset

of the reads predicted for each of the 77 species were compared to the NCBI nt/nr database

using BLAST [21]. For six species, read predictions matched bacterial genomes. Manually

inspection showed that these reads map to a subset of pseudo-chromosomes. It is likely that

these genome assemblies include contaminants (similar to T. islandicus (Fig 2)), and so the

affected species (Allomyces macrogynus, Puccinia arachidis, Amauroascus mutatus, Amauroas-
cus niger, Chryosporium queenslandicum, Byssoonygena ceratinophila) were removed from the

predictions (Table 3). The application of Pearson’s coefficient of skewness may therefore not

be stringent enough when a very large number of reads are assigned to a species, which should

be considered when cut-off limits are assigned.

Fig 3. FindFungi v0.23 pipeline overview. Reads are downloaded in FASTQ format. Low quality reads are removed

with Skewer [37]. The remaining reads are converted into FASTA format, which are analyzed by 32 implementations

of Kraken, each using a different database [26]. The 32 Kraken predictions for each fungal read are consolidated, and a

consensus prediction is assigned. Reads not predicted as fungal are removed. The best hit for each read is mapped to a

pseudo-assembly of the relevant genome using BLAST [21]. Species where BLAST displays hits on more than 30% of

pseudo-chromosomes are retained. Pearson’s coefficient of skewness is calculated to identify non-randomly

distributed reads. Species with a skewness score between -0.2 and 0.2 (minimal skew) are retained. Fungal predictions,

statistics and summary plots are written to a PDF file, and fungal prediction statistics are also written to a CSV file.

https://doi.org/10.1371/journal.pone.0192898.g003
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Table 3. Fungal predictions from metagenomics datasets by FindFungi v0.23.

Source 1Dataset

accession

Total dataset

reads

Predicted fungal

reads

Fungal predictions (no. of reads)

Pig microbiome ERR1135318 86432970 380 E. bieneusi (213), A. brassicae (167)
Pig microbiome ERR1135427 23597054 491 R. irregularis (413), G. luxurians (78)
Pig microbiome ERR1135453 59108986 1863 A. furcatum (630), P. hepiali (575), C. militaris (233), B. rudraprayagi (161), B. bassiana

(153), C. brongniartii (111),
Pig microbiome ERR1135454 30677741 3335 C. confragosa (2574), P. hepiali (240), V. tricorpus (220),A. furcatum (215), B. rudraprayagi

(86)
Pig microbiome ERR1135455 57177310 1521 V. tricorpus (581), P. hepiali (447), I. farinosa (264), C. militaris (159),C. brongniartii (70)
Pig microbiome ERR1135750 437278 46 V. tricorpus (46)
Pig microbiome ERR1223845 62054282 25105 B. anomalus (25105)
Vertebrate

microbiome

ERR248260 134577030 35352 C. albicans (26981),D. hansenii (2930),D. fabryi (1574),M. furfur (779), L. ramosa (412), T.

faecale (296), P. solitum (281), C. sphaerospermum (265), W. mellicola (263), T. coremiiforme
(244), A. idahoensis var. thermophila (215), U. maydis (212), A. glaucus (209), M. japonica
(207), S. pastorianus (190), P. citrinum (189), P. freii (105)

Vertebrate

microbiome

ERR248262 141428756 116 A. montevideense (116)

Cow microbiome ERR571345 5074590 122 U. hordei (122)
Mouse

microbiome

ERR675346 731620 6156 N. tetrasperma (5915),N. africana (89), N. pannonica (85), N. terricola (67)

Mouse

microbiome

ERR675408 907429 2339 K. phaffii (2047),C. gloeosporioides (240), C. loboi (52)

Mouse

microbiome

ERR675411 809560 2986 O. olearius (2564),U. esculenta (422)

Mouse

microbiome

ERR675415 857596 88 C. loboi (88)

Mouse

microbiome

ERR675422 280130 60 C. loboi (60)

Mouse

microbiome

ERR675423 360841 95 C. loboi (95)

Mouse

microbiome

ERR675429 511455 95 C. loboi (95)

Mouse

microbiome

ERR675603 35832380 57 R. solani (57)

Mouse

microbiome

ERR675608 30598678 404 C. loboi (404)

Mouse

microbiome

ERR675609 29666898 13451 C. loboi (13109),A. domesticum (131), Asp. niger (85), C. sojae (72), R. solani (54)

Mouse

microbiome

ERR675612 3883030 2314 C. loboi (1599),C. tropicalis (715)

Mouse

microbiome

ERR675617 27007988 11589 C. loboi (7703),C. tropicalis (3675),A. domesticum (118), R. solani (93)

Mouse

microbiome

ERR675618 27288536 341 C. loboi (341)

Mouse

microbiome

ERR675622 23395904 9753 C. loboi (6611),C. tropicalis (2981),A. domesticum (93), R. solani (68)

Mouse

microbiome

ERR675624 16893482 1314 C. loboi (671), M. restricta (378), C. tropicalis (265)

Mouse

microbiome

ERR675626 21805514 910 C. loboi (910)

Antarctic soil mgm4721951.3 1726909 157390 P. sp. VKMF-4515 (96310),P. sp. VKMF-4517 (41360),P. destructans (12367),P. sp. VKMF-
3808 (2760), P. sp. 24MN13 (2338),C. confragosa (1823), P. arachidis (457), I. farinosa (105),
C. militaris (92), B. rudraprayagi (81), C. herbarum (78), C. brongniartii (76)

Antarctic soil mgm4721952.3 2867433 411 M. alpina (173), P. sp. VKM F-4281 (124), P. sp. VKM F-4518 (114)

(Continued)
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Identification of Pseudogymnoascusspecies in Antarctic soils

A group of 13 MG-RAST datasets came from a project analyzing the role of bacteria in diesel-

oil biodegradation in Antarctic soil, and were predicted by MG-RAST to contain fungal spe-

cies (Table 3). The FindFungi pipeline classified 4.91% of the reads (>1 million reads) from all

of these datasets as originating from the Pseudogymnoascus (Geomyces) genus. Pseudogymnoas-
cus species are psychrotolerant (cold-tolerant) [38], and some species have previously been iso-

lated from Antarctic soils [38, 39]. Pseudogymnoascus pannorum, which was found in two

datasets, has been linked to the biodegradation of diesel-oil in the Amazon [40]. Therefore, it

is possible that the Pseudogymnoascus species identified in the Antarctic diesel-oil study are

responsible, at least in part, for the biodegradation of the diesel-oil. FindFungi identified Pseu-
dogymnoascus destructans in five of the 13 Antarctic diesel-oil datasets (Table 3). P. destructans
is a true psychrophilic (cold-loving) species, and is the causative agent of the disease known as

White-Nose Syndrome that is decimating bat populations in the US [38].

Identification of potentially pathogenic fungi

FindFungi identified reads from human fungal pathogens, particularly Candida species, in 16

datasets (Table 3). Candida albicans, the most prevalent Candida species in human fungal

infections [41] was identified in only one dataset (ERR248260, Table 3) from an unidentified

Table 3. (Continued)

Source 1Dataset

accession

Total dataset

reads

Predicted fungal

reads

Fungal predictions (no. of reads)

Antarctic soil mgm4721953.3 2119288 229853 P. sp. VKM F-4515 (141981),P. sp. VKM F-4517 (54195),P. sp. VKM F-4518 (18787),P. sp.

BL308 (11409), P. sp. 24MN13 (2874),C. confragosa (331),C. herbarum (186), P. hepiali (90)
Antarctic soil mgm4721954.3 3215171 412 P. sp. VKM F-4520 (196), P. sp. VKM F-4515 (148), P. destructans (68)
Antarctic soil mgm4721955.3 1105951 1558 P. sp. VKM F-4515 (543), P. sp. VKM F-4517 (403), P. sp. VKM F-4281 (290), C. confragosa

(223), P. hepiali (54), P. sp. BL308 (45)
Antarctic soil mgm4721956.3 1097260 263 P. sp. VKM F-4281 (129), P. sp. VKM F-4515 (90), P. sp. VKM F-4520 (44)
Antarctic soil mgm4721957.3 2059400 27267 P. sp. VKM F-4515 (14221),P. sp. VKM F-4517 (9269), P. destructans (1337),C. confragosa

(1144), P. sp. VKM F-3808 (450), P. sp. 24MN13 (374), P. sp. VKM F-103 (195), I.
fumosorosea (91), B. rudraprayagi (68), M. guizhouense (68), P. subalpina (50)

Antarctic soil mgm4721958.3 1294113 1364 P. sp. VKM F-4515 (553), P. sp. VKM F-4581 (329), P. sp. VKM F-4517 (270), P. sp. VKM F-
4518 (116), P. sp. VKM F-4520 (96)

Antarctic soil mgm4721959.3 358379 190 P. sp. VKM F-4515 (142),M. alpina (48)
Antarctic soil mgm4721960.3 1067649 5899 P. sp. VKM F-4517 (3927), P. sp. VKM F-4518 (534), P. sp. BL308 (481), P. destructans (312),

P. sp. VKM F-3775(172), P. sp. 04NY16 (134), P. verrucosus (107), P. pannorum var.
pannorum (99), P. sp. VKM F-4246(67), P. sp. VKM F-4514 (66)

Antarctic soil mgm4721961.3 1686048 28885 P. sp. VKM F-4517 (24109),P. sp. BL308 (1449), P. sp. VKM F-4518 (1017), P. sp. VKM F-
4520 (911), P. sp. VKM F-3775 (409), P. sp. 24MN13 (306), P. sp. VKM F-3808 (266), M.

alpina (195), P. pannorum (157), P. sp. BL549 (66)
Antarctic soil mgm4721962.3 2063872 6260 P. sp. VKM F-4517 (2665), P. sp. VKM F-4581 (2181), P. sp. VKM F-4518 (504), P. sp. BL308

(283), P. sp. 24MN13 (204), P. sp. VKM F-3775 (142), P. sp. 04NY16 (119), P. sp. VKM F-
3808 (103), P. sp. VKM F-103 (59)

Antarctic soil mgm4721963.3 2287098 633283 P. sp. VKM F-4281 (472319),P. sp. VKM F-4517 (86947),P. destructans (30245),A. sp. Z5
(21574),P. sp. BL308 (14361),P. sp. 24MN13 (6000),C. confragosa (1427),C. herbarum
(276), I. farinosa (77), I. fumosorosea (57)

- 70 datasets 844345609 1213318 -

1ERR1135227, ERR1135237, ERR1135245, ERR1135256, ERR1135268, ERR1135269, ERR1135291, ERR1135346, ERR1135368, ERR1135372, ERR1135406,

ERR1135418, ERR1135429, ERR1135449, ERR1135459, ERR1135749, ERR1223846, ERR675430, ERR675519, ERR675529, ERR675568, ERR675616, ERR675632,

ERR675653, ERR675654, ERR675670, ERR675674, ERR675677, ERR675680, ERR675682, ERR675683 had no fungal reads.

https://doi.org/10.1371/journal.pone.0192898.t003
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vertebrate mammal. However, FindFungi assigned > 31,000 reads to Candida sp. LDI48194,

also known as Lacazia loboi [42] from 13 datasets from the Mouse Gut Metagenome Project

(ERP008710). L. loboi is a poorly characterized causative agent of lobomycosis, and has been

associated with pathogenicity in both humans and dolphins with zoonotic potential [43].

Up until 2015, this species was classified as a member of the genus Lacazia. However, following

genome sequencing, it was reclassified as Candida loboi, part of the CTG-Ser clade. FindFungi

also predicted Candida tropicalis in four of the datasets containing C. loboi (Table 3). C.

tropicalis is an emerging human fungal pathogen that has previously been identified in the

microbiomes of mice, where they may be endogenous species [44, 45]. We examined the rela-

tionship between C. tropicalis and C. loboi using phylogenetic analysis based on a concatenated

alignment of five proteins (Fig 4). The C. loboi and C. tropicalis proteins are more similar to

each other (99.9% identity) than proteins from two C. albicans isolates (SC5314 and WO1,

99.6% identity), strongly suggesting that they are both isolates of the same species.

Human fungal pathogens associated with less-severe disease states were also identified,

including members of the Malassezia and Enterocytozoon species families. Malassezia restricta
was discovered in one dataset, and the related species Malassezia furfur and Malassezia japon-
ica were discovered in a second (Table 3). These species are responsible for a number of hair

and skin infections such as seborrheic dermatitis [50]. Enterocytozoon bieneusi, a Microspori-

dia species that infects intestinal epithelial cells, was identified in a pig microbiome dataset

(Table 3). This species is associated with infection in both humans and animals. Pigs with E.

bieneusi in their gut are generally asymptomatic and are therefore not treated, permitting dis-

semination of the pathogen both throughout swine herds and across the species-barrier to

humans [51]. Pigs represent the main animal reservoir of E. bieneusi [52]. From a human per-

spective, E. bieneusi is an emerging pathogen that primarily infects immunocompromised

individuals and can cause life-threatening diarrhea [51].

Fig 4. Candida loboi and Candida tropicalis are isolates of the same species. Maximum likelihood tree of a

concatenated five-protein alignment from species from the Candida Gene Order Browser (CGOB; [46]) and C. loboi.
Five genes (ERG1, MEF1, CEF3, DEG1, GCD14) that are conserved in all CGOB species were chosen at random. All C.

loboi orthologs were identified with best BLAST matches using C. tropicalis gene homologs. Protein sequences were

aligned using Muscle (v3.8.31, [47]) and concatenated. The tree was generated in SeaView [48] using PhyML with the

LG evolution model using Gblocks [49] and 100 bootstraps (shown at nodes). Species abbreviations are displayed at

branch leaves.

https://doi.org/10.1371/journal.pone.0192898.g004
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The Pezizomycotina fungus Cladosporium sphaerospermum was identified in an unknown

vertebrate microbiome (Table 3). This species has been associated with respiratory infections

and is a major allergen [53]. Trichosporon coremiiforme was identified in the same dataset.

Although generally considered as a human commensal, this species has also been shown to

grow as a biofilm and to evade common antifungals [54]. Apiotrichum montevideense is a

member of the Basidiomycota, and is a close relative of Cryptococcus and Trichosporon species.

A. montevideense is one of the causative agents of summer-type hypersensitivity pneumonitis

[55], and was identified in a different unknown vertebrate microbiome (Table 3). Apiotrichum
domesticum, which causes the same disease [55], was identified in three mouse microbiomes

(Table 3). FindFungi did not identify animal reservoirs for other significant human fungal

pathogens such as Cryptococcus neoformans, Pneumocystis jirovecii, Coccidioides immitis, Histo-
plasma capsulatum, or Trichophyton rubrum.

Identification of fungi not pathogenic to humans

Several insect pathogens were identified in the animal microbiome datasets. 2,574 reads

from the insect parasite Cordyceps confragosa [56] were identified in a pig microbiome

(ERR1135454, Table 3). 153 reads from the related species Beauveria bassiana [57], were dis-

covered in a second dataset (ERR1135453, Table 3). Other species from the Cordycipitaceae

family (including Isaria, Cordyceps, and Beauveria species) were also identified (ERR1135453

–ERR1135455, Table 3). Acremonium furcatum, a member of a fungal family that produces

cephalosporins [58] was identified in two microbiomes from pig stools (Table 3). Another

insect pathogen, Metarhizium guizhouense [59], was identified in an Antarctic soil sample

(mgm4721957.3, Table 3).

Fungal plant pathogens were also identified. Aspergillus niger, the causative agent of black

mold on fruits and vegetables [60], was found in a mouse microbiome (ERR675609, Table 3).

122 reads from a bovine feces sample (ERR571345, Table 3), were predicted to originate from

Ustilago hordei, a barley fungal pathogen [61]. The related grain pathogens [62] Ustilago escu-
lenta and Ustilago maydis were found in a mouse microbiome (ERR675411, Table 3) and an

unknown vertebrate microbiome (ERR248260, Table 3), respectively. A number of other plant

pathogens were identified, including Verticillium tricorpus (opportunistic plant pathogen

[63]), Colletotrichum gloeosporioides [64], Phialocephala subalpina [65], and Rhizoctonia solani
[66]. We do not know the origins of the plant pathogens, but they may originate from feed or

bedding materials.

Species associated with industrial applications such as Komagataella phaffii (Pichia pas-
toris), a methylotroph used for protein production [67] and Brettanomyces anomalus, a

yeast typically associated with beer and wine fermentation [68], were identified in a mouse

microbiome (ERR675408) and from the floor of a pigpen (ERR1223845), respectively

(Table 3).

Conclusion

The decrease in sequencing costs and improvements in sequencing technology has resulted in

a dramatic increase in the availability of sequencing data over the past decade. Culture-free

shotgun metagenomics sequencing is becoming a popular strategy for various analyses, and

may replace ITS or barcode sequencing. Much of these data are generated for a specific pur-

pose, and are then deposited in a database such as the Sequence Read Archive, with no inten-

tion of further use.

We have shown that FindFungi can be used to identify fungi from publicly available shot-

gun metagenomics datasets. We focused our analyses on 57 animal shotgun metagenomics

Fungi in shotgun metagenomics datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0192898 February 14, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0192898


datasets from the EBI-Metagenomics database and 13 MG-RAST datasets. FindFungi pre-

dicted fungal DNA in 39 of the analyzed datasets. We identified potential zoonotic fungi in

animal microbiomes, and a large number of psychrophilic fungi in Antarctic soil. We showed

that several fungal genomes have assembly errors, including bacterial contamination. Find-

Fungi can be applied to any shotgun metagenomics dataset.

Supporting information

S1 Fig. Evaluation of cut-offs for FindFungi species identification. Species identified by

FindFungi from dataset ERR675624 before cut-offs were applied were categorized as true posi-

tives (TP, blue) or false positives (FP, red) by comparing 10 randomly selected reads from each

species prediction against the NCBI nt/nr database (BLASTn and BLASTx). Reads that sup-

ported the FindFungi prediction (same species or a close relative), were deemed to be true pos-

itives. The boxed region shows skewness cut-offs range from -0.2 to 0.2 and chromosome

coverage cut-off ranges from 70–100%. These cut-offs were applied to subsequent predictions

by FindFungi.

(PDF)
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