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What Are We Missing?

« SNPs with modest
marginal effect that might
be important in one or
more subgroups?
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What Are We Missing?

SNPs with modest
marginal effect that might
be important in one or
more subgroups?

Size of the marginal G
effect depends on
prevalence of exposure
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What Are We Missing?

SNPs with modest
marginal effect that might
be important in one or
more subgroups?

Size of the marginal G
effect depends on
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Genomewide Interactions (GWIS)
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Improving GWIS Efficiency: The Basic Idea

* For logistic regression of a case control sample:

|Oglt(PI’ D:1|G, E) =+ BGG + BEE + BGXEG*E

the test of Hy:35,=0 has low power
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Improving GWIS Efficiency: The Basic Idea

* For logistic regression of a case control sample:
|Oglt(PI’ D:1|G, E) =+ BGG + BEE + BGXEG*E

the test of Hy:35,=0 has low power

« There is additional information in a case-control sample
about GXE interaction that is not used in the above test
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In the Presence of GxE...

* |Induced “"Marginal”:
— G to D association
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In the Presence of GxE...
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* |Induced “"Marginal”:
— G to D association

— G to E association

» ‘case-only’ style association

« Observed in combined case-control sample if cases are
oversampled relative to population prevalence

« Can we use this extra info to construct
more efficient GW Interaction scans?

USCIMAGE
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2-step Approach: DG|GXE

« Step 1: Genomewide screen of M SNPs using ‘marginal-effect’
test on all subjects

Logit[Pr(D=1| G)] = yo + W,G
— Test H,: n,=0 for each SNP at o, level
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Kooperberg and LeBlanc, 2008
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2-step Approach: DG|GXE

« Step 2: For m SNPs with Step-1 p < oy, standard GxE analysis:

Logit[Pr(D=1 | G, E)] = Bo + PG + PeE + PexeGXE
— Test H,: Bgye=0 for the m SNPs at o/m level

USCIMAGE

Kooperberg and LeBlanc, 2008
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2-step Approach: EG|GXE

« Step 1: Genomewide screen of M SNPs using ‘E vs. G’ test on

s CIMEGE Murcray et al., 2009
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2-step Approach: EDGE

« Step 1: Genomewide screen of M SNPs using both ‘D vs. G’

and ‘E vs. G’ information
— Tgg basedon Evs G (Murcray et al.)
— Tpg based on D vs G  (Kooperberg & LeBlanc)

= Screening Test: Tgypy = Teg + Tpe  (2-df test)

Gauderman et al., 2013
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2-step Approach: EDGE

2-step
“Subset” Testing
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Genomewide Power to Detect

O RGXE: 1.5 (N=3,500 cases, 3,500 controls)
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(Gauderman et al., 2013)
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Another way to combine information:
The “2-df” joint test

Logit(Pr D=1|G, E) = a + BsG + BLE + P, eG*E

Ho: Be = Baxe = 0  (Joint 2-df test of G, GXE;)

- Can identify loci with ... _—:
» A GXE effect and induced marginal G effect |
» A GXE effect but no G effect
« A G effect but no GxE eﬁect\

|
N\

\

Kraft et al., 2007
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The “3-df” Joint Test

Logit[Pr(G=1|D. E, C)] = Bo + PoD + BeE + Powe DXE + BcC
Ho: Bo = Pe = Poxe = 0

What is it testing?

 Marginal G vs. D association (standard GWAS)

« Marginal G vs. E association (“case-only” style G x E)
* G x E interaction (standard GWIS)

* Potentially powerful for discovery

Gauderman, et al; 2019




NIEHS, Sept. 11, 2024

The “3-df” Joint Test: Power

Pure GXxE

0.9 - - G
1.5 4
-~ o /i
. 0.8 —+--- #
- —<= Caseon ly
” - - G:l
'," 0.7 + - 2-df
G=0
” | o 3-df / /}5 /

Odds Ratio
5
3
\
\
\
\
o
[e2]
T~
~
S~

: : | Y/

Exposure (E)




NIEHS, Sept. 11, 2024

The “3-df” Joint Test: No Free Lunch
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GWIS Discoveries Using
Efficient Methods

GxE discovery

M lifth

NIEHS, Sept. 11, 2024

- CRC

Authors Exposure Method(s)
Jordahl et al. Alcohol 2-step

Aglago et al. BMI 2-step, 3df
Diez-Obrero et al. Calcium 2-step A
Dimou et al. Diabetes 2df, 3df

Bouras et al. Folate 1df
Papadimitriou et al. Fruit, Veggie, Fiber 3df

Stern et al. Red meat 2-step, 3df
Tian et al. HRT 2-step, 2df
Drew et al. NSAIDS/aspirin 1df, 2-step, 3df
Peoples et al Physical Activity 1df, 2-step
Carreras-Torres et al. Smoking 1df, 3df

All analyses used
GXxEScanR




Many Single-Marker Interactions
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High Dimensional Interactions
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Single-marker analysis vs. joint analysis

single-marker:

one-SNP-at-a-time Y~ 'BO + ’BEE + ’BGjGj +’BGjXEGj X E’ fOt‘ eaCh ] - 1,--,p

joint:

p p
all p SNPs together ¥ ~ Bo + PgE + Z'BGij + Z ,BijEGj X E
=1 =1

» Polygenic traits
— Nature of the signal is multi-marker/polygenic for complex traits

« Joint analysis considers the impact other markers on the outcome

— Aweak effect may be more apparent when other causal effects are
already accounted for

— Afalse signal may be weakened by inclusion in the model of a stronger
signal from a true causal association
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Single-marker analysis vs. joint analysis

single-marker:

one-SNP-at-a-time Y~ 'BO + 'BEE + ’BGjGj +’BGjXEGj X E’ fOt‘ eaCh ] - 1;--,p

. p p

joint:

all p SNPs together ¥ ~ Bo + PgE + Z'BGij + Z ,BijEGj X E
j=1 j=1

« gesso [G(by)E(la)sso] model

subjectto | (1) X7_,(1Bg,| + 1Baxe) <t Boxg#0= P#0 or
- ) ) =0 = Bexp=10
2) - Hierarchical
_ |’BGJXE| = |'BGJ | Constraints

Zemlianskaia, et al; 2022
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GWAS and Polygenic Risk
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Polygenic Risk Score (PRS):
T Conmols
Weighted sum of # risk alleles carried
by each participant
Count of risk alleles for
variant m for individual i
What SNPS? ~— g
M
PRSl = z WmGi‘m
/
What weight? P
‘ 67100
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Lack of Diversity Could Impact Health Disparities
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PRS Across Populations in Prostate Cancer

* 156,319 prostate cancer cases Population 1 SD OR

* 788,443 controls European  2.32 [95%CI: 2.30-2.35]
African 2.04 [95%CI: 2.00-2.08]

« European, African, Asian and

Hispanic men Asian 2.15 [95%Cl: 1.99-2.32]
e A57% increase in the number HiSpaniCS 2.12 [95%CI: 2.03-2.23]

of non-European cases from

previous GWAS.

Wang et al. Nat. Gen. 2023
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PRS x Age In Prostate Cancer

c
0,
European o Pua=BI3x 10> i
. —r— +44%
African Phet=7.97 x 10 .
1.0 1D 2.0 215 3.0
OR per GRS SD (95% Cl)

-’- <55yrs -‘- > 55 yrs

Wang et al. Nat. Gen. 2023
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PRS x SDoH

What is the combined effect of genetic and socioeconomic risk
on the prevalence of type 2 diabetes (T2D) and obesity?

Combined high genetic and
socioeconomic risk,

[Socioeconomic Risk Quintild compared to combined low
w g 8::::::: ; (Low Risk) 7.2-fold increase risk, was associat(?d with a
2 O Quintile 3 +19.2% 7-fold apd 3-f91d increase,
® B Quintled | T 22.2% respectively, in T2D and
W & o W QuetileS Gih Rid) y N obesity prevalence.
a ~
g +9.2%
=2
= 13.0%
F .
- |
=
S 2 : :
B N _ L - 5.8% Ingregsmg socioeconomic
=¥ S 1.7% risk is assocmte.:d with a
| 3.1% greater absolute increase in
| | I | T2D and obesity prevalence
= among those at high genetic
1 2 3 4 5 .
risk compared to those at
(Low Risk) (High Risk) 5

Genetic Risk Quintile low genetic risk.

Cromer et al. Diabetes Care 2023
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Polygenic Risk Score and E Interactions
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Incorporating Functional Annotations &=

Betal adrenergic receptor signaling pathway (P04377)
PANTHER Pathway B Beta2 adrenergic receptor signaling pathway (P04378)
Total # Genes: 153 Total # pathway hits: 84 B Beta3 adrenergic receptor signaling pathway (P04379)
B CCKR signaling map (P06959)
M Cadherin signaling pathway (P00012)

« ANNOQ (Liu et al.,
2022) used to annotate . 2 o eckrionifcivanie i im

W Cytoskeletal regulation by Rho GTPase (P00016)
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Category B p38 MAPK pathway (P05918)
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SNPs In Multiple Pathways

GRHR
7 SNPs, 6 genes

CTNNB1
PTGER4
DUSP1
NOS1
IRS1
GNAS

Gauderman et al. in preparation
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PRS* X NSAIDs

core X NSAIDS interaction for Colorectal Cancer

Table $2: Analysis of PGS Catalog derived polygenic i

PRSx E

PRS E ( NSAIDS use)

PRS Type (95% Cl) OR (95% Cl) OR (95% Cl) |::—\fa|ueb
PRS: All SNPs* (1.56, 1.61) 0.77  (0.74,0.79) (0.95, 1.01)
Pathways&

pPRS: TGF-B (1.16, 1.20) 0.76  (0.74,0.79) (0.93, 0.99)

(0.94, 1.00)

(1.15, 1.18) 0.76  (0.74,0.79)

pPRS: Gonadotropin-receptor

0.76  (0.74,0.79) (0.97,1.03)

pPRS: Cadherin-signaling

pPRS: Alzheimer’s presenillin 1.08 (1.07, 1.10) 0.76 (0.74, 0.79) 0.99 (0.96

’

PRS Other” 1.51  (1.48,1.53) 0.77  (0.74,0.79) 0.998  (0.97,1.03) 0.900

* PRS formed based on 204 GWAS significant SNPS with weights extracted from the PGS Catalog

& pPRS based on subsets of the 204 SNPs within the indicated pathway

# PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways

a 0Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDS

b p-value tests the null hypothesis of no PRS x E interaction. For PRS and E main effects, all p<10™°.

Gauderman et al. in preparation
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PRS* X NSAIDs

Table 53: Analysis of PGS catalog-derived pPRS x NSAIDS for SNPs in the TGF-3 and GRHR pathways

PRS E (NSAIDS use) PRSx E
PRS Type OR® (95% Cl) OR (95% Cl) (95% Cl)
Pathways&
TGF-Beta (14 SNPs) 1.18 (1.16, 1.20) 0.76 (0.74,0.79) (0.93, 0.99)
Gonadotropin-receptor (16 SNPs) 1.17 (1.15, 1.18) 0.76 (0.74,0.79) (0.94, 1.00)
TGF-Beta or Gonadotropin (21 SNPs) 1.21  (1.19,1.23) 0.76 (0.74,0.79) (0.92, 0.98)
TGF-Beta Unique (5 SNPs) 1.12  (1.10,1.14) 0.76 (0.74,0.79) (0.93, 1.00)
Gonadotropin Unique (7 SNPs) 1.10 (1.08, 1.11) 0.76 (0.74,0.79) (0.93, 0.99)
TGF-GNR shared (9 SNPs) 1.13  (1.11,1.15) 0.76 (0.74,0.79) (0.96, 1.02)

* PRS formed based on 204 GWAS significant SNPS with weights extracted from the PGS Catalog

& pPRS based on subsets of the 204 SNPs within the indicated pathway

# PRS based on the subset of 174 of the 204 SNPs that are not within any of the indicated pathways
a Odds ratios (OR) are scaled to a 1 s.d. increase for the indicated PRS and compare users to non-users for NSAIDS

b p-value tests the null hypothesis of no PRS x E interaction. For PRS and E main effects, all p<10'1°.

Gauderman et al. in preparation
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Omic Data

Omic Data

PRS |’ \ Y/D

Can we clarify the impact of each SNP
within a PRS with measured omic data
that captures the underlying biology?

USCIMAGE
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Omic Mediation

Omic Data

PRS |/ \ Y/D

Can we clarify the impact of each SNP
within a PRS with measured omic data
that captures the underlying biology?

USCIMAGE
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Legend:
E: Environmental
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Y: Health outcome
X: Latent Factors
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Multiomics Integration
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High Mediation with
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Integrated, quasi-
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Goodrich et al. Environ Int. 2024
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Legend:
E: Environmental

exposure
Y: Health outcome
X: Latent Factors

Concatenate
‘'omics into
single matrix
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- 'omics through
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‘'omics layer

Multiomics Integration

Mediation Framework
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High Dimensional Mediation
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USCIMAGE  pererg et al. 2022; Song et al. 2020, Zhang et al. 2016
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Latent Mediation
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O’Connell et al. 2016; Lock et al. 2013 ;

Derkach et al. 2019: Albert et al. 2016



Multiomic
Mediation
Framework
For Precision
Environmental

Health

NIEHS. Sent. 11. 2024

Mediation Framework

E: Environmental

Legend:
exposure ‘

Dimensional

Mediation with

High
Latent Factors

Integrated, quasi-
mediation

Y: Health outcome
X: Latent Factors

Concatenate
'omics into
single matrix

Combine
‘omics through

joint model

Individually
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Multiomics Integration

inference on E

'omics layer E

Step 1: Estimate X
Step 2: Mediation

Molecular level
traits

Goodrich et al. Environ Int. 2024
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Mediation Framework

Legend: : — - =

Egmnmental ‘ High ’ Mediation with Integrated, quasi-

exposure Dimensional Latent Factors mediation
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Joint Analysis,
Intermediate Integration

Integrated information on
environmental exposures,
DNA methylation, miRNA
levels, and transcripts can
identify groups of children at
elevated risk of liver injury
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3,586 CpG
sites

58,254 mRNA

Goodrich et al. Environ Int. 2024



Joint Analysis, Interactions Between Omic
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Joint Analysis, Interactions Between Omic
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Multiomic
Interaction

Legend: :
G/E: Genetic or Interaction Framework
environmental

exposure : .
D: Disease or ‘ High Dimensional ’ InteraCtII:c::;;;t: i ‘
health outcome _

X: Latent Factors Molecular level traits Step 1: Estimate X
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Scalable analytic framework for performing analysis with multiple 'omics datasets as
effect modifiers of the relationship between genetics/environmental factors (G/E) and

disease or other health outcomes (D).
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Integrative Methods of Analysis
for Genetic Epidemiology

* MPIs: Jim Gauderman and Kim Siegmund

* PROJECT 1: INTEGRATION OF OMIC DATA TO ESTIMATE MEDIATION OR LATENT STRUCTURES:
* David Conti, Josh Millstein, Nick Mancuso

 PROJECT 2: INTEGRATION OF OMIC DATA IN THE ANALYSIS OF GENE x ENVIORNMENT INTERACTION:
« Jim Gauderman, Juan Pablo Lewinger, Eric Kawaguchi, Lu Zhang

 PROJECT 3: STATISTICAL METHODS FOR GENOME CHARACTERIZATION:
« Paul Marjoram, Huaiyu Mi, Kim Siegmund, Kelly Street, Paul Thomas

PO1CA196569




NIEHS, Sept. 11, 2024

Special Thanks to All the Students and Post-Docs
Environmental Genomics (T32 ES013678 NIEHS)
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