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Abstract: Mammals are the most encephalized vertebrates, with the largest brains relative to 35 

body size. Placental mammals have particularly enlarged brains with expanded neocortices for 

sensory integration, the origins of which are unclear. We used computed tomography scans of 

newly discovered Paleocene fossils to show that contrary to the convention that mammal brains 

have steadily enlarged over time, early placentals initially decreased their relative brain sizes 

because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages 40 

independently acquired highly encephalized brains via marked growth in sensory regions. We 

argue that the placental radiation initially emphasized increases in body size as extinction 

survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and 

competition intensified. 
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One-Sentence Summary: Placental mammals had a smaller brain-to-body-size ratio after the 

dinosaur extinction but later, through competition, developed the largest vertebrate brains. 
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Mammals have the largest brains, absolutely and relative to body size, of all vertebrates, 

reaching an extreme in the hyperinflated brain of humans (1, 2). The mammalian brain was 

assembled over 200+ million years of evolution, beginning with encephalization pulses—

increases in brain size relative to body size—on the mammal stem lineage in the Mesozoic. 

These increases were associated with heightened olfaction and the origin of the neocortex, a 5 

novel part of the cerebrum involved in higher cognition and sensory integration (3). Among 

extant mammals, the 6000+ species of placentals (4) exhibit remarkable diversity of 

encephalization (5) and sensory abilities (6), the result of complex interplay between brain and 

body size changes over time and across taxa (7). It has long been recognized that the earliest 

fossils of extant placental orders (herein ‘placental crown orders’) from the Eocene (56-34 Ma) 10 

had brains similar in structure to (8, 9), but smaller than, those of their modern-day counterparts 

(10, 11), and that relative brain size generally increased over the Cenozoic (12, 13). However, 

much about the origin of the placental brain, and when and how it encephalized to modern levels, 

remains unclear. 

In particular, little is known about the transition from the ancestral brains of Mesozoic 15 

mammals to the more modern brains of Eocene crown placentals. The principal gap in 

understanding is the Paleocene (66-56 Ma), the interval following the end-Cretaceous mass 

extinction, when placentals and close kin radiated into niches vacated by dinosaurs (14), 

ballooned in body size (15, 16), and inaugurated the Age of Mammals (17, 18). Jerison (1) 

posited that the ‘archaic’ placentals replacing dinosaurs (herein ‘placental stem taxa’, those that 20 

do not clearly belong to extant orders) were overgrown versions of Mesozoic mammals, which 

passively increased their absolute brain sizes to keep pace with body size expansion, then later in 

the Eocene actively encephalized to increase relative brain sizes. This hypothesis was based on a 

small sample of skulls, of uncertain Paleocene or Eocene age, whose brain cavities were 
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measured with basic volumetric techniques unable to distinguish sensory regions. Recently, a 

broad study of mammals instead identified increases in relative brain size after the end-

Cretaceous extinction (7), but this alternative hypothesis was inferred from phylogenetic 

comparative data that did not directly include Paleocene fossils. Testing these competing 

hypotheses has proven difficult, because well preserved Paleocene mammal skulls have been 5 

notoriously rare. 

 We assess the early evolution of the placental brain with an expansive dataset of 

Mesozoic and Cenozoic mammals, including newly discovered Paleocene skulls from the San 

Juan Basin of New Mexico (19) and Denver Basin of Colorado (20). To do so, we use high-

resolution computed tomography (CT) to measure the size of the brain and its individual sensory 10 

components (neocortex, olfactory bulbs, cerebellar petrosal lobules involved in control of eye 

movements (21) (Fig. 1). Our dataset includes 34 new Paleogene CT scans (17 Paleocene, 17 

Eocene; table S1), alongside data from previous work. We examine patterns over time and across 

taxa in order to quantify body size, brain size, and sensory regions change during the placental 

radiation and after the end-Cretaceous extinction. This enabled us to test the competing 15 

hypotheses for placental encephalization, and more broadly to ask when and how the modern 

placental brain and sensory repertoire emerged, and what role the end-Cretaceous extinction 

played? 

 We found that Mesozoic and Paleocene mammals had smaller brains relative to their 

body mass than Eocene stem taxa and crown orders (Fig. 2c). When expressed as a phylogenetic 20 

encephalization quotient (PEQ), a measure of relative brain size compared to its value predicted 

by allometry and phylogeny (22), Paleocene forms were less encephalized than Mesozoic and 

Eocene taxa (Fig. 2a,b; table S2). Following the Paleocene low in PEQ, both average PEQ and 

variance significantly expanded in the Eocene, in both stem taxa and crown orders (Figs. 2a,b, 
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4a). These results are robust to phylogenetic uncertainty (figs. S1-S2; tables S3-S5), body mass 

estimates (Figs. S3-S9; Tables S6-S8), and whether placentals originated in the Cretaceous or 

immediately after the end-Cretaceous extinction (fig. S10). Our results are broadly in line with 

Jerison’s ‘body-before-brain’ hypothesis rather than the alternative, but reveal an unexpected 

wrinkle. The earliest placentals were neither scaled up versions of Mesozoic mammals nor did 5 

they encephalize rapidly. Instead, their relative brain size actually decreased as they increased in 

body size more than in brain size while radiating after the end-Cretaceous extinction. 

 Proportions of sensory regions also changed markedly over time. The olfactory bulbs and 

petrosal lobules of Paleocene species and Eocene placental stem taxa essentially maintained their 

Mesozoic sizes, relative to both body mass and brain volume (endocranial volume) (Fig. 3; fig. 10 

S11; table S2). The olfactory bulbs became a significantly smaller component of the brain, and 

the petrosal lobules a larger component, in Eocene crown orders (Fig. 3; fig. S11; table S2). 

Additionally, the neocortex enlarged over time, and covered significantly more of the brain 

surface in Eocene crown orders versus Paleocene and Eocene stem forms (Fig. 3; table S2). 

Thus, the Eocene increase in relative brain size was underpinned by expansions of the petrosal 15 

lobules and, especially, the neocortex, but not the olfactory bulbs. Most of these changes 

occurred in the Eocene crown orders, helping explain why they had significantly higher PEQs 

than their Eocene stem contemporaries, despite insignificant differences in body mass among 

them (Fig. 2; table S2). These results are also robust to phylogenetic uncertainty and placental 

origin timing (figs. S12-S17; tables S3-S5). 20 

 Phylogenetic context helps untangle the trends and tempo of these changes. Both body 

mass and brain volume significantly increased from the Mesozoic to the Paleocene (Fig. 2d-g; 

table S9), as did the rate of change in both measures on the phylogeny (figs. S18-S19), regardless 

of placental origin time (fig. S20). However, during the Paleocene, the majority of branches 
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exhibited faster rates of body mass increase than brain volume increase (fig. S21), and while this 

largely held in the Eocene, crown orders accelerated to faster relative increases in brain volume 

rate compared to Eocene stem and Paleocene taxa. This discrepancy explains why there was a 

drop in PEQ in the Paleocene, followed by relative brain expansion in the Eocene.  

Rates of change in body mass, brain volume, and PEQ were stable across most of the 5 

Mesozoic, but increased dramatically at or near the origin of Placentalia, whether it occurred in 

the Cretaceous (Fig. 4b, figs. S18-S19) or immediately after the end-Cretaceous extinction (figs. 

S20, S22). This makes it difficult to differentiate the effects of the extinction itself, but because 

both dating approaches place the key pulses at/near the origin of Placentalia, this implies that 

fundamental changes to the mammalian brain and its allometric relationships happened around 10 

this event, perhaps associated with changes in metabolic rate and reproductive style (23). The 

body mass, brain volume, and PEQ rate increases for early Placentalia were not followed by 

stasis or decline; rather, high rates continued through the Paleocene and Eocene. Brain 

evolutionary rate increased in placentals, although it would take until the Eocene for those 

persistently high rates to assemble greatly encephalized modern placental brains with relatively 15 

large neocortices and petrosal lobules and small olfactory bulbs (figs. S23-S26).  

Phylogenetic character mapping reveals lineage-specific changes in body, brain, and 

sensory region sizes. The Paleocene decline in PEQ was the net result of several independent 

decreases in relative brain volume, largely due to independent increases in body mass in 

‘archaic’ groups like ‘condylarths’, pantodonts, and taeniodonts (Fig. 4, figs. S18-S20, S22, S27-20 

S29). Then, in the Eocene, there were several independent increases in PEQ, particularly in 

crown orders like artiodactyls (including cetaceans), perissodactyls, carnivorans, euprimates, and 

rodents (Fig. 4, figs. S18-S20, S22, S27-S29). Omnivores/carnivores were statistically 

indistinguishable in PEQ compared to contemporary herbivores in the Paleocene, but both guilds 
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significantly increased PEQ in the Eocene, with omnivores/carnivores eclipsing herbivores (fig. 

S30; table S10). The two most speciose placental subclades experienced different fates: raw body 

mass increased markedly in Paleocene-Eocene laurasiatherians (carnivorans, perissodactyls, 

artiodactyls) but not in euarchontoglirans (rodents, primates). Both subclades underwent 

substantial encephalization (Fig. 4), but rates of change in both body mass and brain volume 5 

were higher in laurasiatherians (Fig. 4; figs. S18-S20, S21). 

Small relative brain size after the end-Cretaceous extinction—even more so a decline in 

encephalization—is surprising, and counter to the convention that mammal brains have steadily 

gotten larger over time (10-13) but see (7). Although relative brain size is but one aspect of 

cognition, and we lack information on neuron density and connectivity in virtually all fossil 10 

mammals, experimental evidence indicates that extant mammals with relatively larger brains are 

better problem solvers (24). There also is ample evidence that larger relative brain size is linked 

to greater behavioral flexibility and capacity to cope with novel or altered environments (25-28). 

All of these skills, presumably, would have been beneficial after a mass extinction, yet the 

placentals diversifying as devastated ecosystems recovered and new food webs emerged did not 15 

develop relatively larger brains, suggesting other factors were behind their radiation.  

It appears that the post-extinction placental radiation emphasized body size rather than 

brain size changes, as survivors proliferated to fill vacant niches, no longer constrained to shrew-

to-badger sizes by incumbent dinosaurs (15). Brain size increased, as a result of body size 

expansion, and because there were no marked relative increases in key sensory regions (olfactory 20 

bulbs, petrosal lobules), the growth was primarily in regions permitting control of larger bodies 

(brain stem, diencephalon, striatum) (29, 30). This suggests that selection acted differently on 

brain and body size, and adds to growing evidence that body size shifts, rather than pronounced 
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alterations in brain size, drove much of the variation in mammalian encephalization (7, 31). At 

the very least, relatively enlarged brains were not necessary for Paleocene placentals. 

As the Paleocene transitioned to the Eocene, the mode of placental brain and body 

evolution shifted. Relative brain size greatly increased, in both average and variance, signaling a 

new regime in which brain size changes were more paramount than those in body size. Brains 5 

were not only becoming larger, but growth focused in regions involved in advanced senses, as 

these mammals added better balance, vision, eye movement, head control, and sensory 

integration to their pre-existing keen olfaction, thus greatly expanding the placental sensory 

toolkit. This corroborates arguments that mosaic evolution of brain regions, not merely changes 

in overall size, underlie the adaptive potential of the mammalian brain—not only across 10 

phylogeny (32), but also in deep time. Primarily, encephalization and sensory enhancements 

occurred in the crown orders, with predators developing significantly larger relative brain size 

than prey groups as ecosystems saturated. It was these crown placentals—among them the first 

horses, whales, dogs, bats, and euprimates—that achieved high PEQs, while the smaller-brained 

and more olfactory-driven stem taxa waned, with groups once so instrumental in the end-15 

Cretaceous recovery and initial placental radiation—like ‘condylarths’ and pantodonts—

ultimately succumbing to extinction. 
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Fig. 1. Virtual endocasts of Cenozoic mammal exemplars used in this study with sensory 5 

regions highlighted and PGLS regressions for Mesozoic and early Cenozoic mammals. (A) 

Late Paleocene ‘stem placental’ ‘condylarth’ Arctocyon primaevus (IRSNB M2332). (B) Middle 

Eocene ‘stem placental’ tillodont Trogosus hillsii (USNM 17157). (C) Middle Eocene ‘crown 

placental’ perissodactyl Hyrachyus modestus (AMNH FM 12664). (D) Phylogenetically 

corrected PGLS regression of endocranial volume vs. body mass. (E) Phylogenetically corrected 10 

PGLS regression of PEQ vs. log10 (body mass) and graphical summary of the results. The 

petrosal lobules are absent in (C) and (D). Scale = 10mm.  
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Fig. 2. Phylogenetic encephalization quotient (PEQ), endocranial volume and body mass of 

Mesozoic and early Cenozoic mammals. (A) Boxplot of PEQ for Mesozoic, Paleocene, Eocene 

stem taxa and Eocene crown orders. (B) PEQ average through time per 10-million-year bins. (C) 5 

Boxplot of log10 (body mass). (D) Boxplot of log10 (endocranial volume) for groups in (A). (E) 

Log10 (body mass) average through time per 10 million year bins for groups in (A). (F) Log10 

(endocranial volume) average through time per 10 million year bins.   
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Fig. 3. Relative size of the olfactory bulbs, petrosal lobules, and neocortex of Mesozoic and 

early Cenozoic mammals. (A) Boxplot of the residuals from a PGLS regression of log10 

(olfactory bulb volume vs. endocranial volume) for Mesozoic, Paleocene, Eocene stem taxa and 5 

Eocene crown orders. (B) Boxplot of the residuals from a PGLS regression of log10 (petrosal 

lobule volume vs. endocranial volume) for the groups in (A). (C) Boxplot of the residuals from a 

PGLS regression of log10 (neocortical surface area vs. endocranial surface area) for the groups in 

(A). (D) Residuals of log10 (olfactory bulb volume vs. endocranial volume) average through time 

per 10-million-year bins. (E) Residuals of log10 (petrosal lobule volume vs. endocranial volume) 10 

average through time per 10 million year bins. (F) Residuals of log10 (neocortical surface area vs. 

endocranial surface area) average through time per 5 million years bins. (G) PGLS regression of 

log10 (olfactory bulb volume vs. endocranial volume) for the groups as (A). (H) PGLS regression 

of log10 (petrosal lobule volume vs. endocranial volume) for the groups in (A). (I) PGLS 

regression of log10 (neocortical surface area vs. endocranial surface area) for the groups in (A). 15 
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Fig. 4. Phylogenetic encephalization quotient (PEQ) evolutionary change across time and 

phylogeny in Mesozoic and early Cenozoic mammals. (A) PEQ density plot and ancestral 

state reconstruction mapped onto a phylogeny for Mesozoic, Paleocene and Eocene mammals. 5 

(B) PEQ evolutionary rate mapped onto a phylogenetic tree and averaged through time per 10-

million-year bins. Virtual endocasts illustrated to the right with highlighted brain regions are 
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scaled in terms of their PEQ, and are from top to bottom: Arctocyon primaevus (IRSNB M2332), 

Hyopsodus paulus (USNM 17980), Meniscotherium chamense (USNM 22673), Trogosus hillsii 

(USNM 17157), Acmeodon secans (KU 7912), Ectoganus copei (USNM 12714), Leptictis sp. 

(AMNH 62369), Hyrachyus modestus (AMNH FM 12664), Metacheiromys marshi (USNM 

452349), Paramys delicatus (AMNH 12506), and Smilodectes gracilis (UM 32773). Silhouettes 5 

from http://phylopic.org/ (i.e., Euprimates, Perissodactyla and Rodentia). 
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