
A Model for a Practical Evaluation of a DASH-based
Rate Adaptive Algorithm over HTTP.
Muhammad Usman Younus  (  usman1644@gmail.com )

UPS https://orcid.org/0000-0001-9033-1767
Rabia Sha� 

NWPU: Northwestern Polytechnical University

Research Article

Keywords: Bitrate Adaptation, Bandwidth, DASH, Bitrate Switches, Buffer Level

Posted Date: July 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-183558/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-183558/v1
mailto:usman1644@gmail.com
https://orcid.org/0000-0001-9033-1767
https://doi.org/10.21203/rs.3.rs-183558/v1
https://creativecommons.org/licenses/by/4.0/


A Model for a Practical Evaluation of a DASH-based Rate 

Adaptive Algorithm over HTTP 

Muhammad Usman Younus1*, Rabia Shafi2 

      1       Ecole Mathématiques, Informatique, Télécommunications de Toulouse, Université de Toulouse, France 

      2       School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China 
                     *Corresponding Author: Muhammad Usman Younus. Email: usman1644@gmail.com  

 

Abstract 

 

The proliferation of multimedia devices and user-generated content has driven massive growth in Inter-

net traffic for video streaming. There is a dire need to propose solutions that can pose challenging mul-

timedia streaming issues to achieve a user’s quality. Dynamic adaptive streaming over HTTP (DASH) im-
proves the user’s quality through practical systems with limited bandwidth that enables the streaming 
media to run smoothly. This modern technology can easily improve user perception and defines the 

media presentation description (MPD) in terms of URL, content file, etc. The proposed adaptation algo-

rithm attempts to determine the optimal solution to alleviate the conflict between maximizing the video 

quality and avoiding buffer stalls. We evaluate the proposed algorithm against alternative solutions such 

as ALDASH and FDASH for video content by taking into account the video bitrate, buffer level, and video 

bitrate switches for the single-user environment.  A set of experiments have been conducted to investi-

gate and analyze the benefits of our proposed algorithm. A network simulator NS-3 is used to conduct 

the performance evaluation by our proposed algorithm. Furthermore, simulation results show that our 

proposed algorithm enhances video quality performance compared to ALDASH and FDASH in terms of 

user satisfaction. Last but not least, the experimental results of our proposed algorithm can provide high 

viewer quality in adaptive streaming as compared to ALDASH and FDASH. 

 

Keywords:   Bitrate Adaptation; Bandwidth; DASH; Bitrate Switches; Buffer Level 

 

1. Introduction 

Nowadays, multimedia video content accounts for a dominant fraction of Internet traffic and is currently 

overgrowing. According to [1][2], the mobile data traffic will grow 46% from 2017 to 2022 as per the 

Compound Annual Growth Rate (CAGR), and it will account for 77.5 Exabytes per month. Internet activi-

ty is dominated by video traffic on both mobile and fixed access networks throughout the world. The 

video streaming services (e.g., Netflix, YouTube, Youku,etc.) [3] constitute the majority of real-time en-

tertainment traffic. From the market perspective, there are some major streaming incumbents (such as 

Adobe HDS (HTTP Dynamic Streaming), Apple HLS [HTTP Live Streaming], Akamai HD, and MSS (Mi-

crosoft Smooth Streaming)) [4,5]. There are considerable challenges in encoding and delivering multi-

mailto:usman1644@gmail.com


2  

media through such streaming technologies. Dynamic Adaptive Streaming over HTTP (DASH) [6] is a 

propitious adaptive video streaming standard released by the collaboration of MPEG and 3GPP in 2011. 

Table 1 shows a comparative study of the best-known adaptive streaming technologies. 

 

Table 1: Comparison of Adaptive Streaming Technologies. 

Features  HLS HDS MSS DASH 

Official International Standards (e.g., ISO/ISC 

MPEG) 

✓    ✓  

Deployment on HTTP Servers  ✓    ✓  

UHD/4K 
✓  

  ✓  

HTML5 Support     ✓  

Multiple Video Views     ✓  

Multiplex Audio and Video Content  ✓  ✓   ✓  

Non-Multiplex Audio and Video Content ✓   ✓  ✓  

Efficient Ad Insertion  ✓  

MPEG-2 TS Segments 
✓  

 ✓  

Agnostic to Audio and Video Codecs ✓  ✓  

HbbTV (Version 1.5) Support 

Parallel multiple support of CDNs protocols  

✓  ✓  

 

The growing popularity of DASH-based streaming is expected to continue because it enables the 

service providers to use existing network infrastructure for a seamless streaming experience. Further-

more, the use of HTTP over the top of TCP simplifies the traversal of firewalls to ensure the user access 

to multimedia services. Figure 1 shows a DASH system that contains a DASH client and a server.  At the 

server-side, the encoding of multiple qualities levels is performed on an original video file, then divided 

into multiple segments of equal duration (2-10 seconds). For the storage of metadata (i.e., segment du-

ration, set of available representation, unique URL for each segment, codec used, and playback dura-

tion) of each video, Media Presentation Description (MPD) file is used. The MPD file and video segments 

are hosted on the webserver. While the MPD file is first returned to the client that extracts the infor-

mation to fetch the required segments adaptively during the streaming session. Typically, the segment 

size consists of a fixed duration in all existing systems, such as Apple recommends 10 seconds for seg-

ment size, Microsoft selects the segment size in the range of 2-4 seconds, YouTube, and Netflix suggest 

5-10 seconds of segment size [6,7]. Then, the client measures the available throughput and dynamically 



3 

adapts the quality levels to facilitate high-quality streaming. Depending on network conditions, the cli-

ent selects the viewing frequency and starts streaming the content by using the HTTP GET request. The 

MPEG-DASH specification defines only MPD and segment formats. 

 

                             

Figure 1: MPEG-DASH Client-Server System. 

Rate adaptation algorithms play an important role in choosing the video bitrates and optimizing the 

playback experience by meeting the conflicts of video quality objectives (e.g., increasing video quality, 

avoiding bitrate switches, preserving the buffer level, etc.). Deprived of an effective rate adaptation 

mechanism, the DASH clients may face lower video quality and increase quality fluctuations. In an adap-

tive streaming scenario, the client starts to download the video segments as soon as possible at the be-

ginning of the streaming session to quickly fill the playback buffer. When the playback buffer is full, the 

client undergoes an ON-OFF scheduling pattern represented in Figure 2. The client requests the next 

segment during the ON state but waits for sufficient space in the buffer during the OFF state. The multi-

ple DASH clients may face the unfair bandwidth distribution during the ON-OFF phase because of vary-

ing network conditions, resulting in a poor video streaming experience.  

                                            

Figure 2: Playback buffer states during streaming session. 

The effect of the segment duration and buffer space in relation to the DASH streaming plays a criti-

cal role. The configuration of the segment size is important to achieve an efficient adaptive playback ex-

perience. Small segment duration reduces the data required to initiate the video playback. Low start-up 

time and lower latency are, therefore, observed by shortening the video segments [9]. However, in-

creasing the video segment duration could lead to increased video bitrate and fewer video quality 

switches and the number of HTTP requests over different bandwidth profiles [10]. Moreover, increasing 

length of the segment is highly susceptible to interruptions in playback. 



4  

Although many efforts have been made in video streaming but did not study the rate adaptation algo-

rithms in detail to choose the appropriate video bitrate after estimating the network condition providing 

better performance. Therefore, a good rate adaptation algorithm is described by its responsiveness to 

network changes and obtaining the optimum possible throughput. The primary contributions of our pa-

per are: 

1. We proposed a rate adaptation algorithm by investigating some of the video challenges that af-

fect the user’s quality. We offered a client-side rate-adaptive algorithm that chooses the video 

bitrate by investigating the effect of buffer levels (e.g., 40s, 60s) and segment duration (e.g., 2s, 

4s) over a wired network. Our proposed algorithm achieves better performance in terms of vid-

eo bitrate, buffer level, and video bitrate switches as compared to ALDASH and FDASH.   

2. Simulation performance of three different adaptation algorithms under a single-user scenario 

highlighting the impact of video quality metrics using NS-3. Our simulation experiments show 

that the proposed algorithm performs well by maintaining the resolution changes to lower lev-

els to achieve user satisfaction. 

3. We also describe our insights for future research.   

 

The rest of the paper is organised as follows: Section 2 describes the related work in which the old 

video streaming techniques detail is given. Section 3 explains the system design, including adaptive 

goals, throughput estimation, chunk scheduling, and rate adaptation algorithm. However, Section 4 de-

scribes the performance evaluation. Finally, Section 5 concludes the paper and gives the direction of 

some future work.   

2. Related Work 

 

Multimedia service providers try to obtain the methods for enhanced playback of streaming 

content without entirely downloading the media content [11]. MPEG-DASH has become the de-facto 

framework for media streams adaptation that deals with trade-offs in several resources (e.g., buffer, 

bandwidth, Region-of-Interest (RoI), etc.) using different segment sizes. Lately, the researchers have fo-

cused on adjusting the segment size and buffer duration to meet the high quality of experience levels. 

This section entails information about related work to our field of interest. We discuss the previous re-

search that was potentially discussing for better adaptation.  

Many studies have been conducted for user-end satisfaction to adapt the high video bitrates 

through the DASH standard, while considering the trade-off in several resources (e.g., quality, band-

width). As the stability in terms of quality levels is one of the significant issues to compete with HAS 

players. The authors in [12] discussed that a HAS player behaviour in adaptive video streaming may lead 

to the fairness issue when HAS clients are competing for a bottleneck link. In another study [13], the ex-

perimentation tools have been provided by introducing an evaluation framework for adaptive stream-

ing. But, this framework does not facilitate any support for commercial stream player.  The study of ad-



5 

aptation algorithm is our primary concern. In [14], the issue of the ON-OFF steady-state phase has been 

solved by an adaptation algorithm, which is similar to TCP congestion control. Hence, the buffer-based 

adaptation employs the playback buffer space to choose the next video segments' appropriate bitrate. 

However, most buffer-based adaptation schemes may encounter instability and poor QoE, especially 

under the challenging network conditions. The study [15] provides a buffer-based adaptation algorithm 

where the video rate is directly chosen by current buffer occupancy during the startup phase, thereby 

reducing the rebuffer rate while delivering a high video rate in a steady-state ensuring the stability of 

buffer occupancy for smooth video playback.  

At present, the most common bitrate adaptive methods of panoramic video are mainly divided into two 

categories: rate-based adaptive method and buffer-based adaptive method. The main idea of the adap-

tive method based on bitrate is to select the maximum bitrate which is not larger than the predicted 

bandwidth. In [16], the client calculates the optimal bitrate according to the bandwidth situation, then 

compares the two bitrate threshold values to set the appropriate bitrate. However, bandwidth predic-

tion is not accurate sometimes. When the client's chosen bitrate exceeds the available bandwidth, the 

use of bitrate-based adaptive method will lead to greatly reduce the user quality of experience. Howev-

er, due to network fluctuations, the bandwidth prediction is sometimes inaccurate. The main idea of the 

adaptive method based on cache is to select the appropriate bitrate to make the size of the video cache 

in a stable state. The PID controller is the most common method for controlling the cache size. In the 

panoramic video playback system designed in [17], the video is divided into the base layer and the en-

hancement layer. The base layer is downloaded first to ensure that the cache size does not fall below a 

certain limit. For the enhancement layer, a PID controller is used, and the appropriate bitrate is selected 

through the feedback mechanism to control the cache size in a stable state. However, the adaptive 

method based on cache can only guarantee the smooth video playback, and cannot achieve the goal of 

optimizing the user’s quality.  

Many novel strategies have been proposed for adaptive streaming on various varying network 

conditions. As it is challenging to provide high-quality video due to network conditions. Our aim is to 

avoid from the traditional streaming protocols and to use the concept of DASH that provides the high 

video quality and minimizes the buffering level in the current video.  Therefore, the authors in [18] pro-

posed an ensemble rate adaptation algorithm that leverages the benefits of multiple methods to im-

prove the user’s quality at various decision times to network fluctuations. An adaptive framework in [19] 

balances the average video rate to guarantee viewing stability by minimizing the switching time. The 

system parameters are controlled to ensure the dynamic system's optimal performance and make the 

algorithm more tunable. In [20], the authors proposed a fuzzy logic rate adaptation scheme, known as, 

FDASH that efficiently adjusts video rate to suit network conditions while avoiding buffer underflow and 

frequent quality changes. It controls the buffering time by delivering the video resolution based on high 

quality distributed video segments. While in [21], an adaptive logic for dynamic adaptive streaming over 

HTTP (ALDASH) has been proposed to improve the user’s quality by dynamically selecting the video bi-
trate and also estimates the throughput based on network conditions in a single-user environment.  



6  

Our study considers both the buffer level and throughput measurements to select the next seg-

ment's video rate on a segment-by-segment basis. Initially, the client does not have any information 

about the network conditions. Then, we investigated the effect of the segment duration and buffer 

space on adaptive streaming by choosing different segment sizes (i.e., 2s, 4s) and buffer levels (i.e., 40, 

60s) for a single-user environment. Our proposed scheme considerably surpasses the rate adaptation al-

gorithms, namely FDASH and ALDASH, from the perspective of playing high-quality segments without in-

terruptions to facilitate a promised viewing experience. Moreover, the proposed algorithm maintains 

the resolution changes to the minimum level under different streaming scenarios to attain higher user 

satisfaction. 

3. System Design   

 

This section discusses the proposed system to alleviate the problem caused by the conventional vid-

eo streaming systems. Figure 3 shows that the adaptive video streaming of the client-side. It sends the 

HTTP GET request to the HTTP server to download the video segments by using the rate selection mod-

ule that selects the video rate dynamically for each segment. An MPD file downloaded from the server 

to get all the information about the quality levels before downloading the first video segment. The HTTP 

server uses a bottleneck link to send the video to the HTTP client. The downloaded segments are stored 

by playback buffer and then feed to the player decoder. The playback buffer is linked with each inde-

pendent video segment.  

Furthermore, the bandwidth measurement module feeds the rate selection module with the meas-

urements such as estimated throughput Test(𝑖)and playback buffer level B(𝑖-1) to select the video rate 

for segment (𝑖). The downloaded segments are placed in a First-in First-out (FIFO) buffer that is handled 

by the media player decoder. After selecting the video rate, the interval is controlled by a scheduler 

module.  

Table 2: Notations 

Notations Meaning (𝑖) Index of segment number 

Test (𝑖) Estimated throughput for segment (𝑖) 

B(𝑖-1) Playback buffer level for segment (𝑖-1) 𝑟[𝑖]  Bitrate of (𝑖)𝑡ℎ segment 𝜏  Playback duration 𝑡𝑖𝑠𝑡𝑎𝑟𝑡  Start time of receiving the (𝑖)𝑡ℎ segment.  𝑡𝑖𝑒𝑛𝑑  End time of receiving the (𝑖)𝑡ℎ segment. 𝑇(𝑖)  Segment throughput 



7 𝛼  Linear factor 𝑇𝑑(𝑖)  Average throughput of downloaded segments during a specified period d 

 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡)  Target buffer level  𝐵(𝑖)  Current buffer level in seconds 

R Set of n bitrates 𝐵(𝑝)  Panic buffer level 𝐵(𝑔)  Growing buffer level 𝐵(𝑠)  Stable buffer level  𝑅𝑛𝑒𝑥𝑡  Next segment’s video rate 𝑟𝑚𝑖𝑛  Minimum available video rate 𝑟↑  Increase the quality by one level 𝑟↑↑  Increase the quality by two level 

 

 

Figure 3: Block Diagram of Client-Side Rate Adaptation Streaming. 

3.1 Adaptation Goals 

According to study performed by Jackson1, there is a need to design an efficient ABR algorithm 

to provide the enhanced QoE during the middle and end of the streaming session with minimum quality 

fluctuations and buffer underflow. The lower video quality provides the lower end-users’ satisfaction. 

 

1 A User Study of Netflix Streaming 



8  

Similarly, the video bitrate switches annoy the user. Furthermore, the user starts leaving the video if the 

video does not play within 2 seconds. Many efforts have been made to know the effects of QoE on user 

engagement. Thus, our proposal tries to maintain higher video quality, a lower number of quality 

switches, and a sufficient buffer level to avoid playback interruptions. We consider the following design 

goals for the proposed scheme. 

3.1.1 Optimize the video rates 

One of the main goals of adapative algorithms is to adaptively choose a video rate from a video 

set to maximize the viewing experience. This is considered as an important factor because users normal-

ly desire high video quality. 

3.1.2 Reduce the frequency of video rate switches 

Switching frequency is a rate of video quality switch in a specific time unit during streaming ses-

sion. It is found that change in quality represents to a non-zero quality (e.g., video bitrate, etc.) of two 

conservative video segments. The high frequency of video rate switching exasperates to the user. The 

fewer bitrate changes can provide the high user’s satisfaction as compared to the video of higher bi-
trates with a higher number of bitrate changes.  

3.1.3 Minimize the number of interruptions 

In terruption is the freezing of video playback due to buffer underflows. A user can tolerate at 

most one interruption of just a few seconds; therefore, it should be avoided during the streaming ses-

sion to achieve good quality. Although, it becomes very important for adaptation algorithms to avoid 

playback interruptions while adjusting the bitrate according to network conditions to achieve high video 

quality. By getting a better experience and a longer video playback time, the user will consume content 

more frequently. The video rates and rebuffering events are contradictory as maximization of the video 

rate would risk extensive rebuffering. 

 

To achieve these goals, our solution consists of following aspects. 

• Throughput estimation for each segment. 

• A segment scheduling mechanism to restrict the request interval for each segment.  

• Selection of the appropriate video quality for each segment through an efficient rate adaptation 

algorithm. 

3.2 Throughput Estimation  

In HTTP streaming, a consecutive series of HTTP request-response messages is used to deliver 

the media segments. For a rate adaptation algorithm, the client estimates throughput for the next seg-



9 

ments by observing the throughput changes during the downloading of the last segment to select the 

video bitrate. Throughput measured at the application layer is given as:  𝑇  (𝑖) = 𝑟[𝑖]∗𝜏𝑡𝑖𝑒𝑛𝑑−𝑡𝑖𝑠𝑡𝑎𝑟𝑡                        (1) 

where 𝑟[𝑖] is the bitrate of (𝑖)𝑡ℎ segment, 𝜏 represents the playback duration, 𝑡𝑖𝑒𝑛𝑑  and  𝑡𝑖𝑠𝑡𝑎𝑟𝑡  

indicate the end time and start time of receiving the (𝑖)𝑡ℎ segment. The last segment’s throughput de-
cides the video rate for the next segment due to which short-term fluctuations may cause frequent fluc-

tuations in the video rate. For example, due to an erroneous approximation, if the measured throughput 

is higher than the available throughput, the client selects a high video bitrate that will lead to network 

congestions. Contrary, if the measured throughput is lower than the available network throughput, the 

video quality would not be according to the maximum acceptable levels. 

The average throughput measurement stabilizes the estimation over time to mitigate the fre-

quency of fluctuations. The average throughput of n downloaded segments is estimated during a speci-

fied period d as follows:  𝑇𝑑(𝑖) = 1𝑛 ∗ ∑ 𝑇(𝑖)𝑛𝑖=1                                (2) 

where 𝑇  𝑒𝑠𝑡(𝑖) is the estimated throughput, 𝑇(𝑖) is a segment throughput and 𝑖 is an index of 

segment number. The throughput is estimated for the next segment based on the current zone of the 

buffer level and is given as: 

 𝑇𝑒𝑠𝑡(𝑖) =  𝛼 ∗ 𝑇𝑑(𝑖)                    (3) 

where 𝛼 is a linear factor and its value defines the efficiency of adaptive algorithm during the 

streaming session. It should be set after the exact application scenario known. Once 𝛼 value is set at the 

beginning of the session, it remains the same until the end. It is calculated as: 

𝛼 = {0.5                                                                         𝐵(𝑖) ≤ 𝐵(𝑝)0.5(𝐵(𝑖)+𝐵(𝑔))−𝐵(𝑝)𝐵(𝑔)−𝐵(𝑖)                                                      𝐵(𝑖) < 𝐵(𝑔)1                                                                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                  (4) 

 

If 𝐵(𝑖) ≤ 𝐵(𝑝) then adaptation logic operates in the panic phase and 𝛼 is set to 0.5. It continues 

to request segments of the base bitrate until it moves to growing phase. When the buffer size becomes 

more than 50% of the buffer capacity, the adaptation logic sets the next video bitrate depending on the 

buffer gain 𝐵(𝑔). It indicates that the network conditions are favorable and higher video bitrates are 

supported. If the 𝐵(𝑔) is not sufficient, then 𝐵(𝑔) gets accumulated over subsequent segment requests 

and client continues to requests the most suitable video bitrate to the network condition that does not 

exceed the estimated throughput to improve the video quality.  



10  

3.3 Chunk Scheduling  

The chunk scheduling strategy aims to define the interval to launch the request of the next seg-

ments. There are mainly three chunk scheduling strategies: (i) immediate downloading strategy that 

greedly improves the player’s ability to avoid future buffering events. At the highest bitrate, when users 
leave prematurely, then it may increase the cost of bandwidth. While at a low bitrate, chunks may avoid 

switching to a higher quality in case the network conditions improve. (ii) The periodic strategy minimizes 

the rebuffering by maintaining a constant playback buffer. Thus, HTTP client gets stuck in suboptimal 

throughput allocations because of the biased view of the network state. (iii) A randomized segment 

fetching strategy mitigates this bias by selecting the target buffer randomly that tries to maintain the 

playback buffer level. In this paper, we are using a randomized segment scheduling strategy.  

Let a client make a request for the segment (i+1) in time 𝑡 𝑠𝑡𝑎𝑟𝑡(i + 1) and 𝑡 𝑒𝑛𝑑(i) is that time 

when transmission of the segment (i) is completed. 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡) denotes the target buffer level while the 

length of the current buffer level is denoted by 𝐵(𝑖) in seconds, 𝜏 represents the length of segment 

playback duration. Hence, the time to request segment (i + 1) can be written as: 

𝑡 𝑠𝑡𝑎𝑟𝑡(i + 1) = { 𝑡 𝑒𝑛𝑑(i)                                                    𝑖𝑓 𝐵(𝑖) < 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡)𝑡 𝑒𝑛𝑑(i) + (𝐵(𝑖) − 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡) + 𝜏)/𝜏      𝑖𝑓 𝐵(𝑖) ≥ 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡)                                    (5) 

 

The above equation indicates that the requests for the next segment immediately after down-

loading the previous segment when 𝐵(𝑖) is less than the target buffer level, i.e., 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡). While, the 

client has to wait for (𝐵(𝑖) − 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡) + 𝜏)/𝜏 seconds to make the next segment request when 𝐵(𝑖) 

increases above the 𝐵(𝑡𝑎𝑟𝑔𝑒𝑡). 

3.4 Rate Adaptation Algorithm 

In the proposed rate adaptation algorithm, the streaming video is divided into a number of seg-

ments, each containing 𝜏 seconds of duration. Note that the feasible bitrate of video segments can be 

chosen through a set of n bitrates, i.e., R= {r(1), r(2), …, r(n)}. A continuous HTTP connection is assumed 

that sequentially requests the segments by using HTTP GET requests. The client-side buffer is associated 

with three different buffer levels named and represented as panic 𝐵(𝑝), growing 𝐵(𝑔), and stable 𝐵(𝑠). 

The next segment’s video rate, 𝑅𝑛𝑒𝑥𝑡, is made differently that depends on area where the current buffer 

occupancy B(i) lies. Algorithm 1 provides the pseudo-code. 

The algorithm considers both the buffer level and throughput feedback signals, which are used 

for the next segment’s video rate selection on a segment-by-segment basis. The quality level of (i)th 

segment is decided after downloading (𝑖 − 1)𝑡ℎ segment. Initially, the client does not know any kind of 

information about the network conditions. Therefore, a conservative strategy is implemented to fill the 



11 

buffer as soon as possible. For 𝐵(𝑖 − 1) ≤  𝐵(𝑝), the minimum available video rate,  𝑟𝑚𝑖𝑛,  is selected by 

the client to limit the initial stall time as small as possible.  

The algorithm attempts to fill the buffer level by smoothly increasing the quality level when the 

buffer occupancy goes beyond 𝐵(𝑝). The next high quality bitrate that is less than or equal to the esti-

mated throughput is selected for 𝐵(𝑖 − 1) ≤  𝐵(𝑔) provided that the buffer level is not lower than  
𝑟↑𝑟𝑚𝑖𝑛.  

If the previously selected bitrate is higher than the available throughput and is not the minimum, the 

client decreases the quality by one level instead of an aggressive decrease.  

For 𝐵(𝑖 − 1) ≤  𝐵(𝑠), the buffer level is established and we can improve the quality by switch-

ing aggressively. The client prefers to switch two quality levels if the buffer level increases by 𝑟↑↑/𝑟𝑚𝑖𝑛 seconds and the next two higher quality levels are below the estimated throughput, i.e., 𝑟↑↑ ≤  𝑇 𝑒𝑠𝑡(𝑖). If the network throughput is not feasible to increase the bitrate by two level the client will 

check to increase the quality by one level, denoted as 𝑟↑. Otherwise, it will maintain the previous bi-

trate. 

If the current buffer level exceeds the stable level 𝐵(𝑠), the most suitable video bitrate (e.g., 

probably the highest bitrate from set R) to network condition is selected that does not exceed the esti-

mated throughput to improve the video quality. 

4. Performance Evaluation  

 

For evaluating the proposed rate adaptive algorithm, the network simulator NS-3 has been used 

to perform the experiments. Table 3. defines the simulation parameters used for experimental work.  

Figure 4 shows the network topology implemented in this work for the single-user scenario. The used 

topology consists of three nodes, i.e., server, router, and client nodes. The server is an Apach HTTP serv-

er running on Ubuntu 14.04 LTS, while the client is implemented in python and runs on a Window 10 

with Core i7 2.6 GHz CPU and 8GB RAM. DASH server contains the Big Buck Bunny video sequence with 

framerate of 30fps and a resolution of 1280x720. Each video is divided into small video sequence of 2s 

and 4s. The client node downloads video segments from the server over the bottleneck link, whose 

bandwidth is shown in Figure 5. For the analysis of rate adaptation schemes performance, the bottle-

neck link varies between HTTP client and server. The bandwidth link of 3Mbps remains constant till 100s 

and then it repeatedly switches between 2Mbps and 5Mbps after every 5s until the end of the simula-

tion at 300s. The bandwidth has a rectangular shape with two bandwidth levels such as 2Mbps and 

5Mbps. This is important in evaluating the proposed adaptation method because we want to know how 

it performs when bandwidth fluctuates.   

The sequence length is encoded into 8 different bitrates, i.e., {131, 434, 791, 1500, 2500, 3500, 

3800, and 4200} Kbps to obtain the adaptive streaming. The performance is evaluated against two 



12  

benchmark rate adaptation algorithms named ALDASH and FDASH in the single-user scenario. Three 

metrics are used to evaluate the performance, including average video bitrate, average buffer level, and 

video bitrate switches.  

Algorithm  

Input: 𝑅 = {𝑟1, 𝑟2, … . . 𝑟𝑛} ← n number of video bitrates 𝑇 𝑒𝑠𝑡(𝑖 − 1) ← throughput measured after the download of (i-1)th segment. 𝐵(𝑖 − 1)← Buffer occupancy after the download of (i-1)th segment 

Result: 𝑅𝑛𝑒𝑥𝑡 ← Next representation to fetch from the server for the (i)th segment 

1. if 𝐵(𝑖 − 1) ≤  𝐵(𝑝)  then 

2.      𝑅𝑛𝑒𝑥𝑡 ←min{𝑟𝑖|𝑟𝑖𝜀𝑅, 𝑟 ≤ 𝑇 𝑒𝑠𝑡(𝑖 − 1) }  // Assign the lowest quality to boost the buffer 

quickly 

3. 𝒆𝒍𝒔𝒆 𝒊𝒇 𝐵(𝑖 − 1) ≤  𝐵(𝑔)  then  

4. if 𝐵(𝑖 − 1) ≥  𝑟↑/𝑟𝑚𝑖𝑛 && 𝑟↑ ≤  𝑇 𝑒𝑠𝑡(𝑖 − 1) 

5.       𝑅𝑛𝑒𝑥𝑡 =𝑟↑                            //Increase the quality by one level 

6.      else if 𝑟𝑝𝑟𝑒𝑣  ! = 𝑟𝑚𝑖𝑛 ^^ 𝑟𝑝𝑟𝑒𝑣 > 𝑇 𝑒𝑠𝑡(𝑖 − 1) then  

7.                𝑅𝑛𝑒𝑥𝑡 = 𝑟↓                          //decrease the quality level  

8. else if 𝐵(𝑖 − 1) ≤  𝐵(𝑠) then 

9.       if 𝐵(𝑖 − 1) ≥ 𝑟↑↑𝑟𝑚𝑖𝑛 && 𝑟↑↑ ≤   𝑇 𝑒𝑠𝑡(𝑖 − 1) 

10.        𝑅𝑛𝑒𝑥𝑡 =  𝑟↑↑                              //Buffer level is established, increase by two 

levels 

11.      else if 𝐵(𝑖 − 1) ≥ 𝑟↑𝑟𝑚𝑖𝑛  && 𝑟𝑝𝑟𝑒𝑣 ≠ 𝑟𝑚𝑎𝑥 && 𝑟↑ ≤   𝑇 𝑒𝑠𝑡(𝑖 − 1) 
12.           𝑅𝑛𝑒𝑥𝑡 =𝑟↑                            //increase by one level 

13.       else  

14.          𝑅𝑛𝑒𝑥𝑡 = 𝑟𝑝𝑟𝑒𝑣                    //Continue the previous bitrate to avoid fluctua-

tions 

15. else if 𝐵(𝑖 − 1) >  𝐵(𝑠) then 

16.       𝑅𝑛𝑒𝑥𝑡 ←max{𝑟𝑝𝑟𝑒𝑣, 𝑟𝑖|𝑟𝑖𝜀𝑅, 𝑟𝑖 ≤ 𝑇 𝑒𝑠𝑡(𝑖 − 1)} 

 

As, the client can more quickly switch to a higher quality level at start, or also can recover from low 

buffer occupancy [22].  Therefore, the proposed client’s buffer levels B(s), B(g), and B(p) are selected as 

80%, 20%, and 10% of the playback buffer size, respectively. When client is in panic state B(p) chosen as 



13 

10% of the palyback buffer, It enables a minimum buffer fill state.  Then, the client will download the 

segments with lowest available video rate until the buffer occupancy starts to increase above minimum 

threshold level. To set the value of B(g) to 20% of the playback buffer means that the adaptation algo-

rithm tries to fill buffer level by smoothly increasing the quality level. Similarly, when we choose the B(s) 

as 80%, it means that buffer level aggressively select the video rate. Table 4 depicts the statistics of dif-

ferent adaptation algorithms for the single-user scenario. The four families of experiments were per-

formed for a single-user scenario as follows:  

1. Three different rate adaptation schemes performance is evaluated with a segment duration of 2s 

for buffer level 40s.  

2. Three different rate adaptation schemes performance is evaluated with a segment duration of 2s 

for buffer level 60s. 

3. Three different rate adaptation schemes performance is evaluated with a segment duration of 4s 

for buffer level 40s. 

4. Three different rate adaptation schemes performance is evaluated with a segment duration of 4s 

for buffer level 60s.   

                                    Table 3: Simulation Parameter Settings. 

Parameters Values 

Representation Set {131, 434, 791, 1500, 2500, 3500, 3800 & 4200} Kbps  

Video Sequence  Big Buck Bunny[1]  

Segment Duration in Seconds 2s & 4s 

Buffer Size in Seconds 40s & 60s 

Bandwidth  6Mbps 

Simulation Period  300s 

 

 

                                       

Figure 4: Network Topology for performance evaluation. 

1 http://w ww-itec.uni-klu.ac.at/ftp/datasets/DASHDatas et2014/BigBuckBunny/2sec/ 



14  

 

Figure 5: Bandwidth’s Behaviour of the network. 

4.1 Average Video Bitrate 

The average video bitrate represents the average per chunk quality during the streaming ses-

sion. Figure 6 shows the client's adaptive behaviour in terms of average video bitrates achieved by three 

clients in two different scenarios. In this section, we demonstrate how the proposed algorithm performs 

as segment duration and buffer size vary. In the following experiements, we set the segment duration to 

2s and 4s to evaluate the performance of proposed rate adaptation algorithm. Also, the buffer size is set 

to 40s and 60s for all the experiemts.  

In the first scenario, the segment duration and buffer size are set to 2s and 40s, respectively. We 

observe that the proposed algorithm gains a video rate of approximately 2.91Mbps compared to the 

2.78 Mbps of ALDASH and FDASH.  In the second scenario, the buffer level is kept the same, and the 

segment duration is increased to 4s. Our proposed client achieves 10 Kbps more average video bitrate as 

compared to ALDASH and FDASH. In the second scenario, the buffer size is set to 60s. Figure 6 shows the 

average video rates achieved by the proposed algorithm. The client attains the highest video rate with 

our proposed algorithm. On average, our proposed client gain nearly 25 Kbps higher bitrate than 

ALDASH and FDASH for both 2s and 4s segment durations. Thus, the proposed client achieves a higher 

average video bitrate to give high quality streaming to the end-user, as shown in Figure 6. For the 1st 

scenario, all three clients achieve higher video bitrates compared to the other scenarios. This is because 

the small buffer space quickly increases to the buffer operating thresholds instead of remaining long in 

the initial threshold. Furthermore, all three clients achieve a little lower bitrate for the second scenario 

than the first scenario because the longer segment duration takes a longer time to download the seg-

ments for the given bottleneck link. 

 

0

1

2

3

4

5

6

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Simulation Period (s)



15 

 

Figure 6: Performance comparison of Average Video Bitrate. 

4.2 Average Buffer Level 

This section provides the average buffer level for three different bitrate adaptation schemes 

over two different scenarios. Figure 7 shows the results of our proposed algorithm. The rate adaptation 

algorithm should be able to guarantee the best quality under different client settings. In the following 

experiments, we set the segment duration to 2s and 4s to evaluate the performance of proposed rate 

adaptation algorithm. The buffer size is set to 40s and 60s for the evaluation of rate adaptive algorithms 

performance.  

For the first scenario, the buffer level is set to 40s, and segment duration is set to 2s and 4s. Fig-

ure 7 shows the average video rates obtained by the ALDASH, FDASH, and the proposed algorithms over 

the streaming session. It is observed that our proposed algorithm achieves 17s and 21.8s of the average 

buffer level for 2s and 4s, respectively. While, ALDASH obtains 28.7s and 29.8s and FDASH achieves 

26.4s and 29s of average buffer level for 2s and 4s, respectively. We can observe that FDASH performs 

well as compared to the ALDASH.  Likewise, for the second scenario, the buffer level is set to the 60s for 

the segment duration of 2s and 4s, respectively. Again, we observe that the proposed algorithm 

achieves a better average buffer level compared to ALDASH and FDASH algorithms, as shown in Figure 7. 

Consequently, the video segments will lead to a higher number of segments with a small duration than 

the large segment size. 

 

2

2.2

2.4

2.6

2.8

3

2s 4s 2s 4s 2s 4s 2s 4s 2s 4s 2s 4s

40s 60s 40s 60s 40s 60s

Proposed ALDASH FDASH

A
v

er
ag

e 
V

id
eo

 

B
it

ra
te

 (
M

b
p

s)



16  

 

Figure 7: Performance Comparison of Average Buffer Level. 

4.3 Video Bitrate Switching 

Figure 8 shows the performance of adaptive algorithms to demonstrate the effect of the num-

ber of bitrate switches with different segment duration by the client in two different scenarios. In the 

following experiements, we set the segment duration to 2s and 4s to evaluate the performance of pro-

posed rate adaptation algorithm. Also, the buffer size is set to 40s and 60s for all the experiemts.  

 In the first scenario, the segment duration and buffer size are set to 2s and 40s, respectively. 

We observe that our proposed algorithm attains the low bitrate changes, approximately 13 compared to 

36 of FDASH. While, ALDASH performs well as compared to FDASH.  In the second scenario, the buffer 

level is kept the same and segment duration is increased to 4s. It can be seen from the figure that the 

client employing the proposed adaptation algorithm experiences the minimum number of quality 

switches than other competing algorithms while maintaining the playback buffer within the limits. Like-

wise, for the second scenario, the buffer level is set to the 60s for the segment duration of 2s and 4s, re-

spectively. We observe that our proposed algorithm attains the low bitrate changes, approximately 15 

compared to 38 of FDASH. While, ALDASH performs well than FDASH.  In the second scenario, the buffer 

level is kept the same, and the segment duration is increased to 4s. Again, we observe in the following 

Figure 8; the proposed algorithm achieves a lower number of video rate changes than ALDASH and 

FDASH algorithms. Furthermore, the higher value of bitrate switching by proposed algorithm shows that 

it will aggressively improve the video rate for better utilization of available throughput.  

2

7

12

17

22

27

32

37

42

2s 4s 2s 4s 2s 4s 2s 4s 2s 4s 2s 4s

40s 60s 40s 60s 40s 60s

Proposed ALDASH FDASH

A
v

er
ag

e 
B

u
ff

er
 L

ev
el

 (
s)



17 

                     

                            Figure 8: Performance Comparison of Video Bitrate Switches  

 

Table 4:  Performance comparison of ALDASH, FDASH and proposed algorithm. 

 
 Proposed  ALDASH FDASH 

 40s 60s 40s 60s 40s 60s 

 

 

2s 4s 2s 4s 2s 4s 2s 4s 2s 4s 2s 4s 

Average 

Video  

Bitrate 

2.92 2.86 2.89 2.86 2.78 2.77 2.66 2.66 2.79 2.7 2.64 2.67 

Average 

Buffer Lev-

el 

17 21.81 18.12 21.36 28.78 29.90 40 39 26.43 29.07 36.69 38 

Video  

Bitrate 

Switches 

13 5 15 8 8 4 6 10 36 34 38 34 

 

5. Conclusion and Future Work 

DASH has been extensively used as an important adaptive streaming technology over the Inter-

net. It has the potential to provide the video quality to the user even with different network conditions. 

We presented a description of each strategy by investigating the issues they are trying to resolve, their 

goals, and findings. This paper proposed a DASH-based rate adaptation algorithm that provides a 

smooth video bitrate in a single-client environment. Our proposed algorithm improves the viewing ex-

perience through playback buffer occupancy and available network throughput. The proposed algorithm 

guarantees better video quality from the simulation results compared to other comparative algorithms 

ALDASH and FDASH in terms of the video bitrate, a minimum number of interruptions, and video quality 

2

7

12

17

22

27

32

37

42

2s 4s 2s 4s 2s 4s 2s 4s 2s 4s 2s 4s

40s 60s 40s 60s 40s 60s

Proposed ALDASH FDASH

V
id

eo
 B

it
ra

te
 S

w
it

ch
es



18  

switches. Our comparison may help the researchers in adaptive streaming by facilitating a general con-

sistent framework for comparing different rate adaptation strategies. Since our experimental work envi-

ronment is limited to the wired network rather than the wireless network. Our focus is on investigating 

and evaluating the effect within the network environment of different metrics.  

We leave our experiments with different settings by considering the wireless environments for 

our future work. The different factors (e.g., video content, codec, etc.) can impact the user’s video quali-
ty. Some issues have already been resolved, but we will make it our future work to analyze these issues 

with the latest and popular streaming services. Also, it facilitates additional research possibilities in are-

as where improvements are needed by paving the ways for future streaming applications. 

Funding: Not applicable. 

Conflicts of Interest: The authors declare that there is no conflict of interest. 

Availability of data and material: Not applicable. 

Code availability: At this stage, we can not provide the code because we are extending our project.  

Authors' contributions: All authors contributed equally. 

 

References 

1.     G. M. D. T. Forecast,(2019) ”Cisco visual networking index: global mobile data traffic forecast” update, 2017–2022., vol. 2017, pp. 

2022. 

2.      Shafi, R., Shuai, W., & Younus, M. U. (2020). 360-Degree Video Streaming: A Survey of the State of the Art. Symmetry, 12(9), 1491. 

3.     Sandvine (2014), "The global internet phenomena report: 1H," Report. 

4. C. V. N. Index (2016), "Forecast and methodology, 2016–2021," White paper. 

5.     PANTOS, R. (2010), Iphone HTTP Live Streaming: http://tools. ietf. org/html/draft-pantos-http-live-streaming-05. Apple Inc., vol. 

19, pp. 22. 

6.     T. Stockhammer,(2011). “Dynamic adaptive streaming over HTTP-- standards and design principles,” In : Proc. of the second annu-

al ACM conference on Multimedia systems.  (pp. 133-144). 

7.     Shafi, R., Shuai, W., & Younus, M. U. (2020). MTC360: A Multi-Tiles Configuration for Viewport-Dependent 360-Degree Video 

Streaming. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC) (pp. 1868-1873). 

8. S. lederer (2015),. “Optimal Adaptive Streaming Formats MPEG-DASH & HLS Segment Length,” Bitmovin. 

9. J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck (2018), “An HTTP/2 push-based approach 

for low-latency live streaming with super-short segments,” Journal of Network and Systems Management, 26(1), 51-78). 

10. T. nguyen, VU Thuan,, D. K. phuong, Vo Thi Luu (2019),  “Performance of DASH over Multipath TCP,” REV Journal on Electronics 

and Communications, 9, (1-2). 

11. C. Timmerer and C. Müller (2010), “HTTP streaming of MPEG media,” Streaming Day. 

12. I. Ayad,, Y. Im, E. Keller, and S. Ha (2018),  “A practical evaluation of rate adaptation algorithms in http-based adaptive stream-

ing,”  Computer Networks, 133(3), 90-103. 

13. K. Spiteri, R. Urgaonkar, and R.K. Sitaraman (2020), “BOLA: Near-optimal bitrate adaptation for online videos,” IEEE/ACM Transac-

tions on Networking, 28(4), 1698-1711. 

14. Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A.C. Begen,, and D. Oran,(2014). “Probe and adapt: Rate adaptation for HTTP video streamzng 
at scale,” IEEE Journal on Selected Areas in Communications, 32(4), 719-733. 

15. T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson (2014), “A buffer-based approach to rate adaptation: Evidence 

from a large video streaming service,” In : Proc. of the 2014 ACM conference on SIGCOMM. (pp. 187-198). 

16. Nguyen, Duc V., Huyen TT Tran, Anh T. Pham, and Truong Cong Thang (2017). "A new adaptation approach for viewport-adaptive 

360-degree video streaming." In 2017 IEEE International Symposium on Multimedia (ISM), (pp. 38-44). IEEE. 



19 

17. He, Dongbiao, Cedric Westphal, and J. J. Garcia-Luna-Aceves. (2018)"Joint rate and fov adaptation in immersive video streaming." 

In Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented Reality Network, (pp. 27-32). 

18. H. Yuan, X. Hu,, J. Hou, X. Wei, and S. Kwong (2019),  “An Ensemble Rate Adaptation Framework for Dynamic Adaptive Streaming 
Over HTTP,” IEEE Transactions on Broadcasting. 

19. A. Wafa, A. Ashraf, T. and S. A. Maazen (2020), “An Adaptive Quality Switch-aware Framework for Optimal Bitrate Video Stream-

ing Delivery,” International Journal of Advanced Computer Science and Applications(IJACSA),11(8).  

20. D.J. Vergados, A. Michalas, A. Sgora, D. D. Vergados, and P. Chatzimisios (2015), “FDASH: A fuzzy-based MPEG/DASH adaptation 

algorithm,” IEEE Systems Journal, 10(2), (pp. 859-868). 

21. W. U. Rahman, and K. Chung (2017), “A novel adaptive logic for dynamic adaptive streaming over HTTP,” Journal of Visual Com-

munication and Image Representation, (vol. 49, pp. 433-446). 

22. Ur Rahman, Waqas, and Kwangsue Chung (2018). "SABA: Segment and buffer aware rate adaptation algorithm for streaming over 

HTTP." Multimedia Systems 24(5), 509-529. 

 

  

 

Biography: 

 

 

Dr. Engr. Muhammad Usman Younus received his Doctorate and master's 

degree in engineering from the University of Toulouse (III) Paul Sabatier 

France and University of Engineering and Technology Lahore Pakistan 

2020 & 2014, respectively. His research interests include Wireless Sensor 

Network, Software Defined Networking, Energy Optimization, Wireless 

Communication, and Machine Learning. He has more than twenty interna-

tional journal and conference publications. He is a member of PEC, IEEE, 

etc. and reviewer of some journals and conferences. 

 

Engr. Rabia Shafi received the B.S. degree in Electrical Engineering from 

Govt. College University Faisalabad, Pakistan in 2014.  She is currently pur-

suing the Ph.D. degree in information and communication engineering 

from Northwestern Polytechnical University, Xi’an China. Her main research 

interests include image and video processing. 

 

 


