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Abstract 
 

The use of deep cement mixing (DCM) columns is an effective and affordable technique for ground 

stabilization. However, designing this method can be complex due to uncertainties in the geotechnical properties 

of the soil and DCM columns, area improvement ratio, column arrangement, and required cement content. This 

study aimed to address this issue by using Gaussian process regression (GPR) models to estimate the ultimate 

bearing capacity (UBC) of soft soil improved with DCM columns.To create and train the GPR models, the study 

utilized a database of 46 physical modeling tests under end-bearing and floating conditions. The researchers 

used different kernel functions, including rational quadratic, squared exponential, Matern 5/2, and exponential, 

for the GPR models. The models were then optimized through Bayesian optimization and compared to other 

predictive techniques such as multilayer perceptron (MLP), radial basis function (RBF), and neuro-fuzzy 

inference systems (ANFIS) using test data.As a case study, the researchers evaluated a decision-making model 

for designing the geotechnical properties of DCM columns. The results showed that the optimized GPR model's 

accuracy in terms of performance indices was satisfactory for both end-bearing and floating DCM column 

conditions. The optimized GPR model outperformed MLP, RBF, and ANFIS performance indices using test 

data. Overall, the study demonstrated that optimized GPR models are a promising method for early prediction of 

stabilized ground UBC. 

 

Keywords Gaussian process regression models, DCM columns, ANFIS, MLP, RBF 
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1 Introduction 

Deep soil mixing (DSM) is a commonly used technique for soil stabilization that enhances the overall load-

bearing capacity of weak soil (Broms and Boman, 1979; Bergado, 1994; Bouassida and Porbaha, 2004; 

Dehghanbanadaki et al. 2016; Liu et al. 2017; Rashid et al. 2017; Bunawan et al. 2018; Yi et al. 2018; 

Dehghanbanadaki et al. 2022; Yin et al., 2023). This technique also can decrease the total settlement of a 

structure (Porbaha, 1998; Bouassida et al. 2009; Chai and Pongsivasathit, 2010; Yao et al. 2016; Alipour et al. 

2016; Dehghanbanadaki et al. 2020). The major advantages of this method include its environmental benefits, 

low noise, application in a limited workspace, and low vibration (Frikha et al., 2017). Binders such as cement, 

gypsum, lime, fly ash, and combinations of these are used to construct DSM columns (EuroSoilStab, 2002); 

however, practical projects using DSM columns have shown that cement performs better than other binders 

(CDIT, 2011). This has led to the development of deep cement mixing (DCM) in place of DSM. In DCM, the 

installation method, revolution speed, curing time, mixing time, and the types and amount of binder have 

significant effects on the improvement of a site (Arulrajah et al. 2018). These parameters can directly affect the 

degree of improvement and are dependent upon on-site specifications. Fig. 1 shows an example of DCM 

columns in soft clay (Topolnicki, 2014). 

Numerous studies have explored the vertical ultimate bearing capacity (UBC) of soft soil that has been 

improved through the use of end-bearing or floating DCM columns. Researchers including Terashi and Tanaka 

(1981), Kitazume et al. (1999), Omine et al. (1999), Yin and Fang (2010), Rashid et al. (2011, 2017), Wonglert 

et al. (2018), Dehghanbanadaki et al. (2020), Dehghanbanadaki (2021), and Zhao et al. (2023) have all 

contributed to this body of knowledge. The choice between end-bearing or floating DCM columns is dependent 

on the specific site conditions. Factors such as the area improvement ratio (Eq. (1)), undrained shear strength of 

the soil (Cus), undrained shear strength of the DCM columns (Cuc), skin interaction between the soil and DCM 

columns, and DCM column arrangement and loading rate (EuroSoilStab, 2002) all impact the UBC of the 

stabilized ground. Additionally, a model of a foundation over soft soil that has been improved with end-bearing 

DCMs can be seen in Fig. 1. 𝛼 =  𝐴𝑐 𝐴𝑡⁄                   (1) 

where Ac is the area of the DCM columns and At is the total loaded area. 

Soft computing methods, such as artificial neural networks (ANNs), fuzzy modeling, and adaptive neuro-

fuzzy inference systems (ANFIS), have become increasingly popular for addressing civil engineering problems. 

Several studies, including those conducted by Khari et al. (2018), Jokar et al. (2018), Dehghanbanadaki et al. 

(2019), Jelušič and Žlender (2020), Amiri et al. (2020), Chaudhuri and Maity (2020), Kashani et al. (2020), and 

Liu et al. (2020), have utilized these methods. For instance, Tinoco et al. (2019) estimated the ultimate bearing 

capacity (UBC) of soil samples that had been stabilized with cement, using ANNs and support vector machine 

(SVM) models. They created the models based on the results of 444 unconfined compressive strength (UCS) 

tests, considering ten input parameters, including clay, sand, silt, organic matter, water, cement contents, 

water/cement ratio, curing time, and two coefficients related to binder type. Their results indicated that the best 

ANN model accurately estimated the UCS, with an average regression index of R = 0.95. 

In sensitivity tests, it was discovered that the water/cement ratio, cement content, and organic matter content 

had the most significant impact on estimating the unconfined compressive strength (UCS) of stabilized samples. 

For DSM projects, Ghorbani and Hasanzadehshooiili (2018) estimated the UCS and California bearing ratio 
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(CBR) of silty sulfate sand treated with lime and micro-silica. They conducted 90 experimental tests and 

developed computational artificial neural network (ANN) and evolutionary polynomial regression (EPR) 

models. These models were trained and tested with the aim of using them in DSM methods (QA/QC). As 

determined by the controlling error criteria, both targets were estimated to have high accuracy. Validation of the 

proposed models was done using practical examples. 

The ultimate shear resistance of silty sand stabilized by a group of geotextile-encased stone columns as a 

column-like element was estimated by Ardakani et al. (2019) using an ANN model. The training performance of 

the ANN model was improved by an imperialist competitive algorithm (ICA). A total of 39 large-scale tests 

were used for training. Input parameters were area improvement, normal stress, and the fines content of the soil. 

The results showed that the ANN trained by ICA performed better than the conventional ANN that was trained 

using a back-propagation algorithm. A correlation coefficient of 0.9913 for the test data confirmed the high 

accuracy of the model for the estimation of the target.  

Das and Dey (2018) developed an artificial neural network (ANN) model to predict the ultimate bearing 

capacity (UBC) of a group of stone columns in soft clay. They collected data from 90 experimental tests to 

determine the input parameters, including undrained cohesion of the soft clay, friction angle of the stone 

column, ratio of spacing to the diameter of the stone columns, length of the stone columns, and number of stone 

columns. The estimated UBC values were compared to the results of numerical modeling using FEM Plaxis 2D, 

and the ANN model showed satisfactory results when compared with established theories. Sensitivity analysis 

indicated that the friction angle of the stone column had the greatest impact on the UBC.  

Ornek et al. (2012) investigated the estimation of UBC of circular footings placed on soft clay improved 

with granular soil. They used data from 28 field tests as large-scale experiments to train ANNs and multi-linear 

regression (MLR) models. The granular fill used as a column-like element was obtained by passing natural 

granular material through a 4.75-mm sieve. The granular columns were arranged in a rectangle. The UBC of the 

treated ground was calculated as a load–settlement relationship. To develop the computational models, the 

diameter and vertical displacement of the foundation and the height of the granular columns were considered as 

the input parameters and the UBC was the target. A comparison of the performance indices indicated that the 

ANN model better estimated the UBC than MLR.   

Studies have shown that both MLP and ANFIS approaches have limitations such as overfitting, slow 

convergence speed, and poor generalization performance (Park and Rilett, 1999; Kecman 2001; Huang, 2009; 

Lee et al. 2019; Jin, 2020; Lima et al. 2020). In addition, determining the topology of the model, including the 

number of hidden layers and neurons, is still a challenge, and the usual method is through trial-and-error (Pal et 

al. 2010; Liu et al. 2016). Therefore, there is a need for other computational estimation methods. Gaussian 

process regression (GPR) models have been increasingly used in solving engineering problems (Samui, 2019; 

Suthar, 2019; Akbari, 2019; Liu et al. 2020, Momeni et al. 2020). For instance, Suthar (2019) estimated the 

UCS of stabilized pond ash using soft computing methods such as M5 model tree, random forest, ANN, SVM, 

and GPR. Akbari (2019) used soft computing methods, including MLP, SVM, GRNN, and GPR models, to 

estimate the discharge coefficient of a gated piano-key weir. The GPR models showed superior performance 

compared to other methods (RMSE = 0.011, R2 = 0.992 and MAPE = 1.167%). 

Pal and Deswal (2010) compared the performance indices of SVMs and GPRs for the estimation of driven 

pile UBC in cohesionless soil. The radial basis function and Pearson VII function kernels were used for both the 
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GPR and SVM models. It was found that the GPRs performed better than SVMs for the estimation of the UBC 

of piles. Momeni et al. (2020) used 296 dynamic pile load tests to predict the UBC of piles. They utilized GPR 

and MLP models, which were trained using a genetic algorithm. The results showed that the GPR model 

outperformed the GA-based MLP model with performance indices of VAF = 86.41% and R2 = 0.84. Previous 

studies have also reported the superiority of GP over MLPs for predicting the friction capacity of piles in clay 

soil and estimating stress parameters of unsaturated soils (Samui, 2019) 

1.1 Related Works  

An ANFIS-PSO hybrid model was developed by Dehghanbanadaki (2021) to estimate the UBC of soft soil 

stabilized with floating stone columns (SC) and floating DCM columns. The study used a mixed database of 86 

physical modeling tests, and input parameters such as undrained shear strength, area improvement ratio, and 

length-to-diameter ratio of the columns were considered. The proposed model's accuracy was validated using 

testing data, and a decision-making model for designing geotechnical properties was proposed. The results 

indicated satisfactory performance indices with an R2 value greater than 0.9. In the next study, 

Dehghanbanadaki et al. (2022) conducted a review of 1-g physical modeling tests on soft soil stabilized with 

DCM columns in clay and peat. They proposed four computational estimation functions using CFTOOL in 

Matlab software to estimate the UBC, but these functions were limited in terms of the number of inputs. As a 

result, there is a need for a comprehensive machine learning model that can consider all influencing parameters 

using limited datasets to accurately estimate the UBC. 

1.2 Novelty of this study: 

The present study offers several novel contributions to the field of geotechnical engineering, including: 

• The utilization of GPR models to predict the UBC of soft soil improved with DCM columns is a topic 

that has not been extensively researched. 

• The optimization of the GPR models using Bayesian optimization to accurately predict UBC 

performance indices in both end-bearing and floating DCM column conditions provides a more robust 

and reliable method for early prediction of stabilized ground UBC. 

• The study introduces a decision-making model for designing the geotechnical properties of DCM 

columns as a case study to demonstrate the accuracy of the optimized GPR model in predicting the 

UBC of stabilized ground. 
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Fig. 1 Model of a foundation over soft soil improved with end-bearing DCMs: (a) plan; (b) transverse cut 

(D = Diameter of columns; L = length; S = distance between columns). 

 

2 Databases  

The authors collected and developed datasets for soft soil improved with both end-bearing and floating DCM 

columns, as summarized in Tables 1 and 2. The datasets consist of 28 1g physical modelling tests conducted for 

end-bearing conditions and 17 1g tests conducted for floating conditions. The tables include information on the 

size of the tank, undrained shear strength of the soil and DCM column, and the area improvement ratio for each 

test. For the floating columns, the ratio of DCM column length to soil height is also provided. The tests aimed to 

determine the UBC in undrained conditions after subjecting the stabilized soil to failure under stress or strain 

conditions. The authors tested soft clay and soft peat with a Cus of less than 10 kPa in most cases. 

To examine the effect of DCM columns on the behavior of stabilized soil, two separate computational models 

were developed, one for end-bearing conditions (Model A) and one for floating conditions (Model B). Both 

models were designed to predict the UBC of the stabilized soil, with input parameters including Cus and Cuc for 

both models, and Lr also considered in Model B. To assess the performance of the models, approximately 10% 

of the data was reserved for testing. The UBC of the soil stabilized with DCM columns can be represented as: UBC(𝑀𝑜𝑑𝑒𝑙−𝐴) = 𝑓(𝐶𝑢𝑠. 𝐶𝑢𝑐 . 𝛼)    (3 Inputs and 1 target)      (4) UBC(𝑀𝑜𝑑𝑒𝑙−𝐵) = 𝑓(𝐶𝑢𝑠. 𝐶𝑢𝑐 . 𝛼. 𝐿𝑟)    (4 Inputs and 1 target)              (5) 

where Cus is the undrained shear strength of the basic soil, Cuc is the undrained shear strength of the DCM 

columns, α is the area improvement ratio, Lr is the DCM column length-to-soil height, UBC (model A) is the UBC 

end-bearing condition, and UBC (Model- B) is the UBC in the floating condition. 
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Table 1 Data for soft soil improved with end-bearing DCM columns (model A) 
Test 

number 

Box dimensions 

(mm) & soil type  

 

Lr 

Cus 

(kPa) 

Cuc 

(kPa) 
α (%) 

UBC 

(kPa) 
BCF Reference  

TS-1 300×200×200 - Peat 1 8.8 79.6 13.1 77.7 8.82 (Dehghanbanadaki et al. 2016) 

TS-2 300×200×200 - Peat 1 9.4 89.3 19.6 87.6 9.31 (Dehghanbanadaki et al. 2016) 

TS-3 300×200×200 - Peat 1 9.8 83.4 26.2 91.1 9.3 (Dehghanbanadaki et al. 2016) 

TS-4 400×150×430 - Clay 1 6.9 86.75 17.3 80.33 11.64 (Rashid, 2011) 

TS-5 400×150×430 - Clay 1 6.4 83.71 26.2 90.11 14.08 (Rashid, 2011) 

TS-6 400×150×430 - Clay 1 6.4 87.31 26.2 96.17 15.03 (Rashid, 2011) 

TS-7 400×150×430 - Clay 1 6.3 90.28 34.7 107.24 17.02 (Rashid, 2011) 

TS-8 400×150×430 - Clay 1 6.9 137.5 34.7 128.8 18.66 (Rashid, 2011) 

TS-9 400×150×430 - Clay 1 6.9 125 34.7 120.1 17.4 (Rashid, 2011) 

TS-10 400×150×430 - Clay 1 6.9 112.5 34.7 111.4 16.14 (Rashid, 2011) 

TS-11 400×150×430 - Clay 1 6.9 100 34.7 102.6 14.8 (Rashid, 2011) 

TS-12 400×150×430 - Clay 1 6.9 137.5 26 106.1 15.37 (Rashid, 2011) 

TS-13 400×150×430 - Clay 1 6.9 125 26 99.47 14.41 (Rashid, 2011) 

TS-14 400×150×430 - Clay 1 6.9 112.5 26 92.91 13.46 (Rashid, 2011) 

TS-15 400×150×430 - Clay 1 6.9 100 26 86.34 12.51 (Rashid, 2011) 

TS-16 400×150×430 - Clay 1 6.9 137.5 17.3 83.17 12.05 (Rashid, 2011) 

TS-17 400×150×430 - Clay 1 6.9 125 17.3 78.79 11.41 (Rashid, 2011) 

TS-18 400×150×430 - Clay 1 6.9 112.5 17.3 74.38 10.77 (Rashid, 2011) 

TS-19 400×150×430 - Clay 1 6.9 100 17.3 69.95 10.13 (Rashid, 2011) 

TS-20 500×200×345- Clay 1 14.1 322 18.8 182 12.91 (Bouassida and Porbaha, 2004) 

TS-21 500×200×345- Clay 1 15.7 292 18.8 186.7 11.89 (Bouassida and Porbaha, 2004) 

TS-22 500×200×345- Clay 1 9.4 259 18.8 132.7 14.12 (Bouassida and Porbaha, 2004) 

TS-23 500×200×345- Clay 1 11 266 18.8 152 13.82 (Bouassida and Porbaha, 2004) 

TS-24 500×200×345- Clay 1 12.6 357 18.8 181.3 14.39 (Bouassida and Porbaha, 2004) 

TS-25 500×200×345- Clay 1 9.5 347 18.8 162.2 17.07 (Bouassida and Porbaha, 2004) 

TS-26 900×300×900- Clay 1 3 425 12.6 81 27 (Yin and Fang, 2010) 

TS-27 900×170×200- Clay 1 2.66 29.96 22 25 9.4 (Omine et al., 1999) 

TS-28 900×170×200- Clay 1 2.66 29.96 42 39.2 14.74 (Omine et al., 1999) 

TS-29 900×170×200- Clay 1 2.66 113.29 22 57.9  21.77 (Omine et al., 1999) 

Note: TS = test; BCF = UBC of treated soil to undrained shear strength of soft soil 

 

Table 2 Data for soft soil improved with floating DCM columns (model B) 
Test 

number 

Box dimensions (mm) 

& soil type 
Lr 

Cus 

(kPa) 

Cuc 

(kPa) 
α (%) 

UBC 

(kPa) 
BCF Reference  

TS-30 300×200×200 - Peat 0.25 9.5 85.8 13.1 53.5 5.63 (Dehghanbanadaki et al. 2016) 

TS-31 300×200×200 - Peat 0.25 9.8 82.3 19.6 54.6 5.57 (Dehghanbanadaki et al. 2016) 

TS-32 300×200×200 - Peat 0.25 9.1 80.7 26.2 59.3 6.52 (Dehghanbanadaki et al. 2016) 

TS-33 300×200×200 - Peat 0.5 10.1 88.4 13.1 61.7 6.11 (Dehghanbanadaki et al. 2016) 

TS-34 300×200×200 - Peat 0.5 10.3 88.3 19.6 63.5 6.17 (Dehghanbanadaki et al. 2016) 

TS-35 300×200×200 - Peat 0.5 9.7 82.8 26.2 63.7 6.57 (Dehghanbanadaki et al. 2016) 

TS-36 300×200×200 - Peat 0.25 9.5 78.6 13.1 62.7 6.6 (Dehghanbanadaki et al. 2016) 

TS-37 300×200×200 - Peat 0.75 9.7 79.4 19.6 71.3 7.35 (Dehghanbanadaki et al. 2016) 

TS-38 300×200×200 - Peat 0.75 9.4 78.3 26.2 74.6 7.94 (Dehghanbanadaki et al. 2016) 

TS-39 400×150×430 - Clay 0.5 6.1 118.7 34.7 61.12 10.02 (Rashid, 2011) 

TS-40 400×150×430 - Clay 0.5 6.2 68.98 34.7 61.85 9.98 (Rashid, 2011) 

TS-41 400×150×430 - Clay 0.5 6.4 121.8 26.2 63.56 9.93 (Rashid, 2011) 

TS-42 400×150×430 - Clay 0.5 6.4 87.21 26.2 67.14 10.49 (Rashid, 2011) 

TS-43 400×150×430 - Clay 0.5 6.2 89.62 26.2 59.98 9.67 (Rashid, 2011) 

TS-44 400×150×430 - Clay 0.5 6.4 61.88 26.2 62.09 9.7 (Rashid, 2011) 

TS-45 400×150×430 - Clay 0.5 6.4 87.69 26.2 62.09 9.7 (Rashid, 2011) 

TS-46 400×150×430 - Clay 0.5 6.3 87.66 17.3 62.01 9.84 (Rashid, 2011) 

Note: TS = test; BCF = UBC of treated soil to undrained shear strength of soft soil 
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3 Development of computational models 

William and Rasmussen (2006) defined a Gaussian process model as a set of random variables, where any finite 

number of variables has a multivariate Gaussian distribution. The process f(x) is determined by the mean 

function and covariance (kernel) function k(x, x') evaluated for instances x and x'. While the mean and kernel 

functions are represented by vectors and matrices, respectively, Gaussian processes operate on functions.The 

details of the exact equations, training process and determination of the hyper-parameters of the GPR models 

have been explained by William and Rasmussen (2006).  

It should be mentioned that one of the key advantages of GPR is its ability to handle small datasets more 

effectively than many other machine learning techniques. This is particularly useful in applications where data is 

expensive to collect or where the data is inherently limited in size. One reason GPR is well-suited to small 

datasets is that it allows for flexible modeling of the data without relying on a large number of parameters. In 

contrast, many other machine learning techniques, such as deep neural networks, may require a large number of 

parameters to effectively model complex relationships, which can lead to overfitting and poor generalization 

performance when applied to small datasets. Another reason GPR is well-suited to small datasets is that it can 

effectively incorporate prior knowledge or expert insights into the model. This is particularly useful in domains 

where expert knowledge is available, but the data is limited, as it allows the model to effectively leverage the 

available information to make accurate predictions. Therefore, due to limited experimental tests in the present 

research, it was decided to use this computational model to estimate the UBC. 

In the current study, the developments of the GPR models were performed in MATLAB using the fitrgp 

function as in Eq. (6). The output of the model using new data was calculated using the predict function as in 

Eq. (7): 

gprMdl = fitrgp(X,y)                (6) 

ypred = predict(gprMdl,Xnew)               (7) 

where gprMdl is the GPR mode; X is the predictor, y is the response vector, Xnew is the new input data, and 

ypred is the output of the GPR model.  

For the mean function, a simple constant (c) was chosen. Four kernel functions were used to find the best 

GPR model, which are expressed in Eqs. (8) to (11) (Momeni et al. 2020). The k-fold cross-validation approach 

for which k = 5 was considered in development of all GPR models. 

1. Rational quadratic kernel function: 

k (x, x') =  𝜎𝑓2 exp[1 +  𝑑22𝛼𝑙2]−𝛼           (8) 

2. Squared exponential kernel function: 

k (x, x') = 𝜎𝑓2 exp[ −𝑑22𝑙2 ]              (9) 

3. Matérn 5/2 kernel function: 

k (x, x') = 𝜎𝑓2 (1 + √5𝑑𝑙 + 5𝑑23𝑙2 ) exp[ − √5𝑑𝑙 ]                (10) 

4. Rational exponential kernel function: 

k (x, x') = 𝜎𝑓2 exp[−𝑑𝑙 ]              (11) 
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where 𝜎𝑓2 is the variance function of f, d is the Euclidean distance between instances x and x',  𝛼 is the parameter 

of the rational quadratic covariance, and l is the length scale. 

 

The GPR model was further optimized using Bayesian optimization in the regression learner app of MATLAB. 

This app utilizes an optimization scheme to minimize the model's mean squared error by trying out different 

hyperparameter combinations for a given model type. To optimize the GPR models, all possible kernel functions 

were explored, including nonisotropic and isotropic rational quadratic, squared exponential, Matern 5/2 and 3/2, 

and exponential kernels. The optimization process also searched for real values within the range of [0.001, 1] 

multiplied by the maximum value of the x-range (Matlab, 2018). 

Where: 

XMaxRange = max (max(X) – min(X))             (12) 

and X is the predictor data.  

The GPR models' outcomes underwent comparison with ANFIS, MLP, and RBF models through novel 

experimental tests. ANFIS models were generated using grid partitioning (ANFIS-GP) and trained through a 

hybrid method. Gaussian membership functions were exclusively chosen for the ANFIS input parameters. MLPs 

were trained through the Levenberg-Marquardt back-propagation algorithm, and sensitivity analyses were 

conducted to determine the optimal number of hidden layers and neurons. RBFs were constructed in MATLAB 

using the newrb functions. 

4 Results 

4.1 Performance of GPR models with training data  

Figs. 2(a) to 2(d) show the predicted UBCs versus the measured UBCs for all GPR models in the end-bearing 

DCM column condition (model A). It can be seen that there is a satisfactory agreement between the measured 

and predicted data for all GPR models. Figs. 3(a) to 3(d) show soil stabilized by floating DCM columns and the 

predicted UBCs versus the measured UBCs. In model B, the GPR models did not estimate the UBC as 

accurately as did model A in the end-bearing DCM column condition. The main reasons for this difference are 

the small data set used for physical modeling tests and the large variety of geotechnical properties of the basic 

soil and DCM columns.   

Figs. 4(a) and 4 (b) show the optimization process of the GPR models. These results can be compared with 

the results of the actual UBCs shown in Figs. 5(a) and 5(b). Bayesian optimization improved the accuracy rate 

of the GPR in both models A and B. In the case of model A, the GPR model with basic constant kernel function 

of nonisotropic Matern 3/2 and a sigma value of 0.000010035 performance best. In model B, the optimization 

process revealed that the GPR model with basic linear kernel nonisotropic rational quadratic function and a 

sigma value of 0.00012356 showed the lowest MSE value. 

The training results of the GPR models for estimating UBC are listed in Table 3 (model A) and Table 4 

(model B). As shown, the results in terms of R, RMSE, and MAE are similar. For both the end-bearing and 

floating DCM column conditions, the optimized GPR mode provided the best prediction performance compared 

to the other kernel types when estimating the UBC. This optimized GPR model in end-bearing DCM columns 

condition had an R value of 0.98, MSE of 7.13 kPa, and MAE of 5.15 kPa and in the floating DCM column 

condition had an R value of 0.4, MSE of 4 kPa, and MAE of 3.44 kPa. The Matern 5/2 kernel types performed 

second best. 
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Fig. 2 Measured and predicted UBC in end-bearing DCM column condition using kernel functions: (a) rational 

quadratic; (b) squared exponential; (c) Matern 5/2; (d) exponential 
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Fig. 3 Measured and predicted UBC in floating DCM column condition using kernel functions: (a) rational 

quadratic; (b) squared exponential; (c) Matern 5/2; (d) Exponential 
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Fig.4 Optimization of GPR models: (a) model A; (b) model B 
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Fig. 5 Measured and predicted UBC for models A and B using optimized GPR models 

 

              Table 3 Results of Gaussian regression models (model A) for training data 

Model R 
RMSE  

(kPa) 

MAE 

(kPa) 

Prediction speed 

(obs/sec) 

Training time 

(sec) 

GPR-rational quadratic 0.92 13.46 7.88 180 12.6 

GPR-squared exponential 0.9 14.36 7.79 740 1.44 

GPR-Matern 5/2 0.93 12.36 7.35 560 1.65 

GPR-exponential 0.87 16.84 9.48 470 1.36 

GPR-optimized 0.98 7.13 5.15 600 212 

 

  



 

14 

       Table 4 Results of Gaussian regression models (model B) for training data 

Model R 
RMSE 

 (kPa) 

MAE 

(kPa) 

Prediction speed 

obs/sec 

Training time 

(sec) 

GPR-rational quadratic -0.16 5.69 4.48 77 11.62 

GPR-squared exponential -0.14 5.64 4.45 360 1.21 

GPR-Matern 5/2 -0.15 5.65 4.44 350 1.2 

GPR-exponential -0.08 5.49 4.18 310 1.23 

GPR-optimized 0.4 4.07 3.44 460 220 

 

4.2 Performance of best GPR model and other computational models with test data 

New experimental data (test data) was used to evaluate the performance of the best models. Nine tests were 

carried out in the end-bearing condition and five tests in the floating condition to determine the models' 

workability. Fig. 6(a) illustrates the workability in the end-bearing condition. Model A showed acceptable 

accuracy for estimating the UBC in tests TS-3, TS-10, TS-11, TS-15, TS-16, and TS-22, with an average 

difference of approximately 15% between the experimental and estimated UBC. On the other hand, Model B 

performed well in tests TS-33, TS-34, TS-38, TS-41, and TS-44, with an average difference of less than 10% 

between the experimental and estimated UBC. These results demonstrate the proposed model's reliability and 

effectiveness when dealing with new data. 

The best models' overall data percentage of error is depicted in Fig. 7. However, the models' primary 

drawback was observed in tests TS-26, TS-27, and TS-29 in the end-bearing condition, with an average 

difference of up to 57% between the experimental and estimated UBC, which is unacceptable. One possible 

explanation for this considerable difference could be attributed to the different geotechnical properties of the 

stabilized tests for undrained shear strength of soil and DCM columns compared to the other tests. The ranges of 

these values were dissimilar to those of the other tests, and the model could not predict with acceptable 

accuracy. Fig. 7 provides more details regarding these geotechnical properties. 

Table 5 presents a comparison of the performance indices of GPR models with other computational estimation 

models. The results indicate that while the ANFIS model can still be utilized for UBC prediction in both the 

end-bearing and floating DCM column conditions, the optimized GPR model outperformed the MLP, RBF, and 

ANFIS models to a certain extent using the test data. These findings suggest that implementing the optimized 

GPR model could be effective for UBC prediction in both the floating and end-bearing conditions of improved 

ground. 
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Fig. 6 Workability of best GPR models on test data: (a) end-bearing condition; (b) floating condition 

 

 

Fig. 7 Error for each test (%) 
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Table 5 Comparison of GPR models and other models with testing data 

Model A  

(end-bearing DCM) 
R RMSE (kPa) 

MAE 

(kPa) 

Model B  

(floating DCM) 
R RMSE (kPa) 

MAE 

(kPa) 

GPR-rational quadratic 0.87 17.23 9.12 GPR-rational quadratic -0.19 8.33 6.17 

GPR-squared exponential 0.85 18.11 8.73 GPR-squared exponential -0.17 8.3 6.12 

GPR-Matern 5/2 0.88 16.2 8.23 GPR-Matern 5/2 -0.16 8.2 6.07 

GPR-exponential 0.78 21.7 12.3 GPR-exponential -0.11 8.12 5.7 

GPR-optimized 0.93 9.12 6.7 GPR-optimized 0.22 6.5 4.12 

MLP 0.73 22.3 13.5 MLP -0.22 11.5 9.11 

RBF 0.72 22.6 13.6 RBF -0.2 11 8.93 

ANFIS 0.81 17.12 8.8 ANFIS -0.07 9.3 7.12 

 

6 A practical example 

To evaluate the proposed models, a real case study was conducted on a low-weight wooden building located in 

Pontian, Johor, Malaysia, as shown in Fig. 9. These buildings are prevalent in the region, which is covered with 

various types of peat soil. The high organic content of such soft soil presents unique challenges in both 

geotechnical engineering and building construction. In Pontian, the peat soil depth can reach up to 10 m, with an 

average undrained shear of 10 kPa. Based on the Von Post classification system and in accordance with the 

degree of humification of the test samples, this peat can be categorized as H3. Fig. 8 shows that the peat soil in 

its unstabilized form could not tolerate the weight of a wooden building. Buildings constructed in this area have 

experienced differential settlement; thus, because of the geotechnical condition of the site, area of the building, 

applied vertical stress and undrained shear strength of cemented peat as a DCM column material, a stabilization 

program using model B (floating condition) was calculated based on Table 6. These calculations were based on 

the decision surfaces which were performed using the best GPR model, as shown in Fig .9. Table 6 presents the 

design results, which may be subject to changes depending on the availability of equipment and the discretion of 

the designer. These findings offer a new approach to designing DCM columns in peaty ground using an 

enhanced soft computing method. 
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                       Fig. 8 Typical low-weight wooden building located in Johor, Malaysia 

 

 

 
 

Fig. 9 Decision surface in floating condition 
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Table 6 Parameters for the design of DCM columns  

Parameters and site condition Design 

• Building dimensions = 6 m × 12 m 

• Applied vertical stress to the soil = 20 kPa 

• Safe factor = 2 

• Soil classification = fibrous 

• Soil classification (Von Post) = H3 

• Undrained shear strength of fibrous peat = 10 kPa 

• Average water content of the site = 495% 

• Void ratio = 11 

• Organic content = 91% 

• Fibre content = 80% 

• Bulk density (in situ) = 1 Mg/m3 

• Specific gravity = 1.38 

• Arrangement of DCM columns = rectangular 

• Selected area improvement ratio = 19.6% 

• Diameter of DCM columns (D) = 1.5 m 

• Number of DCM columns = 8 

• Centre-to-centre in x-dir = 1.5D 

• Undrained shear strength of each DCM columns = 100 kPa 

• *Required cement content for DCM columns = 300 kg/m3 

(kg/m3: by mass of wet peat) 

 

     (*Based on Dehghanbanadaki et al. 2019) 

 

 

6 Conclusions  

This study aimed to develop an efficient model to estimate the UBC of soft ground improved with DCM 

columns. The research involved collecting data from 46 physical modeling tests in which soft clay and peat 

were improved with end-bearing (model A) and floating DCM columns (model B). The UBC of each 

model was determined through failure of the stabilized area under stress and strain conditions. Gaussian 

process regression (GPR) models with various kernel functions were created and optimized using Bayesian 

optimization. The optimized GPR model was then compared with three additional computational models 

(MLPs, RBFs, and ANFIS models) using test data. The inputs of the GPR models were the length of the 

DCM columns in the soil (floating condition), undrained shear strengths of the soil and DCM columns, and 

the area improvement ratio, with UBC chosen as the target. The optimized GPR model showed the lowest 

respective RMSE and MAE values of 7.13 kPa and 5.15 kPa in model A and 0.4 kPa and 4 kPa in model 

B, respectively. The results indicate that the proposed optimized GPR models have significant potential for 

estimating UBC in soft soil improved by end-bearing and floating DCM columns. To further discuss the 

limitations of the proposed model, it is important to note that the model was developed using a limited 

dataset of only 46 physical modeling tests. Therefore, the applicability of the model to a wider range of 

soil types and DCM column configurations is unclear. The model may not perform well when applied to 

different soil types or when different column configurations are used. Another limitation of the proposed 

model is the assumption that the soil and DCM columns have homogeneous properties. In practice, the soil 

and DCM columns can have heterogeneities that are difficult to capture in physical modeling tests. 

Therefore, the model's accuracy in predicting the ultimate bearing capacity of the soil and DCM columns 

with heterogeneous properties is unknown. 

The current study provides a promising method for early prediction of stabilized ground UBC using GPR 

models. However, there are several future scopes and recommendations for other researchers to explore 

further. 
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• This study has only used a limited dataset of physical modeling tests. Future researchers could 

expand the dataset and include a wider range of soil and DCM column properties to further 

validate the proposed GPR model. 

• The current study focused only on the estimation of UBC for end-bearing and floating DCM 

columns. Other geotechnical properties, such as settlement and lateral deformation, could also be 

estimated using GPR models. 

• The decision-making model for the design of the geotechnical properties of the DCM columns 

could be expanded to include other factors, such as environmental and economic considerations. 
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