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Abstract

RGBT (visible and thermal imaging) tracking offers a robust solution for all-weather target tracking
by integrating RGB and thermal imaging data. However, traditional fusion methods often struggle
in complex scenes with varying conditions. In this paper, we propose a Visual State-Space Module
that leverages Mamba’s linear complexity long-range modeling capabilities to significantly enhance
the robustness of feature extraction. Our method introduces an innovative Multi-Scale Fusion Mech-
anism that improves the efficiency and accuracy of feature fusion in RGBT tracking. This mechanism
captures multi-scale feature information more effectively by generating comprehensive feature maps
through the summation of various convolution results, thereby enhancing the model’s overall feature
representation and discriminative capabilities. We conducted extensive experiments on five publicly
available datasets to assess the performance of our method. Experimental results show that our method
has certain advantages over existing methods, especially in challenging scenes with background clutter
and illumination variations, resulting in more stable and reliable target tracking. It provides a more
efficient and robust solution for complex tracking tasks under different environmental conditions.

Keywords: RGBT, Dynamic fusion, Multi-Scale Fusion, Mamba.

1 Introduction

RGBT tracking leverages the complementary
strengths of RGB and thermal data to achieve
robust visual tracking[1], providing significant
potential for continuous, all-weather operation.

Fund:Wuhu City Core Technology Research and Develop-
ment Project (2022hg11, 2023yf012).

Fund: Huaneng Group science and technology project
’HNKJ23-HF20 technical research’ funding

This capability is essential in various fields, includ-
ing video surveillance [2], pedestrian tracking [3],
and robotics [4]. Recently, significant research has
focused on fusing features from RGB and thermal
modalities [5], driving advancements in RGBT
tracking.

Dynamic and challenging scenes in RGBT
tracking limit the effectiveness of traditional
fusion structures. Conventional methods often
struggle to efficiently process data from both vis-
ible and infrared modalities and face difficulties

1



with target variations, illumination changes, and
background complexity. Therefore, to overcome
these challenges and enhance tracking system per-
formance, it is crucial to introduce an emerging
strategy: the Visual State Space Module [6] in
the feature extraction section. This module not
only leverages Mamba’s [7] linear complexity in
long-range modeling and globally effective sen-
sory field but also enhances feature extraction
efficiency and tracking robustness. Consequently,
it effectively manages complex and evolving track-
ing environments, enabling efficient and accurate
target tracking.

Fig. 1: Comparison of existing RGBT tracking
models. (a), (b) and (c) denote the representation
model, the residual model and the linear Visual
State space Module model.

This paper proposes an innovative multi-scale
fusion mechanism. First, we design a multi-scale
fusion mechanism, acknowledging that the conven-
tional single-scale convolutional kernel struggles
to capture features at varying scales and com-
plexities, limiting its ability to extract compre-
hensive information. Additionally, feature maps
from different modalities may contain unique
details, necessitating multi-scale feature extrac-
tion to improve feature representation. The mod-
ule incorporates a multi-scale feature extractor,
applying convolution kernels of varying scales to
each input feature map. This approach captures
feature information at multiple scales, generat-
ing multi-scale feature maps by aggregating the
results of different convolutions, thereby improv-
ing the model’s feature representation capability.
To further enhance feature processing accuracy
and effectiveness, we introduce a finer-grained

channel feature processing mechanism that cap-
tures complex inter-channel relationships through
global average pooling, max pooling, and sta-
tistical pooling, integrated with multi-scale con-
volution operations. Simultaneously, the spatial
feature processing mechanism employs average
pooling, max pooling, and multi-directional pool-
ing, strengthening the models ability to perceive
multi-scale and complex features.Next,we intro-
duce a dynamic fusion network [8], which dynam-
ically adjusts the fusion strategy based on the
characteristics of different modalities, effectively
overcoming the limitations of traditional fixed-
feature fusion modules.

• We introduce a Visual State-Space Module for
target tracking that leverages Mamba’s long-
range modeling capabilities with linear com-
plexity, enhancing both the effectiveness and
robustness of feature extraction.

• We propose a novel multi-scale fusion mech-
anism to address the limitations of fusion
structures for robust tracking in dynamically
challenging scenarios in RGBT tracking.

• We introduce a dynamic fusion attention net-
work that provides dynamic fusion structures
to explore effective fusion schemes for different
modalities.

2 RELATED WORK

In this section, we provide a brief overview of
the relevant research, focusing on three areas:
RGBT tracking, fusion mechanisms, and attention
mechanisms.

2.1 RGBT Tracking

Recent advancements in RGBT tracking have led
to the development of various innovative algo-
rithms. Existing studies generally fall into two
categories. The first focuses on designing distinct
modal representations to fully utilize information
from each modality. For instance, Peng et al. [9]
developed a dynamic fusion-based network that
extracts both shared and distinct features while
adaptively calculating their contributions. Simi-
larly, Xiao et al. [10] proposed modeling shared
and modality-specific representations in challeng-
ing scenarios. Feng et al. [11] introduced a sparse
hybrid attentional network, based on a hybrid
attentional module, which enhances long-range
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feature associations and emphasizes original infor-
mation, notably improving tracking performance
in complex conditions like background clutter and
camera motion. Although these studies have made
notable progress, the lack of carefully crafted
fusion strategies hinders the full exploitation of
collaborative information between modalities.

The second category is centered on the devel-
opment of sophisticated fusion modules. For exam-
ple, Zhang et al. [12] proposed a modality-based
cross-weight generator that combines the residu-
als of generated weights to enhance single-peak
feature representation, followed by cascade and
convolution operations to produce fused repre-
sentations. Tang et al. [13] introduced an adap-
tive fusion method based on decision-level fusion,
which extracts and integrates complementary
information across modalities. Additionally, Feng
et al. [14] proposed a non-local attention-based
feature fusion module for more efficient fusion.
This method adaptively combines bimodal fea-
tures by capturing non-local dependencies across
channel and spatial dimensions.

However, existing fusion methods are typi-
cally fixed and inadequate for managing various
complex tracking scenarios simultaneously. In con-
trast, we propose a dynamic multi-strategy fusion
method that meets diverse fusion needs by adjust-
ing the fusion architecture in real time. Further-
more, it proposes a novel multi-scale modal fusion
module that integrates multi-scale feature extrac-
tion with channel and spatial attention mecha-
nisms, aiming to improve the effectiveness and
robustness of feature fusion.

2.2 Fusion Mechanism

In recent years, multi-modal tasks have gar-
nered increasing attention due to their substantial
potential in real-world applications. Joint visual
target tracking in both RGB and TIR modes has
been introduced to provide more robust solutions
in practical scenarios. The central challenge in
multi-modal tracking lies in the effective fusion
of information from these two distinct modali-
ties through a well-designed fusion module. The
following sections will present several representa-
tive RGBT trackers, classified based on the fusion
stage.

Pixel-Level Fusion: Pixel-level fusion is pri-
marily achieved through superimposition, using

averaging techniques to achieve satisfactory over-
lays. However, due to the misalignment between
RGB and TIR images, pixel-level fusion is rarely
employed in recent trackers. Among the few excep-
tions, mfDiMP [15] utilizes a simple cascade
operator for fusion, although its coarse fusion
mechanism assigns equal importance to all posi-
tions. In contrast, the MDLatLRR mechanism,
based on image fusion, separately merges the
high-frequency (detail) and low-frequency (fun-
damental) components. As previously mentioned,
RGB data is more effective in capturing detail,
while TIR data offers a more robust target rep-
resentation via its base component. Consequently,
MDLatLRR [16] yields more interpretable and
superior results relative to traditional pixel-level
fusion methods.

Pixel-level image fusion directly synthesizes
fusion information at the pixel level of each image.
A major limitation is that the large size of the orig-
inal image data leads to time-consuming algorith-
mic implementation, and unprocessed data may
cause the strengths and weaknesses of the original
sensor information to be superimposed, ultimately
compromising fusion outcomes. Additionally, as
pixel-level fusion relies on pixel computations, it is
highly susceptible to noise and other interferences,
resulting in unstable performance.

Feature-Level Fusion: Feature-level fusion
is the predominant fusion approach. Based on the
function of the fusion blocks, fusion techniques
at this level are categorized into two types. The
first category includes methods like FANet[17],
DAFNet[18], SiamFT[19], and DSiamMFT[20],
that output fusion weights. In these approaches,
multi-modal features are initially summed or
concatenated, then processed through multiple
convolutional layers and Softmax operations. As
a result, modality-specific weights are learned
through this processing, indicating the relia-
bility of each modality, but often neglecting
local features. In contrast, the second cate-
gory eschews explicit fusion models and directly
derives fusion features. Notable examples are
DAPNet[21], TFNet[22], MANET[23], CAT[24],
and mfDiMP[15]. These pioneering deep-learning-
based RGBT trackers utilize lightweight sub-
networks to minimize redundancy during the
fusion of multiple modalities. DAPNet[21], for
instance, segregates the modal fusion process
and integrates convolutional neural network-based
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fusion blocks, applying them at various layers.
Building on this idea, TFNet[22] transforms the
network into a trident architecture, retaining both
the fusion function and the independent RGB and
TIR functions, thereby preserving modal features
more effectively. Unlike the aforementioned meth-
ods, MANET[23] and CAT[24] utilize a multi-
branch architecture to acquire fine-grained feature
representations that address both channel-sharing
challenges (e.g., scale variations) and channel-
specific challenges (e.g., illumination variations).

Decision-Level Fusion: In this approach,
KL divergence is employed to fuse the response
maps of two tracking modules: the correlation
filter-based module, which considers both RGB
and TIR modalities, and the histogram-based
module, which uses only TIR data. Addition-
ally, multi-modal information is integrated based
on modal reliability, also computed using KL
divergence. The JMMAC [25] section focuses on
the fusion sub-network, where a fusion matrix is
learned by passing RGB and TIR image patches
through the network. Notably, DFAT[26], the win-
ner of the VOT-RGBT2020 challenge, achieves
cross-modal fusion at the decision level, addressing
biases arising from data discrepancies. Decision-
level fusion involves each sensor independently
performing classification tasks, after which recog-
nition results from multiple sensors are combined
to form a globally optimal decision. This pro-
cess synthesizes extracted features and recogni-
tion results from source images, based on specific
rules, to produce a fused image. The input for
decision-making originates from the target recog-
nition framework, and the fusion result is obtained
through optimal decision processes.

Decision-level fusion offers several advantages,
including real-time performance, adaptability, low
data requirements, robust anti-interference capa-
bilities, efficient integration of multi-sensor envi-
ronmental data, and effective error correction.
Proper fusion can mitigate errors from individ-
ual sensors, ensuring accurate outcomes. However,
multi-sensor data also introduces additional risks,
as errors from individual sensors can propagate to
the decision layer, and the error tolerance of the
decision function directly affects the performance
of fusion-based classification.

Dynamic fusion: Dynamic networks have
become a popular area of research in recent
years. Unlike static inference neural network

structure search, these networks generate real-
time execution paths tailored to the input
samples. Currently, their efficiency has led to
widespread application across various fields. In
the domain of multi-peak analysis, Tsai et
al.[27] employed multi-modal routing for multi-
modal language analysis, dynamically adjusting
the weights between input modes and output
representations for each sample. This approach
effectively identifies the relative importance of fea-
tures across multiple modalities. Zeng et al.[28]
proposed a channel interaction module for multi-
channel sentiment analysis for learning intra and
inter-channel interactions. In the field of RGBT,
Lu et al.[29] proposed a fusion module based
on four different fusion units, the first two of
which aim to enhance the discriminative cues
within each channel, while the last two are ded-
icated to extracting cross-channel collaborative
information. Despite these advances, the potential
of dynamic strategies for RGBT tracking is still
largely unexplored.

2.3 Attention Mechanism

Numerous studies have developed attention mech-
anisms to assess the relative importance of differ-
ent regions or modalities, addressing various chal-
lenges in the process. Attention mechanisms have
been widely adopted across multiple applications,
enhancing networks’ ability to extract robust and
distinctive features. In 2014, Google DeepMind
introduced the attention mechanism for image
classification tasks, presenting a novel recur-
rent neural network model capable of adaptively
selecting and analyzing specific high-resolution
regions in images or videos. Hu et al. (2018)
[30] introduced the Squeeze-and-Excitation (SE)
block, which emphasizes channel interdependen-
cies by learning the relationships between channels
and adaptively recalibrating channel-wise feature
responses to enhance representational capacity.
However, the SE block focuses solely on the chan-
nel contributions of feature maps, neglecting the
spatial positioning of objects within images, a
crucial factor in object detection. Wang et al.
(2020) introduced ECA[31], an enhanced version
of SENet that eliminates the fully connected layer
of the original SENet, replacing it with a 1*1 con-
volutional kernel, thereby reducing model param-
eters and making it more lightweight. Li et al.
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(2023)[32] further advanced these concepts with
additional modifications. They employ spatial and
channel attention mechanisms to reduce redun-
dancy in both spatial and channel dimensions.
This block is referred to as Spatial and Channel
Reconstruction Convolution (SCConv). While the
VGG-M-based RGBT tracker shows high accu-
racy in the unobscured case, it is still not as good
as other state-of-the-art trackers when it encoun-
ters situations such as occlusion and thermal
crossover, partly due to the lack of information
for comparing and analyzing the differentiation
between the two modalities. Consequently, there is
still potential for improving RGBT tracking using
VGG-M. In this study, we propose a multi-scale
fusion method for RGBT tracking based on atten-
tion mechanisms, aimed at minimizing the adverse
effects of modality-specific distinguishing features
and maximizing complementary cross-channel col-
laborative information.

3 MSANet

3.1 Overview

In this section, we present the proposed Mamba-
Based Multi-Scale Attention Network (MSANet),
detailing both the network architecture and the
associated learning algorithm. The detailed struc-
ture is illustrated in Fig.2.

3.2 Vision State-Space Module

To enhance efficiency, transformer-based restora-
tion networks typically partition the input into
small chunks[33] or employ moving windows[34],
which restrict the ability to interact across the
entire image range. Inspired by Mamba’s success
in modeling long-range dependencies with linear
complexity, we introduce a Visual State Space
Module (VSSM) for object tracking. This module
addresses target loss caused by noise interference
during tracking. It converts visual information
into a richer, more abstract representation of
features. This processing captures the complex
structures and relationships within the image,
thereby enhancing the model’s ability to compre-
hend the visual data. It enables effective feature
extraction and learning from visual data, improv-
ing the model?s performance. We integrate the
VSSM into the model for feature extraction. To

ensure compatibility and optimize performance,
we conducted appropriate parameter tuning and
architectural optimization of the VSSM. It is
demonstrated that the introduction of the Visual
State Space Module at each layer significantly
enhances the performance and robustness of the
system across different datasets, verifying its effec-
tiveness and adaptability in feature extraction
and data processing. After introducing the VSSM,
experimental results indicate that the module sig-
nificantly enhances system accuracy. Compared
to the baseline model that does not incorporate
the VSSM, our enhanced model exhibits higher
accuracy and faster convergence across multiple
datasets.

2D Selective Scan Module: The Standard
Mamba employs causal processing of input data,
thereby enabling the capture of information exclu-
sively from the scanned portions [7]. Although
this approach is well-suited to sequential tasks
in natural language processing, it presents signif-
icant challenges when applied to non-causal data,
such as images. To utilize two-dimensional spa-
tial information effectively, we adopt an approach
from the literature and introduce the Two-
Dimensional Selective Scan Module (2D-SSM).
In this approach, two-dimensional image features
are transformed into a one-dimensional sequence
and scanned in four distinct directions: top-left to
bottom-right, bottom-right to top-left, top-right
to bottom-left, and bottom-left to top-right. The
capture of long-range dependencies within each
sequence is achieved through the utilisation of
discrete state-space equations. Subsequently, the
sequences are combined through summation, and
the original two-dimensional structure is recon-
structed by reshaping the data, as illustrated in
Fig. 3.

X1 = LN(2D−SSM(SiLU(DConv(Linear(X)))))
(1)

X2 = SiLU(Linear(X)) (2)

Xout = Linear(X1 ⊙X2) (3)

where DWConv represents depth-wise convo-
lution, and ⊙ denotes the Hadamard product.

3.3 Multi-Scale Fusion Mechanish

We propose a Multi-Scale Fusion Module (MSFM,
details of which are shown in Fig. 4) that inte-
grates multi-scale feature extraction with channel

5



Fig. 2: Overall network architecture of MSANet.In our proposed MSFM module, RGB and TIR are
input to a single modality after learning common features between the two modalities through multi-scale
convolution to enhance the features of RGB and TIR. Finally, the RGB and TIR features are input to
the dynamic fusion module and fed into the prediction head to predict the current state of the target.

Fig. 3: Vision State-Space Module. 2D-SSM rep-
resents 2D Selective Scan Module, DWConv rep-
resents depth-wise convolution.

and spatial attention mechanisms. The aim of
this module is to enhance the effectiveness and
robustness of feature fusion. The module captures
features at multiple scales using multi-scale convo-
lution and dynamically adjusts feature importance
with an attention mechanism, thereby ensuring
that key features receive higher weights during
the fusion process. The limitations of traditional
single-scale convolutional kernels in capturing fea-
tures of varying scales and complexities within
an image may result in the incomplete extrac-
tion of comprehensive information. Moreover, the
information present in different modal feature
maps may vary in detail, necessitating the use

of multi-scale feature extraction to enhance the
representation of the features in question. The
module includes a multi-scale feature extractor
that applies 3x3, 5x5, and 7x7 convolution ker-
nels to each input feature map. The application
of multi-scale convolution enables the capture of
feature information at varying scales, with the
generation of multi-scale feature maps achieved
through the summation of results obtained from
distinct convolutions. This approach serves to
enhance the model’s capacity for feature repre-
sentation. The efficacy of the modules and the
positioning of the fusion presence were validated
in subsequent ablation experiments, which demon-
strated that fusion after conv3 is a more effective
method for learning the common features between
modalities. Moreover, premature fusion may result
in the interference of individual modalities being
introduced into the fused features, which could
lead to the superposition of interference and, con-
sequently, have an adverse effect on the tracking
results.

f1 = ReLU [conv3∗3(f
R)]

f2 = ReLU [conv5∗5(f
R)]

f3 = ReLU [conv7∗7(f
R)]

fR∗ = f1 + f2 + f3

(4)
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The application of simple pooling operations may
prove insufficient for the extraction and distinc-
tion of complex relationships between channels,
particularly when dealing with high-dimensional
data. This approach is likely to result in the omis-
sion of detailed channel information. We present
a more sophisticated channel feature processing
mechanism. Subsequently, global average pool-
ing and maximum pooling are performed on the
multi-scale feature map. Thereafter, additional
statistical information and transformation oper-
ations, such as standard deviation pooling and
minimum pooling, are integrated to combine these
results and further extract features through con-
volution operations. This approach facilitates the
more accurate and effective capture of complex
relationships between channels, thereby enhancing
the precision and efficacy of feature processing.

Fig. 4: Multi-Scale Fusion Module.The combina-
tion of the two modal spatial weights and channel
weights results in the extraction of a robust com-
mon feature that is characteristic of both modes.

f
R/T
channel = Cat[Avgspatial(f

R∗/T∗),Maxspatial(f
R∗/T∗)]

(5)
fchannel = Cat[fR

channel, f
T
channel] (6)

f
1/2
channel = Softmax[Conv1D(fchannel)] (7)

A single-scale convolution kernel may inade-
quately capture the multi-scale information in the
feature map, thereby limiting the model’s per-
formance in processing features of varying scales
and complexities. In the spatial feature processing
mechanism, we perform not only average pooling
and maximum pooling along spatial dimensions,
but also introduce pooling operations in various
directions, such as diagonal pooling, to capture
spatial information across multiple dimensions.
After these pooling results are combined, the

spatial features are further extracted using multi-
scale convolution operations, thereby enhancing
the model’s ability to perceive complex scenes and
diverse features.

f
R/T
spatial = Cat[Avgchannel(f

R∗/T∗),Maxchannel(f
R∗/T∗)]

(8)
fspatial = Cat[fR

spatial, f
T
spatial] (9)

f
1/2
spatial = Softmax[Conv2D(fspatial)] (10)

Finally, the final output feature is obtained by
weighted multiplication with the input map.

fout1/2 =f
1/2
channel + f

1/2
spatial

fout = fout1 ⊗ fR ⊕ fout2 ⊗ fT
(11)

3.4 Dynamic Attention Network

Channel Enhancement Unit. We adopt a
method for input modal feature enhancement from
the channel perspective. To keep the parame-
ters efficient, we introduce an efficient channel
attention architecture to compute the attention
weights. Specifically, for a given modal interme-
diate feature F, we first obtain the aggregated
feature Fg ∈ RC by a spatial pooling method.
Then, we consider only the interactions between
each channel Fiand its K neighbors in order
to compute the weights of the channel Fi. As
illustrated in Fig.5(a).

Fg = Avgpool(Conv1D(Ft))

F ∗

t =Sigmoid(Fg)

FCE = F ∗

t ⊗ Ft

(12)

Spatial Enhancement Unit. In simple
scenes, humans can quickly recognize key objects,
suggesting that unimodal information is usually
sufficient for visual tasks. Furthermore, cross-
modal interactions may lead to feature distor-
tion when there is a severe imbalance in the
quality of information across modalities. There-
fore, we believe that inter-modal interactions are
not always necessary, especially in simple scenes
or when the information quality of a particu-
lar modality is poor. Based on this observation,
we design single-modal spatial enhancement units
that utilize the modality’s own contextual infor-
mation to enhance the feature representation of
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a specific region in order to improve the dis-
criminative power of the task, as illustrated in
Fig.5(b).

F ∗

t =Avgpool(Ft)

FT = Sigmoid[Norm(F ∗

t ⊗ Ft)]

FSE = FT ⊗ Ft

(13)

Cross-Modal Enhancement Fusion Unit.
The fusion of RGB and thermal modal features
has been a key issue in RGBT tracking. Inspired
by the excellent performance of the Transformer
network in various modal fusion tasks, we employ
the efficient mutual attention technique [35] to
construct cross-modal enhanced fusion units that
perform unidirectional feature fusion from RGB to
thermal and from thermal to RGB, respectively.
Unlike the self-attention module, where the query
(Q), key (K), and value (V) are derived from the
same feature, during RGB to thermal unidirec-
tional fusion, the unit uses thermal features as the
query and RGB features as the key and value. For
thermal to RGB unidirectional fusion, the unit
uses RGB features as the query and thermal fea-
tures as the key and value. The input features of
both modalities undergo processing steps, which
include a normalization layer and a 1*1 convo-
lutional layer with c output channels to obtain
a vectorized mapping. Subsequently, cross-modal
attention is applied between the vectorized fea-
tures of both modalities. Based on this attention
mechanism, thermal features can be enhanced by
extracting relevant features from the key and value
modes and fused with query modes through a sim-
ple addition operation. The parameter c is chosen
to be much smaller than H - W, where H and W
denote the height and width of the input feature
map. This design effectively reduces the complex-
ity of the attention operation, as illustrated in
Fig.5(c).

Attr2t = Softmax(
Qtir ⊗Krgb√

dk
)

Fr2t =Ftir +Attr2t ⊗ Vrgb

(14)

Eq.14 is expressed in terms of enhancing the
TIR image using the RGB image, and enhancing
the RGB image using the TIR image is similar
to this equation. Where, Ftirand Fr2t represent
the original thermal modal signature and the

enhanced fused thermal modal signature, respec-
tively.

3.5 Discussion

We propose an innovative multi-scale fusion mech-
anism. The proposed mechanism dynamically
adjusts the fusion strategy based on various modal
features, effectively overcoming the limitations of
fixed feature fusion modules. Subsequently, we
design a multi-scale fusion mechanism. The tradi-
tional single-scale convolutional kernel is limited
in its ability to capture features at various scales
and complexities in images, rendering it inade-
quate for extracting comprehensive information.
Through multi-scale convolution, features at dif-
ferent scales are captured, resulting in multi-scale
feature maps that enhance feature representation.
By leveraging global average pooling, maximum
pooling, and statistical information pooling, com-
plex relationships between channels are efficiently
captured and combined with multi-scale convolu-
tion operations. The accuracy and effectiveness of
feature processing are enhanced through adaptive
multi-scale fusion mechanisms, thereby surpassing
the constraints of fixed feature fusion paradigms.
The PR/SR scores on the RGBT234 and LasHeR
datasets reach 85.9%/61.6% and 57.2%/43.9%,
respectively.

4 EXPERIMENTS

4.1 Implementation Details

We use VGG-M as the base tracker, utilizing
three convolutional blocks from VGG-M as the
feature extractor. The feature extractor’s param-
eters were initialized using the pre-trained model
provided by VGG-M, while the remaining net-
work parameters were randomly initialized. We
set the initial learning rate to 0.0001, decay rate
to 0.0005, and momentum to 0.9. The entire
model is trained using stochastic gradient descent
(SGD) to minimize classification and regression
loss functions. We trained the complete tracking
network end-to-end using the LasHeR training set,
evaluating it on the GTOT [36], RGBT210[37],
RGBT234[38], and LasHeR test sets[39]. For eval-
uation on VTUAV[40], the VTUAV training set
was used as the training data. MSANet was imple-
mented on the PyTorch platform, running on a
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(a) (b) (c)

Fig. 5: (a)Channel Enhancement Unit, (b)Spatial Enhancement Unit, (c)Cross-Modal Enhancement
Unit. © indicates the concatenation operation across the feature channel dimension.

single Nvidia RTX4070Ti GPU with 12GB of
RAM.

4.2 Quantitative Comparison

We evaluate our algorithm on five widely used
RGBT tracking benchmarks, comparing its per-
formance with current state-of-the-art trackers.
Table 1 presents the effectiveness of our pro-
posed method and provides a summary of the
comparative results.

Evaluation on GTOT dataset. Table
1 illustrates the GTOT dataset comparison
results. In the GTOT dataset, our method sur-
passes the state-of-the-art trackers by 0.3%/0.2%,
2.6%/0.2%, and 3.7%/1.6% compared to CAT++,
CMD, and DFNet, respectively, in terms of
PR/SR. Additionally, we compare our method
with CMPP, the current top performer on the
GTOT dataset. Our PR is 0.8% lower than that
of CMPP; this lower PR can be attributed to
the prevalence of small objects in the GTOT
dataset. The feature pyramid strategy and the
pre-frame information base of CMPP enhance fea-
ture representation and current frame depiction,
respectively.

Evaluation on RGBT210 dataset. As
shown in Fig.7. The PR/SR of MSANet on the
RGBT210 dataset is 85.4%/60.9%, respectively.
Compared with mfDiMP, the winner of VOT2019-
RGBT, the PR/SR of MSANet is significantly
improved by 6.8%/5.4%. In addition, compared
with DMCNet, our method exhibits a 5.7%/5.4%
performance advantage in terms of PR/SR.

Evaluation on RGBT234 dataset. As illus-
trated in Fig. 8, in the target tracking task
on the RGBT234 dataset, MSANet demonstrates
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Fig. 6: Precision Rate (PR) and Success Rate
(SR) for the GTOT dataset.
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Fig. 7: Precision Rate (PR) and Success Rate
(SR) for the RGBT210 dataset.

exceptional performance, achieving an accuracy
rate of 85.9% and a success rate of 61.6%, sur-
passing other methods. In contrast, CAT++ fol-
lows closely with an accuracy rate of 84.0% and
a success rate of 59.2%. Other methods, such
as DFNet and CMD, exhibit accuracy rates of
77.2% and 82.4% and success rates of 51.3%
and 58.4%, respectively, further highlighting the
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Table 1: THE PR(↑), NPR(↑), AND SR(↑) SCORES (%) OF VARIOUS TRACKERS ON FIVE
DATASETS . THE BEST AND SECOND RESULTS ARE IN red AND blue COLORS ,RESPECTIVELY

GTOT RGBT210 RGBT234 LasHeR VTUAV

MethodS Backbone PR SR PR SR PR SR PR NPR SR PR SR

MANet[23] VGG-M 89.4 72.4 - - 77.7 53.9 45.5 38.3 32.6 - -

DAPNet[21] VGG-M 88.2 70.7 - - 76.6 53.7 43.1 38.3 31.4 - -

mfDiMP[15] ResNet-50 83.6 69.7 78.6 55.5 - - 44.7 39.5 34.3 67.3 55.4

CMPP[41] VGG-M 92.6 73.8 - - 82.3 57.5 - - - - -

MaCNet[42] VGG-M 88.0 71.4 - - 79 55.4 48.2 42 35 - -

CAT[24] VGG-M 88.9 71.7 79.2 53.3 80.4 56.1 45 39.5 31.4 - -

FANet[17] VGG-M 89.1 72.8 - - 78.7 55.3 44.1 38.4 30.9 - -

ADRNet[43] VGG-M 90.4 73.9 - - 80.7 57.0 - - - 62.2 46.6

JMMAC[25] VGG-M 90.2 73.2 - - 79 57.3 - - - - -

MANet++[44] VGG-M 88.2 70.7 - - 80 55.4 46.7 40.4 31.4 - -

APFNet[45] VGG-M 90.5 73.7 - - 82.7 57.9 50 43.9 36.2 - -

DMCNet[46] VGG-M 90.9 73.7 79.7 55.5 83.9 59.3 49 43.1 35.5 - -

FTNet[47] VGG-M 91.2 73.6 - - 83.7 60.1 52.6 - 38.1 - -

MIRNet[48] VGG-M 90.9 74.4 - - 81.6 58.9 - - - - -

HMFT [49] ResNet-50 91.2 74.9 78.6 53.7 78.8 56.8 - - - 75.8 62.7

MFG [50] ResNet-18 88.9 70.7 74.9 46.7 75.8 51.5 - - - - -

DFNet [51] VGG-M 88.1 71.9 - - 77.2 51.3 - - - - -

DRGCNet[52] VGG-M 90.5 73.5 - - 82.5 58.1 48.3 42.3 33.8 - -

CMD[53] ResNet-50 89.2 73.4 - - 82.4 58.4 59 54.6 46.4 - -

CAT++ [54] VGG-M 91.5 73.3 - - 84.0 59.2 50.9 44.4 35.6 - -

Our VGG-M 91.8 73.5 85.4 60.9 85.9 61.6 57.2 52.6 43.9 82.5 67.9

advantages of MSANet. The reason MSANet
stands out among various methods is primar-
ily attributed to its advanced multi-scale modal
feature fusion technique, which obtains the com-
mon features of the two modalities at the end of
the backbone; the acquired raw modal informa-
tion is subsequently fed into the dynamic modal
fusion technique, where the weights of the com-
mon features of the two modalities, acquired by
MSFM, are associated with the modal differ-
ences while retaining the individual features of
each modality. This capability enables MSANet
to maintain exceptionally high positioning accu-
racy and tracking stability in complex scenes.
Nevertheless, MSANet has potential for further
improvement. Future improvements should focus
on optimizing the underlying network structure
and strengthening multi-scale feature fusion to
enhance the model’s accuracy and robustness,
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Fig. 8: Precision Rate (PR) and Success Rate
(SR) for the RGBT234 dataset.

thereby increasing MSANet’s competitiveness in
practical applications.

As shown in Fig.9 and Fig.10. MSANet excels
in most performance metrics, especially in tar-
get coverage, centroid metrics and feature fusion,
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(a) Attribute-based PR

Fig. 9: Precision Rate (PR) for Different Chal-
lenge Attributes on the RGBT234 Dataset.

(a) Attribute-based SR

Fig. 10: Success Rate (SR) for Different Challenge
Attributes on the RGBT234 Dataset.

demonstrating excellent accuracy and robustness
for target tracking needs in a variety of complex
scenarios.

Evaluation on LasHeR dataset. As illus-
trated in Fig. 11, our algorithm achieves a preci-
sion rate (PR) of 57.2% and a success rate (SR)
of 43.9% on the LasHeR dataset, which is out-
standing compared to other algorithms. As shown
in Table 2, the performance of each algorithm
under various challenge attributes (e.g., lighting
changes, scale variations, target occlusions, etc.) is
presented. The MSANet algorithm demonstrates
superior performance on AIV, achieving scores
of 34.9%/35.5%/34.9%, which is optimal among
all algorithms. This suggests that our algorithm
exhibits the highest consistency in tracking when
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Fig. 11: Precision rate (PR), success rate (SR) of
LasHeR dataset.

addressing changes in target shape. The perfor-
mance in deformation processing is also optimal,
achieving scores of 52.7%/50.8%/44.3%, indicat-
ing that our algorithm maintains high tracking
accuracy despite significant changes in target
shape. In terms of scale variations, our algorithm
again leads with scores of 47.5%/43.1%/37.5%,
demonstrating greater consistency in handling
changes in target size. The overall performance
of our algorithm on the LasHeR dataset is
exceptional, particularly under the challenging
attributes of AIV (Aspect Ratio Variation), DEF
(Target Deformation), HO (Occlusion), SV (Scale
Variation), and PO (Pose Variation), all of which
exhibit significant advantages, with scores that are
the highest compared to other algorithms.

Evaluation on VTUAV dataset. On the
VTUAV dataset, MSANet outperforms other
algorithms with an accuracy rate of 82.5% and
a success rate of 69.7%, demonstrating excellent
tracking performance, especially in scenarios with
small errors and high overlap requirements The
results are shown in Fig.12, which proves the
excellent performance of MSANet and thus con-
firms its effectiveness. These scores show that
MSANet still exhibits high accuracy and robust-
ness in RGBT tracking from a UAV perspective.

4.3 Ablation Study

In this section, we perform two different ablation
studies on the RGBT234 dataset and the LasHeR
test set to demonstrate the effectiveness of our
proposed method.
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MSANet CAT++[54] DAFNet[18] CAT[24] FANet[17] mfDiMP[15] MANet++[44] MACNet[42]

AIV 34.9/35.5/34.9 26.7/27.4/25.1 24.4/23.6/19.6 22.6/22.5/19.0 18.8/18.4/18.4 16.6/16.3/16.4 18.8/19.2/15.8 17.3/16.9/15.6

ARC 46.8/43.9/37.4 37.2/33.5/27.8 32.9/29.6/24.7 32.5/29.2/24.4 31.7/27.9/23.9 37.8/33.7/30.9 35.5/32.3/25.7 36.0/32.9/28.5

BC 54.4/50.4/42.5 47.9/42.8/34.4 39.5/37.0/29.7 39.8/36.3/29.8 40.2/36.7/29.5 34.9/30.3/27.0 43.6/39.5/31.4 42.2/37.7/31.9

CM 55.5/50.4/42.6 49.2/43.5/35.1 42.1/37.5/29.8 41.9/37.3/29.4 42.0/37.1/29.3 40.8/34.8/30.6 42.2/37.5/29.4 46.7/41.0/33.9

DEF 52.7/50.8/44.3 43.6/41.3/35.2 40.2/40.3/31.7 38.3/37.1/30.6 33.1/32.9/28.2 40.3/37.8/34.2 39.4/39.3/30.8 41.4/40.8/34.0

FL 45.1/40.1/32.8 38.0/31.5/25.5 33.7/27.7/22.0 38.7/32.8/22.6 35.3/29.8/20.7 32.3/26.7/25.7 37.8/31.8/21.6 34.6/31.1/22.2

FM 52.7/49.1/40.9 45.8/41.0/33.1 39.4/35.3/28.6 39.9/36.3/29.1 38.9/34.6/28.5 41.3/36.5/32.4 41.1/36.4/28.9 43.7/39.2/33.0

HI 57.6/51.2/43.2 50.8/42.1/35.6 47.9/40.2/33.4 52.5/43.1/35.7 52.7/44.0/35.5 46.7/41.4/35.1 53.3/43.4/34.7 52.0/42.3/37.4

HO 32.6/35.1/33.4 25.8/28.5/27.9 14.1/14.9/17.8 22.6/24.9/23.4 16.7/19.8/22.7 19.8/21.1/23.8 24.5/27.7/24.4 28.1/29.6/29.1

LI 45.4/42.6/36.7 38.6/33.7/28.3 35.6/31.1/25.0 31.5/28.2/22.6 33.0/27.9/23.5 29.6/27.2/23.8 35.8/31.5/24.0 36.0/31.0/26.7

LR 51.7/40.9/35.5 49.7/35.8/30.7 43.5/30.9/25.7 42.4/30.8/25.2 43.2/31.8/26.0 40.2/28.7/25.6 47.4/33.7/26.8 43.9/32.5/28.0

MB 49.1/43.9/37.2 44.3/37.0/30.3 38.5/32.8/26.1 39.8/33.3/26.6 40.0/33.0/26.0 37.6/32.4/28.7 39.7/33.1/26.6 40.4/34.5/29.8

NO 77.2/74.7/59.0 71.2/66.8/46.0 70.6/65.2/46.2 65.4/59.7/43.0 59.7/55.8/40.5 76.5/73.2/57.5 63.6/57.7/40.7 74.0/68.4/51.7

OV 41.7/38.2/31.9 27.9/33.0/25.1 25.1/29.3/23.2 26.0/30.2/23.0 24.7/30.4/23.6 40.6/39.2/34.9 28.0/31.0/22.0 34.8/41.8/36.7

PO 54.5/49.6/42.0 48.2/41.6/34.3 41.8/35.9/29.3 41.8/36.4/29.5 41.5/35.5/29.2 39.7/34.3/30.8 44.0/37.9/30.1 44.6/38.6/32.8

SA 47.5/43.1/37.5 44.9/38.0/32.0 40.2/33.8/28.4 37.4/32.0/26.5 39.1/32.6/28.2 37.2/30.6/29.5 41.1/34.2/27.9 40.8/34.2/30.4

SV 56.7/52.2/43.5 49.9/44.0/34.8 44.1/38.6/30.4 44.4/39.2/30.7 44.1/38.7/30.7 45.2/39.9/34.9 46.4/40.6/31.1 48.0/42.6/34.8

TC 48.8/44.1/38.4 44.4/37.9/31.5 38.4/31.5/26.3 37.0/31.4/26.2 37.4/30.7/26.4 38.0/32.6/28.8 40.1/32.6/26.8 39.8/32.7/28.7

TO 47.8/44.5/37.7 41.1/36.3/30.2 34.4/31.4/24.4 36.1/33.0/26.0 34.1/30.8/25.0 32.2/26.4/25.0 35.4/32.3/25.4 38.6/34.1/29.2

Table 2: Attribute-based comparison with seven competitors on the lasher dataset. the best and second
results are in red and blue colors ,respectively .
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Fig. 12: Precision Rate (PR) and Success Rate
(SR) for the VTUAV dataset.

Analysis of Vision State-Space Module.
We evaluated the VSSMs incorporated into var-
ious layers and summarized the results in Table
3. The best performance is observed in both
datasets when VSSMs are incorporated into each
layer, indicating that the configuration of VSSMs
is reasonable. Furthermore, these results demon-
strate that the system’s performance is signifi-
cantly improved regardless of the layer to which
the VSSM is incorporated. This observation fur-
ther confirms the reasonableness of the VSSM
configuration. The overall performance of the sys-
tem improves with the introduction of VSSMs
at each layer. Specifically, the incorporation of

Table 3: Ablation Studies of Feature Extraction
in VSSM.

Layers(VSSM) RGBT234 LasHeR
Conv1 Conv2 Conv3 PR SR PR SR

✓ × × 83.1 59.4 55.1 41.6
✓ ✓ × 83.7 59.8 55.8 42.1
✓ ✓ ✓ 85.9 61.6 57.2 43.9

VSSMs at each layer refines data feature extrac-
tion and enhances the model’s learning capabil-
ity, resulting in excellent outcomes across various
datasets. Additionally, the reasonable configura-
tion of VSSMs is evident in their adaptability to
the requirements of various datasets, offering a
flexible and efficient solution. Regardless of the
datasets’ nature, the layered incorporation strat-
egy of VSSMs ensures optimal performance in
feature extraction and data processing, demon-
strating a high degree of robustness and adapt-
ability. The incorporation and reasonable config-
uration of VSSMs in each layer not only enhance
system performance but also validate the effective-
ness and feasibility of this technique in practical
applications. This finding establishes a solid the-
oretical foundation and practical basis for further
optimization and promotion of VSSMs, demon-
strating their significant potential in enhancing
system performance and broad applicability.

Analysis of Multi-Scale Fusion Mechan-
ish. As illustrated in Table 4, the introduction
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Table 4: Ablation Studies of Fusion Units in
MSFM

Layers(MSFM) RGBT234 LasHeR
Conv1 Conv2 Conv3 PR SR PR SR

✓ ✓ ✓ 80.9 56.9 53.5 40.1
× ✓ ✓ 83.6 57.2 55.8 42.4
× × ✓ 85.9 61.6 57.2 43.9

of MSFM in Conv2 and Conv3 yields 83.6% PR
and 57.2% SR on the RGBT234 dataset, and
55.8% PR and 42.4% SR on the LasHeR dataset.
Although some enhancements are observed, the
results remain unsatisfactory. The introduction of
MSFM in Conv1, Conv2, and Conv3 results in
a PR drop to 80.9% and an SR drop to 56.9%
on the RGBT234 dataset, and a PR drop to
53.5% and an SR drop to 40.1% on the LasHeR
dataset. This suggests that the introduction of
MSFM solely at Conv1, Conv2, and Conv3 is less
effective than other combinations; therefore, we
hypothesize that premature feature fusion may be
susceptible to modal contamination. The intro-
duction of MSFM solely at Conv3 yields a PR
of 85.9% and an SR of 61.6% on the RGBT234
dataset, as well as a PR of 57.2% and an SR of
43.9% on the LasHeR dataset, representing the
highest values. This indicates that the introduc-
tion of MSFM at the Conv3 layer has the most
substantial impact on the overall performance of
the system. Optimal Setup: The introduction of
MSFM at the Conv3 layer alone represents the
most effective approach for achieving optimal PR
and SR results across both datasets. This config-
uration not only reduces computational resource
consumption but also achieves superior perfor-
mance compared to introducing MSFM across all
layers. Layer Optimization: Although the intro-
duction of MSFM in multiple layers can enhance
performance, the resulting improvement is not as
effective as anticipated. Prioritizing optimization
at key layers (e.g., Conv3) may represent a more
efficient and resource-friendly solution.

Visualization of tracking results. In order
to visualise the effectiveness of the proposed
MSANet, we compare some advanced trackers
in Fig.13 A number of state-of-the-art trackers
are compared. In particular, the visual tracking
results of the visual tracking results for sequences,
which are all from the RGBT234 dataset. For
clarity, we provide three frame pairs for each
sequence.

5 CONCLUSION

In this study, we propose a novel Mamba-
based multi-scale attention method (MSANet) for
RGBT tracking, marking the first application of
Mamba in this field. We introduce an emerg-
ing strategy, the Vision State-Space Module, in
the feature extraction component, which not only
leverages the linear complexity of Mamba in long-
range modeling and the global effective receptive
field but also enhances the efficacy of feature
extraction and the robustness of tracking. We
demonstrate the superior performance of MSANet
compared to existing RGBT trackers across five
prominent RGBT tracking datasets, underscoring
its robustness and efficacy. We acknowledge that
while the incorporation of the Vision State-Space
Module in the backbone ensures the robustness
of feature extraction, it also imposes a significant
computational burden. In future work, we aim
to enhance the efficiency of trunk feature extrac-
tion and investigate more effective RGBT tracking
methodologies.
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