Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Practical heterogeneous photoredox/nickel dual catalysis for C-N and C-O coupling reactions

Yi-Yin Liu,^a Dong Liang,^a Liang-Qiu Lu,^{*a,b} and Wen-Jing Xiao^{a,c}

^aCCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
 ^bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
 ^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Email: luliangqiu@mail.ccnu.edu.cn

Table of Contents

1. General Information	····· S2
2. Detailed Condition Optimization	S2
3. General Procedure and Spectral Data of Products	······S3
4. Reusability of CdS	S13
5. Unsuitable examples ······	\$13
6. References	\$13
7. Copies of ¹ H NMR and ¹³ C NMR Spectra	\$15

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to standard methods.¹ Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400 or 600 MHz spectrophotometers. Chemical shifts (δ (ppm)) are reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on 100 MHz with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm,).

2. Detailed Condition Optimization

	Br CdS (5 mol%) OMe NC + MeOH NiCl ₂ *6H ₂ O (6 mol%) OMe 1b 4a (excess) Et ₃ N (2.0 equiv.), DMA NC 5ba	
entry	variation from the standard conditions	yield $(\%)^b$
1°	none	96
2	no CdS	0
3	no NiCl ₂ .6H ₂ O	0
4	no dtbbpy	trace
5	no Et ₃ N	trace
6 ^c	in air	0
7	in the dark	0
8	MeCN instead of DMA	65
9	NiCl ₂ .glyme instead of NiCl ₂ .6H ₂ O	96
10	K ₂ CO ₃ instead of Et ₃ N	0
11	5.0 equiv. of MeOH	71

Table S1 Condition optimization for the C-O coupling of aryl bromides with alcohols^a

^{*a*}Conditions: **1b** (1.0 mmol), CdS (0.05 mmol, 5 mol%), NiCl₂•6H₂O (0.06 mmol, 6 mol%), dtbbpy (0.02 mmol, 2 mol%), MeOH (2.0 mL) and DMA (1.0 mL) under irradiation with 6 W blue LEDs. ^{*b*}Isolated yield of **5ba**.

NC	+ H ₂ O	CdS (20 mol%) NiCl ₂ .6H ₂ O (5 mol%)	NC
		DMA, 6 W blue LEDs 55 °C, 6 h	
1b , 1.0 mmol	10.0 eq.		6b
entry	variation of th	e standard conditions	yield (%) ^b
1	none		85
2	no CdS		0
3	no NiCl ₂ ·6H ₂ O		0
4	in air	0	
5	in the dark		0
6	MeCN instead of DMA		73
7	NiCl ₂ .glyme instead	86	
8	5 mol% dtbbpy as li	86	
9	at room temperature	0	

Table S2. Condition optimization for hydroxylation of aryl bromide^a

^{*a*}Reaction conditions: **1b** (1.0 mmol), water (10.0 mmol, 10.0 equiv), CdS (0.20 mmol, 20 mol%), NiCl₂·6H₂O (0.05 mmol, 5 mol%) and DMA (2.0 mL) under irradiation by 6 W blue LEDs. ^{*b*}Isolated yield.

3. General Procedure and Spectral Data of Products

3.1 General procedure 1: C-N coupling reaction

Aryl bromide (1.0 equiv.), amine (2.0 equiv.), CdS (20 mol%), NiCl₂· $6H_2O$ (5 mo%) and DMA (3 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar. The mixture was treated with ultrasonic for 10s. Then it was subjected to the "freeze-pump-thaw" procedure for 2 times. After that, the reaction mixture was sitrred under the irradiation of a 6 W blue LEDs (distance ca. 5 cm), either under fan cooling (to maintain ambient temperature) or without fan cooling (to heat to approximately 55 °C). Upon the completion of reaction as monitored by TLC, the reaction mixture was diluted with water (10 mL) and extracted with Et_2O (3 × 15 mL). The organic extracts were washed with brine (10 mL) and the combined aqueous layers were extracted once more with Et_2O (10 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

3.2 General procedure 2: C-O coupling reaction

Aryl bromide (1.0 equiv.), CdS (5 mol%), NiCl₂· $6H_2O$ (6 mo%), dtbbpy (5 mol%), Et₃N (2.0 equiv.), MeOH (2.0 mL) and DMA (1.0 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar. The mixture was treated with ultrasonic for 10s. Then it was subjected to the "freeze-pump-thaw" procedure for 2 times. After that, the reaction mixture was sitrred at room temperature under the irradiation of a 6 W blue LEDs (distance ca. 5 cm). Upon the completion of reaction as monitored by TLC, the reaction mixture was diluted with water (10 mL) and extracted with Et₂O (3 × 15 mL). The organic extracts were washed with brine (10 mL) and the combined aqueous layers were extracted once more with Et₂O (10 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

3.3 General procedure 3: hydroxylation reaction

Aryl bromide (1.0 equiv.), H₂O (10.0 equiv.), CdS (20 mol%), NiCl₂·6H₂O (5 mo%) and DMA (3 mL)were added to a 10 mL Schlenk flask equipped with a magnetic stir bar. The mixture was treated with ultrasonic for 10s. Then it was subjected to the "freeze-pump-thaw" procedure for 2 times. After that, the reaction mixture was sitrred under the irradiation of a 6 W blue LEDs (distance ca. 5 cm). The reaction vial was heated to roughly 55 °C by the blue LEDs without the use of a fan. Upon the completion of reaction as monitored by TLC, the reaction mixture was diluted with water (10 mL) and extracted with Et₂O (3 × 15 mL). The organic extracts were washed with brine (10 mL) and the combined aqueous layers were extracted once more with Et₂O (10 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

3.4 Spectral data of products

$1-(4-(Trifluoromethyl)phenyl)pyrrolidine~(3aa)^2$

Prepared according to general procedure 1 (rt): white solid, 178.2 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ = 7.43 (d, *J* = 8.1 Hz, 2H), 6.54 (d, *J* = 8.1 Hz, 2H), 3.32 (t, *J* = 5.2 Hz, 4H), 2.03 (t, *J* = 5.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 149.7, 126.3 (q, *J* = 3.7 Hz), 125.3 (q, *J* = 268.2 Hz), 116.5 (q, *J* = 32.5 Hz), 110.8, 47.5, 25.4; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -60.5 (s, 3F).

4-(Pyrrolidin-1-yl)benzonitrile (3ba)³

Prepared according to general procedure 1 (rt): white solid, 155 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.44 (d, J = 8.3 Hz, 2H), 6.50 (d, J = 8.2 Hz, 2H), 3.32 (t, J = 4.9 Hz, 4H), 2.05 (t, J = 4.9 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 3.2, 120.9, 111.3, 96.2, 47.3, 25.3.

(ppm) 149.8, 133.2, 120.9, 111.3, 96.2, 47.3, 25.3.

1-(4-(Pyrrolidin-1-yl)phenyl)ethanone (3ca)⁴

Prepared according to general procedure 1 (rt): white solid, 151 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 8.3 Hz, 2H), 6.51 (d, J = 8.3Hz, 2H), 3.36 (t, J = 5.7 Hz, 4H), 2.50 (s, 3H), 2.03 (t, J = 5.7 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.3, 150.9, 130.6, 124.8, 110.6, 47.5, 25.9, 25.4.

1-(4-Nitrophenyl)pyrrolidine (3da)⁵

Prepared according to general procedure 1 (rt): yellow solid, 119 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 9.3 Hz, 2H), 6.45 (d, J = 9.3 Hz, 2H), 3.40 (t, J = 6.5 Hz, 4H), 2.08 (t, J = 6.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.8, 136.3, 126.3, 110.3, 47.8, 25.4.

Ethyl 4-(pyrrolidin-1-yl)benzoate (3ea)⁶

Prepared according to general procedure 1 (rt): white solid, 184 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 8.1 Hz, 2H), 6.50 (d, J = 8.2 Hz, 2H), 4.31 (q, J = 7.0 Hz, 2H), 3.35 (d, J = 5.1 Hz, 4H), 2.03 (t, J = 5.1 Hz, 4H),

1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.1, 150.7, 131.2, 116.5, 110.5, 60.0, 47.4, 25.4, 14.4.

1-(4-(Methylsulfonyl)phenyl)pyrrolidine (3fa)⁷

Prepared according to general procedure 1 (rt): white solid, 216 mg, 96% yield. mp: 161-163 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.73 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 8.3 Hz, 2H), 3.36 (t, J = 4.7 Hz, 4H), 3.00 (s, 3H), 2.06 (t, J = 5.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.8, 129.0, 124.8, 110.9, 47.5, 45.1, 25.3.

HRMS (ESI) for: $C_{11}H_{115}NO_2S [M + H]^+$: calcd: 226.0896, found: 226.0895.

5-(Pyrrolidin-1-yl)pyrimidine (3ga)⁸

Prepared according to general procedure 1 (rt): colorless oil, 146 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.55 (s, 1H), 8.05 (s, 2H), 3.32 (t, J = 4.7 Hz, 4H), 2.06 (t, J= 4.7 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 146.6, 141.1, 139.3, 46.8, 25.2.

3-(Pyrrolidin-1-yl)pyridine (3ha)⁴

Prepared according to general procedure 1 (rt): colorless oil, 141 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (s, 1H), 7.92 (d, J = 4.5 Hz, 1H), 7.10 (dd, J = 8.3, 4.6 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 3.29 (t, J = 6.0 Hz, 4H), 2.02 (t, J = 6.2 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 143.6, 136.8, 134.3, 123.4, 117.6, 47.2, 25.3.

4-(Piperidin-1-yl)benzonitrile (3bb)⁹

Prepared according to general procedure 1 (rt): white solid, 174 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.46 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 3.33 (s, 4H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.4, 133.3, 120.3,

113.9, 98.5, 48.2, 25.1, 24.1.

4-(3,4-Dihydroisoquinolin-2(1H)-yl)benzonitrile (3bc)¹⁰

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 215 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.52 (d, J = 8.5Hz, 2H), 7.24 - 7.18 (m, 4H), 6.86 (d, J = 8.6 Hz, 2H), 4.50 (s, 2H), 3.63 (t, J =5.8 Hz, 2H), 2.99 (t, J = 5.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm)

152.1, 134.9, 133.5, 133.4, 128.1, 126.9, 126.5, 126.4, 120.4, 112.6, 98.6, 48.7, 44.5, 28.9.

4-(Isopentylamino)benzonitrile (3bd)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 177 mg, 94% yield. mp: 51-52 °C. ¹H NMR (400 MHz, CDCl₃) δ

(ppm) 7.39 (d, J = 8.7 Hz, 2H), 6.54 (d, J = 8.7 Hz, 2H), 4.33 (s, 1H), 3.16 – 3.11 (m, 2H), 1.71 (dt, J = 13.3, 6.7 Hz, 1H), 1.52 (dd, J = 14.6, 7.1 Hz, 2H), 0.95 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.5, 133.5, 120.6, 111.9, 97.7, 41.2, 37.8, 25.7, 22.4. IR (in KBr): 2962, 2922, 2862, 2206, 1606, 1529, 1473, 1338, 1171, 823 cm⁻¹. HRMS (ESI) for: C₁₂H₁₇N₂ [M + H]⁺: calcd: 189.1386, found: 189.1384.

4-((3,4-Dimethoxyphenethyl)amino)benzonitrile (3be)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 251 mg, 89% yield. mp: 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.41 (d, J = 8.7 Hz, 2H), 6.79 (dd, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 32.8, 8.1 Hz, 2H), 6.71 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 4.25 (d, J = 8.8 Hz, 4.25 (d, J

4.3 Hz, 1H), 3.86 (d, J = 4.4 Hz, 6H), 3.42 (q, J = 6.7 Hz, 2H), 2.87 (t, J = 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.0, 149.1, 147.8, 133.7, 130.8, 120.6, 120.4, 112.2, 111.8, 111.4, 98.7, 55.9, 55.8, 44.2, 34.6. IR (in KBr): 2938, 2837, 2362, 2208, 1605, 1519, 1460, 1337, 1220, 1119, 616 cm⁻¹. HRMS (ESI) for: C₁₇H₁₉N₂O₂ [M + H]⁺: calcd: 283.1441, found: 283.1435.

4-((Furan-2-ylmethyl)amino)benzonitrile (3bf)¹¹

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 186 mg, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 0.7 Hz, 1H), 6.63 (d, J = 8.7 Hz, 2H), 6.34 – 6.33 (m, 1H), 6.25 (d, J = 3.1 Hz, 1H), 4.65 (s, 1H), 4.35 (d, J = 5.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.1, 150.6, 142.3, 133.6, 120.3, 112.4, 110.4, 107.5, 99.3, 40.4.

4-(Cyclohexylamino)benzonitrile (3bg)¹²

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 145 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 (d, *J* = 8.7 Hz, 2H), 6.52 (d, *J* = 8.7 Hz, 2H), 4.19 (s, 1H), 3.28 (s, 1H), 2.02 (d, *J* = 12.6 Hz,

2H), 1.77 (dd, J = 9.8, 3.6 Hz, 2H), 1.66 (dd, J = 9.1, 3.6 Hz, 1H), 1.42 – 1.33 (m, 2H), 1.27 – 1.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.4, 133.6, 120.6, 112.2, 97.6, 51.1, 32.8, 25.6, 24.7.

4-((4,4-Difluorocyclohexyl)amino)benzonitrile (3bh)

150.0, 133.7, 123.6 (t, *J* = 241.2 Hz), 120.3, 112.4, 98.7, 49.0, 31.84 (t, *J* = 24.9 Hz), 28.3 (d, *J* = 8.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -97.8 (dd, J = 1738.9, 239.3 Hz). IR (in KBr): 2953, 2206, 1601, 1522, 1347, 1175, 1123, 953, 821 cm⁻¹. HRMS (ESI) for: $C_{13}H_{15}F_2N_2$ [M + H]⁺: calcd: 237.1198, found: 237.1195.

4-((4-Phenylbutan-2-yl)amino)benzonitrile (3bi)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): colorless oil, 238 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 7.3 Hz, 2H), 7.22 - 7.15 (m, 3H), 6.44 (d, J)NC = 8.8 Hz, 2H), 4.00 (d, J = 7.8 Hz, 1H), 3.54 - 3.47 (m, 1H), 2.72 (dd, J = 14.5, 8.0 Hz, 2H), 1.91 - 1.79(m, 2H), 1.24 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.5, 141.3, 133.7, 128.5, 128.4, 126.1, 120.5, 112.3, 98.2, 47.4, 38.3, 32.3, 20.5. IR (in KBr): 2971, 2931, 2211, 1605, 1447, 1342, 1173, 826, 748, 702, 545 cm⁻¹. HRMS (ESI) for: $C_{17}H_{19}N_2$ [M + H]⁺: calcd: 251.1543, found: 251.1539.

4-(Octan-2-ylamino)benzonitrile (3bj)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): colorless oil, 193 mg, 83% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.39 (dd, J = 8.3, 6.9 Hz, 2H), 6.52 (dd, J = 8.4, 5.7 Hz, 2H), 4.09 (dd, J = 77.9)7.5 Hz, 1H), 3.49 (dt, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 6.5 Hz, 1H), 1.56 – 1.28 (m, 10H), 1.19 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 13.2, 1.50 (t, J = 1

6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.7, 133.8, 120.6, 112.2, 97.9, 48.2, 36.9, 31.8, 29.2, 26.0, 22.6, 20.5, 14.0. IR (in KBr): 2931, 2857, 2216, 1609, 1526, 1458, 1338, 1168, 830, 541 cm⁻¹. HRMS (ESI) for: $C_{15}H_{23}N_2$ [M + H]⁺: calcd: 231.1856, found: 231.1854.

4-(Allylamino)benzonitrile (3bk)⁴

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): colorless oil, 128 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.2 Hz, 2H), 6.03 - 5.77 (m, 1H), 5.25 (dd, J = 24.9

Hz, 13.7, 2H), 4.39 (s, 1H), 3.82 (t, J = 5.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.0, 133.7, 133.6, 120.4, 117.0, 112.3, 98.8, 45.6.

4-((2,2-Dimethoxyethyl)amino)benzonitrile (3bl)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): colorless oil, 198 mg, 96% yield. mp: 61-62 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 4.55 (t, J = 5.3 Hz, 1H), 4.44 (s, 1H), 3.42 (s, 6H), 3.29 (d, J = 5.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.0, 133.6, 120.3, 112.3, 102.0, 98.9, 54.0, 44.5. IR (in KBr): 2916, 2207, 1609, 1522, 1478, 1340, 1127, 1070, 973, 822, 618 cm⁻¹. HRMS (ESI) for: C₁₁H₁₅N₂O₂ [M + H]⁺: calcd: 207.1128, found: 207.1127.

4-((3-Hydroxypropyl)amino)benzonitrile (3bm)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 160 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.41 (d, J = 8.7 Hz, 2H), 6.56 (d, J = 8.7 Hz, 2H), 3.83 (t, J = 5.7 Hz, 2H), 3.32 (t, J =6.5 Hz, 2H), 1.90 (p, J = 6.2 Hz, 2H), 1.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.5, 133.6, 120.6, 112.1, 98.0, 61.0, 40.9, 31.2. IR (in KBr): 3299, 2935, 2838, 2218, 1610, 1531, 1344, 1117, 830, 618 cm⁻¹. HRMS (ESI) for: C₁₀H₁₃N₂O [M + H]⁺: calcd: 177.1022, found: 177.1022.

4-((2-(1H-indol-3-yl)ethyl)amino)benzonitrile (3bn)

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 256 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.11 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 8.8 Hz, 3H), 7.24 – 7.12 (m, 2H), 7.03 (d, J = 1.9 Hz, 1H), 6.51 (d, J = 8.8 Hz, 2H), 4.29 (s, 1H), 3.48 (t, J = 6.7 Hz, 2H), 3.08 (t, J = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.2, 136.4, 133.6, 127.2, 122.3, 122.1, 120.6, 119.6, 118.5, 112.5, 112.2, 111.4, 98.4, 43.1, 24.8. IR (in KBr): 2204, 1602, 1528, 1341, 1174, 1110, 827, 752, 620 cm⁻¹. HRMS (ESI) for: C17H16N3 [M + H]⁺: calcd: 262.1339, found: 262.1337.

Methyl 4-(4-methylphenylsulfonamido)benzoate (3io)¹³

Prepared according to general procedure 1 (55 °C, and 2.0 equiv. of DBU): white solid, 245 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.95 (s, 1H), 3.87 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.4, 143.5, 142.2, 136.5, 130.7, 129.5, 127.0, 125.0, 118.4, 51.8, 21.3.

4-Methoxybenzonitrile (5ba)¹⁴

Prepared according to general procedure 2: white solid, 132 mg, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 162.8, 134.0, 119.2, 114.7, 103.9, 55.5.

Deuterated 4-methoxybenzonitrile (5bb)¹⁴

Prepared according to general procedure 2: white solid, 95 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.58 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 162.8, 133.9, 119.2, 114.7, 103.8, 54.7 (dt, J =

44.0, 22.1 Hz).

1-(4-Methoxyphenyl)ethanone (5ca)¹⁴

Prepared according to general procedure 2: white solid, 138 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.8, 163.4, 130.5, 130.3, 113.6, 55.4, 26.3.

Ethvl 4-methoxybenzoate (5ea)¹⁴

Prepared according to general procedure 2: white solid, 128 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm), 8.00 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.4, 163.2, 131.5, 122.9, 113.5, 60.69, 55.4, 14.3.

1-Methoxy-4-(methylsulfonyl)benzene (5fa)¹⁵

Prepared according to general procedure 2: white solid, 174 mg, 93% yield, ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.87 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H), 3.89 (s, 3H), 3.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.6, 132.2,

129.5, 114.4, 55.7, 44.8.

4-Methoxy-1,1'-biphenyl (5ja)¹⁶

OMe

Prepared according to general procedure 2: white solid, 128 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.56-7.51 (m, 4H), 7.41 (t, J = 7.6 Hz, 2H), 7.30 (t, J =7.4 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

(ppm) 159.1, 140.8, 133.7, 128.7, 128.1, 126.7, 126.6, 114.2, 55.3.

1-(3-Methoxyphenyl)ethanone (5ka)¹⁷

Prepared according to general procedure 2: colorless oil, 160 mg, 97% yield. ¹H NMR OMe (400 MHz, CDCl₃) δ (ppm). 7.54 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 2.2 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.12 - 7.10 (m, 1H), 3.85 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ (ppm) 197.9, 159.7, 138.4, 129.5, 121.1, 119.6, 112.2, 55.4, 26.7.

5-Methoxyisobenzofuran-1(3H)-one (5la)¹⁸

149.3, 127.2, 118.0, 116.5, 105.9, 69.1, 55.8.

2-Methoxynaphthalene (5ma)¹⁹

Prepared according to general procedure 2: white solid, 157 mg, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.81 – 7.68 (m, 3H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

(ppm) 157.5, 134.5, 129.4, 128.9, 127.6, 126.7, 126.4, 123.6, 118.7, 105.6, 55.3.

3-Methoxyquinoline (5na)²⁰

Prepared according to general procedure 2: colorless oil, 154 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 8.68 (d, J = 2.9 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.37 (d, J = 2.6 Hz, 1H), 3.94 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 153.0, 144.6, 143.5, 129.1, 128.8, 127.0, 126.6, 126.6, 112.1, 55.4.

4-Ethoxybenzonitrile (5bc)¹⁴

Prepared according to general procedure 2: white solid, 142 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.58 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 4.08 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 8 115 1 103 6 63 9 14 5

162.2, 133.9, 119.3, 115.1, 103.6, 63.9, 14.5.

4-(Pentyloxy)benzonitrile (5bd)²¹

NC

Prepared according to general procedure 2: colorless oil, 166 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.57 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 3.99 (t, J = 6.5 Hz, 2H), 1.84 – 1.77 (m, 2H), 1.48 – 1.34 (m, 4H), 0.94 (t, J

= 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 162.4, 133.9, 119.3, 115.1, 103.6, 68.4, 28.6, 28.0, 22.3, 13.9.

Ethyl 4-methoxybenzoate (5be)²²

(q, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.2, 134.2, 122.8 (q, J = 278.0 Hz), 118.5, 115.4, 106.1, 65.5 (q, J = 36.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -73.8 (s, 3F).

4-(Benzyloxy)benzonitrile (5bf)²³

Prepared according to general procedure 2: white solid,194 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.58 (d, J = 8.5 Hz, 2H), 7.46 – 7.32 (m, 5H), 7.02 (d, J = 8.4 Hz, 2H), 5.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.9, 135.6, 134.0, 128.7, 128.4, 127.4, 119.1, 115.5, 104.1, 70.2.

4-(Furan-2-ylmethoxy)benzonitrile (5bg)²⁴

Prepared according to general procedure 2: white solid, 191 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.59 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 1.0 Hz, 1H), 7.04 (d, J = 8.9 Hz, 2H), 6.48 (d, J = 3.2 Hz, 1H), 6.40 (dd, J = 3.1, 1.8

Hz, 1H), 5.05 (s, 2H). ^{13}C NMR (100 MHz, CDCl₃) δ (ppm) 161.4, 148.9, 143.5, 133.9, 119.1, 115.4, 110.7, 110.6, 104.4, 62.34.

4-Isopropoxybenzonitrile (5bh)²⁵

Prepared according to general procedure 2: colorless oil, 87 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.56 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 4.62 (hept, J = 6.1 Hz, 1H), 1.36 (d, J = 6.1 Hz, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ (ppm) 161.9, 135.6, 134.0, 128.7, 128.4, 127.4, 119.1, 115.5, 104.1, 70.2.

4-Hydroxybenzonitrile (6b)²⁶

Prepared according to general procedure 3: white solid, 101 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.56 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.4, 134.3, 119.2, 116.5, 102.7.

Ethyl 4-hydroxybenzoate (6e)²⁶

Prepared according to general procedure 3: white solid, 145 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm). 7.96 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

(ppm) 167.5, 160.7, 131.9, 122.0, 115.3, 61.2, 14.2.

4. Reusability of CdS.

Figure S1. Reusability of CdS. (a) Before and (b) after the C-N coupling reaction, (c) the catalyst settles down and is attracted, and (d) the yield of product **3aa** with the use of recycled photocatalyst CdS.

5. Unsuitable examples

Figure S2. Selected examples of unsuitable aryl bromides in the C-N coupling conditions.

6. References

- D. D. Perrin, W. L. F. Armarego, *Purification of Laboratory Chemicals, 4th ed.*; Pergamon Press: Oxford, 1997.
- E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, *Science* 2016, 353, 279.
- 3. M. Nirmala, G. Saranya, P. Viswanathamurthi, R. Bertani, P. Sgarbossa, J. G. Malecki, *Journal of Organometallic Chemistry* **2017**, *831*, 1.
- 4. H. Zhang, Q. Cai, D. Ma, J. Org. Chem. 2005, 70, 5164.
- 5. R. B. N. Baig, R. S. Varma, RSC Adv. 2014, 4, 6568.
- 6. Y. Ju, R. S. Varma, J. Org. Chem. 2006, 71, 135.
- T. C. Johnson, B. L. Elbert, A. J. M. Farley, T. W. Gorman, C. Genicot, B. Lallemand, P. Pasau, J. Flasz, J. L. Castro, M. MacCoss, D. J. Dixon, R. S. Paton, C. J. Schofield, M. D. Smith, M. C. Willis, *Chem. Sci.* 2018, 9, 629.

- 8. Mark D. Charles, Phillip Schultz, Stephen L. Buchwald, Org. Lett. 2005, 7, 3965.
- D. Mendoza-Espinosa, R. González-Olvera, C. Osornio, G. E. Negrón-Silva, A, Álvarez-Hernández, C. I. Bautista-Hernández, O. R. Suárez-Castillo, *Journal of Organometallic Chemistry* 2016, 803, 142.
- E. Boess, L. M. Wolf, S. Malakar, M. Salamone, M. Bietti, W. Thiel, M. Klussmann, ACS Catal.
 2016, 6, 3253.
- 11. J. S. K. Clark, C. N. Voth, M. J. Ferguson, Mark Stradiotto, Organometallics 2017, 36, 679.
- 12. S. Sato, T. Sakamoto, E. Miyazawa, Y. Kikugawa, Tetrahedron 2004, 60, 7899.
- 13. W. Zhang, J. Xie, B. Rao, M. Luo, J. Org. Chem. 2015, 80, 3504.
- T. M. Rangarajan, R. Brahma, Ayushee, A. K. Prasad, A. K. Verma, R. P. Singh, *Tetrahedron Lett.* 2015, 56, 2234.
- 15. S. L. Jain, B. S. Rana, A. K. Sinha, B. Singh, M. Nandi, A. Bhaumik, B. Sain, *Green Chem.* **2010**, *12*, 374.
- 16. K. Yamamoto, S. Otsuka, K. Nogi, H. Yorimitsu, ACS Catal. 2017, 7, 7623.
- 17. Y. Liu, A. Xie, J. Li, X. Xu, W. Dong, B. Wang, Tetrahedron 2014, 70, 9791.
- 18. X. Wu, A. K. Mahalingam, Y. Wan and M. Alterman, Tetrahedron Letters 2004, 45, 4635.
- 19. F. Rajabi, M. R. Saidi, Synth. Commun. 2004, 34, 4179.
- 20. N. Anand, S. Koley, B. J. Ramulu, M. S. Singh, Org. Biomol. Chem. 2015, 13, 9570.
- 21. Y. Lin Q. Song, Eur. J. Org. Chem. 2016, 3056.
- 22. T. M. Rangarajan, K. Devi, Ayushee, A. K. Prasad, R. P. Singh, Tetrahedron 2015, 71, 8307.
- 23. H. Wang, Y. Ma, H. Tian, A. Yu, J. Chang, Y. Wu, Tetrahedron 2014, 70, 2669.
- 24. X. Wu, B.P. Fors, S. L. Buchwald, Angew. Chem., Int. Ed. 2011, 50, 9943.
- 25. P. M. MacQueen, J. P. Tassone, C. D., M. Stradiotto. J. Am. Chem. Soc. 2018, 140, 5023.
- L. Yang, Z. Huang, G. Li, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, Angew. Chem. Int. Ed.
 2018, 57, 1968.

7. Copies of ¹H NMR and ¹³C NMR Spectra

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S31

