Open Access
ARTICLE
Learning-Based Artificial Algae Algorithm with Optimal Machine Learning Enabled Malware Detection
1 Department of Computer Science, College of Science and Arts, Najran University, Sharurah, Saudi Arabia
2 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
3 Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Saudi Arabia
4 Department of Computer Science, Faculty of Computers and Information Technology, Future University in Egypt, New Cairo, 11835, Egypt
5 Computer Department, Applied College, Najran University, Najran, 66462, Saudi Arabia
6 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
* Corresponding Author: Mesfer Al Duhayyim. Email:
Computer Systems Science and Engineering 2023, 46(3), 3103-3119. https://doi.org/10.32604/csse.2023.034034
Received 04 July 2022; Accepted 22 November 2022; Issue published 03 April 2023
Abstract
Malware is a ‘malicious software program that performs multiple cyberattacks on the Internet, involving fraud, scams, nation-state cyberwar, and cybercrime. Such malicious software programs come under different classifications, namely Trojans, viruses, spyware, worms, ransomware, Rootkit, botnet malware, etc. Ransomware is a kind of malware that holds the victim’s data hostage by encrypting the information on the user’s computer to make it inaccessible to users and only decrypting it; then, the user pays a ransom procedure of a sum of money. To prevent detection, various forms of ransomware utilize more than one mechanism in their attack flow in conjunction with Machine Learning (ML) algorithm. This study focuses on designing a Learning-Based Artificial Algae Algorithm with Optimal Machine Learning Enabled Malware Detection (LBAAA-OMLMD) approach in Computer Networks. The presented LBAAA-OMLMD model mainly aims to detect and classify the existence of ransomware and goodware in the network. To accomplish this, the LBAAA-OMLMD model initially derives a Learning-Based Artificial Algae Algorithm based Feature Selection (LBAAA-FS) model to reduce the curse of dimensionality problems. Besides, the Flower Pollination Algorithm (FPA) with Echo State Network (ESN) Classification model is applied. The FPA model helps to appropriately adjust the parameters related to the ESN model to accomplish enhanced classifier results. The experimental validation of the LBAAA-OMLMD model is tested using a benchmark dataset, and the outcomes are inspected in distinct measures. The comprehensive comparative examination demonstrated the betterment of the LBAAA-OMLMD model over recent algorithms.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.