Yunhao Zhang, Cornell University; Srinath Setty, Qi Chen, and Lidong Zhou, Microsoft Research; Lorenzo Alvisi, Cornell University
Awarded Best Paper!
The specific order of commands agreed upon when running state machine replication (SMR) is immaterial to fault-tolerance: all that is required is for all correct deterministic replicas to follow it. In the permissioned blockchains that rely on Byzantine fault tolerant (BFT) SMR, however, nodes have a stake in the specific sequence that ledger records, as well as in preventing other parties from manipulating the sequencing to their advantage. The traditional specification of SMR correctness, however, has no language to express these concerns. This paper introduces Byzantine ordered consensus, a new primitive that augments the correctness specification of BFT SMR to include specific guarantees on the total orders it produces; and a new architecture for BFT SMR that, by factoring out ordering from consensus, can enforce these guarantees and prevent Byzantine nodes from controlling ordering decisions (a Byzantine oligarchy). These contributions are instantiated in Pompe, a BFT SMR protocol that is guaranteed to order commands in a way that respects a natural extension of linearizability.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Yunhao Zhang and Srinath Setty and Qi Chen and Lidong Zhou and Lorenzo Alvisi},
title = {Byzantine Ordered Consensus without Byzantine Oligarchy},
booktitle = {14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20)},
year = {2020},
isbn = {978-1-939133-19-9},
pages = {633--649},
url = {https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao},
publisher = {USENIX Association},
month = nov
}