i

The following paper was originally published
in the Proceedings of the
Tenth USENIX System Administration Conference (LISA X)
Chicago, IL, USA, Sept. 29 - Oct. 4, 1996

SLINK: Simple, Effective Filesystem Maintenance
Abstractions for Community-Based Administration

Alva L. Couch
Tufts University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

SLINK: Simple, Effective Filesystem
Maintenance Abstractions for
Community-Based Administration

Alva L. Couch — Tufts University

ABSTRACT

We manage several large UNIX program repositories through a community effort of
volunteerism and advocacy. Our effort requires a carefully crafted interplay between
administrative policy and tools that operate within the limits of that policy. Rather than
restricting administrators’ actions, our tools reinforce their own use by making it easier and
more effective to comply with policy than to dissent. Our tool SLINK provides a small number
of commands that aid in synthesizing user environments from sets of disjoint software package
trees. SLINK’s commands, while more powerful than typical UNIX commands, refuse to violate
predefined policy restrictions, thus protecting the user environment even from mistakes of root
users. Our administrative policy and SLINK allow us to employ an arbitrarily large number of
volunteer administrators without degrading system behavior or utilizing large amounts of staff

time.

Introduction

We maintain a medium-scale, heterogeneous,
departmental, academic UNIX network (50 stations,
1000 users) for the Department of Electrical Engineer-
ing and Computer Science at Tufts University. Our
academic mission requires us to provide the most cur-
rent versions of multitudes of software packages for
Sun, DEC, and SGI systems. Our program repositories
contain hundreds of programs, fill 10 gigabytes, are
constantly being revised and updated, and encompass
almost every form of software from freeware for sim-
ple document processing to complex commercial sys-
tems for simulation and computer-aided design.

We accomplish this mission with almost no staff
involvement, due to a novel repository management
approach based upon community involvement, user
empowerment, administrator volunteerism, and soft-
ware advocacy. Our shortage of administrative
staffing is offset by availability of untrained but trust-
worthy, competent, and enthusiastic student and fac-
ulty help. Conscious of the many problems in scaling
a standard managerial approach to student help [7], we
developed instead an approach in which maintainers
form a loosely coupled community bound together by
policy much resembling a community charter. This
policy is supported by tools that make it easier to com-
ply with policy than to dissent. Thus we maintain sys-
tem integrity and consistency not by force, but by
making compliance the path of least resistance.

Previous approaches we tried for repository man-
agement caused tremendous frustration for us. Simply
utilizing /usr/local as intended led to constant prob-
lems requiring administrative intervention. Student
workers often installed conflicting versions of the
same package so that neither version worked. We

never quite knew who installed what or when. Due to
rapid turnover of software and the need to constantly
update to new revisions, we were always breaking one
software package or another, with no ability to control
changes or to test software before installation. Worst,
/usr/local frequently filled up with files of unclear,
undocumented function that we could not delete with-
out unacceptable risk of breaking other, unknown pro-
grams.

Six years ago, we began working on solving this
problem. We started by trying to install all programs
in separate subtrees of identical structure, and wrote a
very simple tool to build an image of the union of all
subtrees that users could employ. This tool was a com-
plete failure. Very little of the software we use would
adapt to being installed in a ‘standard’ way, and the
tool remained mostly unused. We spent more time
adapting software to this standard form than we would
have spent cleaning up a typical /usr/local. We
learned from bitter experience that any approach we
use has to be very flexible and tolerant of deviance in
software packages.

This flexibility required that we adopt a different
philosophy about the role of tools in our maintenance
strategy than is typical in modern practice. Most tools
for repository management enforce standards by refus-
ing to function unless requirements are met. Our
administrators could not function in such an enforced
environment, because the software we were trying to
maintain was too difficult to adapt. Because of our
site’s volatility, budget, and need to keep up-to-date,
we do not have the time to fight with software pack-
ages. Any strategy we adopt must allow us to break
the rules instead of wasting time trying to comply.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 205

SLINK: Simple, Effective Filesystem Maintenance Abstractions ... Couch

If we allow breaking the rules, there must then
be a way to maintain order in the ensuing chaos. We
accomplish this by creating tools that, instead of limit-
ing the administrator, make it easier to install software
in the preferred way than in other ways. These tools
do not enforce, but reinforce our policies. A tool that
reinforces policy works whether or not that policy is
followed, but ‘works better’ when policy is followed
than when it is ignored. This means that everyone,
whether compliant or not, will be able to perform use-
ful work, but that compliant administrators will
receive more positive reinforcement in the form of
completed work.

Background

A program repository is a filesystem wherein
programs to be executed on a network are stored.
Repositories can be formatted so that programs within
them are ready to run, and mounted on remote systems
via the network file system (NFS) or some similar
mechanism. Repositories can also consist of informa-
tion to be copied, through some mechanism, to remote
hosts before being executed. Our repositories are
ready to run, NFS-mounted by nearby hosts, and can
be copied to remote hosts, one package at a time.

Repository management refers to the activity of
maintaining such a repository over time, which com-
prises adding and deleting programs and revisions of
programs, and distributing software changes to remote
systems where applicable. A management strategy
should define appropriate change control, whereby the
user’s software environment is changed in an orderly,
predictable, and reversible fashion as a result of soft-
ware updates. The strategy should also avoid reposi-
tory corruption or rot [5], in which the repository fills
up with old files that have no function but cannot be
efficiently located and deleted.

Many tools, including vendor-supplied software
installation scripts, manage software repositories and
avoid repository rot through a package structure [8].
Each software distribution occupies a separate filesys-
tem tree called a package. Typically all such package
trees exhibit parallel structure, so that each has a sec-
tion for user commands, libraries, and documentation
the user might need. Subject to obeying interdepen-
dencies between packages, package subtrees can be
independently copied to remote hosts to provide cus-
tom software environments on each host. But simply
copying them is not enough; to utilize the package the
user must have access to those commands, libraries,
and documentation.

The most common way these packages are made
available to a user is through environment synthesis.
The various packages are combined through some
mechanism into a coherent user environment having
single program, library, and manual directories that
can then be included in each user’s search paths. Usu-
ally this is accomplished through symbolic links [1, 3,

8,9, 10, 11, 12], but it may be accomplished by copy-
ing files, as is done in several vendor-supplied soft-
ware distribution systems.

Many developers have extended the basic distri-
bution framework of Depot [8], whose basic capabili-
ties include package definition, distribution, and envi-
ronment synthesis using symbolic links. Although ini-
tially Depot expected all packages to have a prede-
fined structure and obey particular naming conven-
tions, now the structure of each package, including a
list of files the user should see, may be declared within
a file in each package. In Depot and its relatives [1, 3,
10, 12], changes are controlled and the user environ-
ment is protected from errors by a transaction commit-
ment process, in which the proposed new environment
is checked for lack of conflicts before the old environ-
ment is erased and a new one created in its place. A
conflict occurs when one file in the environment has
two possible definitions, usually due to an installer
error. This strategy requires that the environment, as a
filesystem subtree, be completely under the control of
the software tool that destroys and recreates it.

Repository distribution tools like Cicero [2] (and
some more recent variants of the Depot approach) take
transaction commitment one step further, by giving the
administrator control over the sequence of individual
software installation transactions and the ability to
undo transactions to recover from installation errors.
This means that Cicero is not limited to installing
packages in designated filesystem subtrees, but can
safely undertake changes of a broader scale, such as
changing files in /etc.

SLINK

Our tool SLINK [5, 6] concentrates on simplify-
ing the process of environment synthesis. SLINK is a
freely available Perl5 script and library that is portable
to a majority of UNIX systems. It has no distribution
capabilities like Cicero or Depot relatives, and instead
operates on a tree of packages that has already been
distributed to the target host by some other distribution
mechanism, such as NFS or rdist [4]. The version of
SLINK described in this paper has been substantially
modified from that described in [5], mainly by
improving declaration file syntax and by adding the
virtual protection mechanism for filesystems described
below.

SLINK differs from other approaches in several
important ways. SLINK attempts to make the environ-
ment synthesis task as simple as possible for an
administrator to perform, so that administrators can be
trained very quickly to modify environments. SLINK
operates mainly by interpreting a single configuration
file that tells it what should be true of the target sys-
tem. One can create package-specific configuration
files but this is not required. SLINK constructs envi-
ronments incrementally, by making the changes neces-
sary to install one package at a time, rather than

206 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Couch

creating an environment from scratch every time as in
most Depot-like strategies. SLINK does not need to
maintain complete control over the environment, but
can merge its changes into an existing environment as
easily as it can build a new one.

SLINK has five basic commands that control the
user environment by specifying parallel structure
between the package trees in which administrators
install software and the image trees that normal users
utilize. Each command is a structural assertion about
the similarity between two UNIX filesystem subtrees,
that specifies either that the contents of one be con-
tained or not be contained within another. Commands
recursively update the structure of filesystem subtrees
to arbitrary depth, so that whole file hierarchies can be
duplicated with a single command. These commands
are general-purpose and can be used for a variety of
replication tasks other than repository maintenance.

The command
link /loc/lang/perl/bin /local/bin

says that /local/bin contains the contents of
/loc/lang/perl/bin, plus perhaps more files, by utilizing
symbolic links to point from /local/bin to
/loc/lang/perl/bin. The command

unlink /loc/lang/perl/bin /local/bin

undoes the /ink command, specifically unlinking any
links in /local/bin that happen to point to correspond-
ing files in /loc/lang/perl/bin. The link and unlink
commands implement environment synthesis, includ-
ing both installation and deletion of software. They
operate recursively on whole filesystem subtrees, so
that one can install all of perl’s files in /local by typ-
ing

link /loc/lang/perl /local

This is done by optimal use of symbolic links; for
details, see [5]. This syntax has changed from that
described in [5], due to difficulty in reading the origi-
nal syntax.

The current version of SLINK also includes
commands for normal copying of files from one place
to another. The command

copy /loc/lang/perl/bin /local/bin

does the same thing as /ink, except that it copies files
rather than linking them, while the command

uncopy /loc/lang/perl/bin /local/bin

removes files that are identical (in all respects, includ-
ing owner, mode, timestamps, and contents) to those
in /loc/lang/perl/bin. This replaces cp -r, tar, and other
more primitive ways of copying files. However, copy-
ing only works perfectly for root users, and of course
does not preserve owner or group of each file when
invoked by normal users.

The commands link, unlink, copy, and uncopy
function more like structural assertions than

SLINK: Simple, Effective Filesystem Maintenance Abstractions ...

commands, and do nothing if the desired condition
already exists. The commands unl/ink and uncopy only
undo exactly matching /ink and copy commands; these
will not delete files in the user’s environment that hap-
pen to have the same name as files in the package tree
but were replicated from another package or source.
This means that unlink and uncopy can be repeated
even if the affected files are replaced by files of the
same name but from newer revisions; unlink and
uncopy will not destroy these newer files.

The command
destroy /local/bin

will unconditionally destroy /local/bin if allowed.
This is mainly a cleanup command.

As SLINK does nothing if a series of command
assertions are already true, it can safely be used to ver-
ify or change the configuration of systems while users
are using them. SLINK may, in the course of an incre-
mental change, turn a symbolic link into a directory of
links, but will never do the reverse by default, so that
no user can be deprived of a current directory through
SLINK’s actions.

Virtual protections

SLINK’s commands are very powerful and dan-
gerous in the hands of the uninitiated if left unre-
stricted. In particular, a root user could destroy the
whole disk image by typing ‘destroy /°, or corrupt the
/usr partition by typing ‘link / /usr’. Such powerful
commands must be tempered with limits so that
SLINK is safe to use. This is done through a virtual
protection scheme that augments the normal physical
UNIX filesystem protection scheme. The virtual pro-
tection scheme is new to SLINK 5.0; in the previous
version protection directives applied only to individual
commands. We realized through bitter experience that
this was an unsafe practice.

A virtual protection is a voluntary mechanism
implemented by a software tool to protect against
unwise actions that are perhaps physically possible.
While physical protections are enforced as usual, by
UNIX, virtual protections are enforced by SLINK
itself. In the performance of its duties SLINK will
refuse to modify any virtually protected subtree. Of
course, the administrator can work around this by
making changes manually, given enough physical
privilege. But this is considerably more difficult than
using SLINK commands.

Our virtual protection scheme is designed to be
as simple as possible while supporting common
administrative operations for repository management
and filesystem maintenance. There are currently five
levels of virtual protection we support:

1. freeze — prohibit all changes to this filesystem.
2. protect — allow only the addition of files, links,
and directories.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 207

SLINK: Simple, Effective Filesystem Maintenance Abstractions ... Couch

3. relink — allow the removal and recreation of
symbolic links.

4. redirect — allow the removal and and recreation
of links and directories consisting only of links.

5. replace — allow any change, including remov-
ing files or directories containing files.

These protections are the simplest scheme we
could design within the context of SLINK’s mission.
The reasons for protections of freeze, protect, and
replace are obvious to any administrator, allowing one
to completely protect a filesystem, allow additions
only, or allow all changes. The protections relink and
redirect are specific to the needs of SLINK in incre-
mentally maintaining repositories.

The relink protection allows one to protect file
and directory structure while changing links. This
allows one to build a filesystem consisting of files and
directories, and then augment it with links that cannot
overwrite those files and directories, so that the
filesystem becomes a combination of an unchanging
core of files and a relatively fluid set of links. We use
this mechanism to protect very important parts of
/local that should never be overwritten, such as
/local/bin/perl and /local/bin/tcsh (without which no
users can work), by making them actual files.

SLINK updates images by promoting symbolic
links pointing to directories into directories of links to
the contents of those directories, where needed. Over
time, unlink requests can result in directories of sym-
bolic links that are indeed equivalent with single links.
The redirect protection tells SLINK that it can change
these directories of links back into single links on
command. One does not always want SLINK to do
this; certain directories must exist whether or not they
are equivalent with single links or empty, e.g., lock
directories.

Protections for all filesystems are specified in a
single file for each machine, which is kept separate
from SLINK’s configuration file, though the configu-
ration file can also contain protection directives mixed
with regular SLINK commands. The file is read by a
Perl5 library function that then communicates policy
to SLINK.

A typical machine’s protections might be:

freeze /

protect /usr

redirect /local

freeze /local/man/cat*

The protection of a path is the protection of the
longest prefix of the path with an explicitly defined
protection. In the above scheme, /local/man has the
protection ‘redirect’ because its longest prefix with an
explicit protection is /local, while /etc has the protec-
tion ‘freeze’ (because its longest explicitly protected
prefix is /). The star convention works as in sk and is
checked against pathnames dynamically as SLINK
executes, so that paths SLINK creates are protected

once created. For example, if /local/man/cat5 does not
exist, when it is created, it will be treated as frozen.
These conventions were adopted to make virtual pro-
tection files as brief as possible.

Virtual protections keep SLINK’s brute power
from destroying the system, even for root users, by
stopping dangerous acts. For example, the protections

freeze /
relink /local
freeze /local/man/cat*

protect systems from student mistakes by only allow-
ing linking in /local and its subtrees, except for the
formatted manual page directories /local/man/catl,
etc. This keeps SLINK from placing links into those
directories that might conflict with the proper function
of the man and catman commands. So, if naive admin-
istrators exclusively utilize SLINK, they can affect
nothing but the user’s environment, no matter what
their privilege or what SLINK commands they issue.

A virtual protection failure is not an error, how-
ever, because very often one wishes to structure a
filesystem by copying everything from another paral-
lel one, except for specific things. For example, the
commands:

freeze /

protect /usr
freeze /usr/spool
link /lusr /usr

add links from /usr to any file absent from /usr that is
in /lusr, ignoring /usr/spool for obvious reasons. This
allows us to ‘fill out’ a small /usr partition with files
from a remotely mounted full copy /lusr, a hack we
use quite frequently when pressed for space on small
or old workstations.

As another example, the commands

freeze /
relink /local
destroy /local

will destroy every symbolic link in /local while leav-
ing files and directories alone, because the ‘relink’
protection prohibits SLINK from removing them.
Using this sequence, one can restart SLINK from
scratch in building a repository, in the same manner as
Depot.

SLINK’s copy command must be used with dis-
cretion. Its results are not as easily documentable or
reversible as those for the /ink command, and we dis-
courage its use except for special purposes, like
embedding changes within an image of a read-only
filesystem. Suppose, for example, that we have a CD-
ROM containing UNIX manual pages that we’d like
to augment with our own manual pages. We can
mount the CD-ROM as /cdrom, put our manual page
hierarchy into /myman, make /usr/man an empty
directory, and then instruct SLINK to:

208 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Couch SLINK: Simple, Effective Filesystem Maintenance Abstractions ...

freeze /

replace /usr/man
link /cdrom /usr/man
copy /myman /usr/man

The copy operation will override the contents of
/edrom with those of /myman, creating a union of the
two hierarchies in /usr/man. Of course, we could do
this with manual paths, but it serves as a demonstra-
tion of SLINK’s power. One can, for example, create a
modified copy of a read-only /usr in the same way,
whether mounted from a CD-ROM or via NFS.

SLINK limitations

There are also several things that SLINK does
not do that other tools support. Because it is an incre-
mental strategy, SLINK will function even in the pres-
ence of conflicts. After several conflicting commands,
the source of a file with conflicts is the one specified
most recently. SLINK will inform the user of any con-
flicts it finds, but one usually has to execute a set of
configuration commands twice in order to determine
whether there is a persistent conflict in instructions or
just a transient conflict between older and newer soft-
ware versions. SLINK is completely tolerant of errors
in configuration and will happily ignore all configura-
tion lines it cannot parse, implementing the ones it can
act upon. In general, the tool operates in a much less
constrained (or paranoid) manner than Depot, Cicero,
and their relatives.

Because SLINK is an incremental environment
synthesizer and does not have the luxury of creating a
whole new environment each time it is invoked, it
must also support cleanup functions not supported in
other tools. There are functions that scan user environ-
ments for dangling links, files, and other exceptional
conditions, and functions that clean up after installa-
tion mistakes. There are functions that optimize link
structure to utilize a minimum of symlinks. No matter
how easy SLINK is to use for naive administrators, a
relatively skilled administrator is still needed to per-
form these complex functions.

SLINK is capable of synthesizing very complex
user environments. The virtual protection system,
while certainly useful, can lead to unpredictable
results in the hands of the uninitiated. To aid in debug-
ging, we provide a separate script slinkls whose pur-
pose is to show the structure of what SLINK created
in an easily understandable form. This program takes a
large amount of computer time to look at an environ-
ment and express it in terms of the SLINK commands
needed to create it. Currently slinkls only describes
linked structures, because it does not have enough
information to describe copy operations. SLINK’s
incremental strategy can backfire if used carelessly,
and slinkls does not fully address the problems that
can arise.

SLINK’s assertions work on filesystem trees as
easily as upon individual files, so that the number of

SLINK commands needed to install a package varies
directly with the lack of parallel structure between
package and image. If an installer forms a package
tree that is exactly parallel in structure with the image
tree, the whole package can be made available with a
single SLINK command. Lack of parallelism means
that several commands may be required. In extreme
cases, especially when installing commercial software,
every file may need to be linked with an individual
command. Nonetheless, it is always possible to link
any package into the image, though well-structured
packages are always easier to link than badly struc-
tured ones. Disciplined administrators are ‘rewarded’
with a painless incorporation process, while undisci-
plined ones are ‘punished’ by having to write more
SLINK commands.

Our experience with less flexible tools has led us
to believe that repository administration is easier to
perform and to teach when reinforced than when
enforced. In practice, doing something ‘wrong’ has
very little impact; novices’ mistakes can be easily
repaired by a few simple SLINK directives. This
means, however, that every administrator must refer to
a policy document as well as tool documentation. We
find such documents to be shorter, easier to write, and
easier to understand than docs for a complex tool.

Our Policy

Our policy requires administrators to install soft-
ware in disjoint package trees, which are then com-
bined to form an image filesystem that the user sees
on a particular workstation, utilizing a combination of
symbolic links and file copying. This image contains
all commands, libraries, and documentation the user
might want, with one directory per type of informa-
tion, similar to the structure of /usr/local, e.g.

Our policy for package installation is fairly sim-
ple:

1. To the extent possible, install software in dis-
joint subtrees, one per software distribution.

2. To the extent possible, mimic the structure of
/usr/local in those subtrees.

3. To the extent possible, programs and libraries
in packages should refer to files in their own
package by their full path names in the package
tree.

4. To the extent possible, programs and libraries
should refer to files in other packages as if they
are installed in /usr/local or an equivalent pub-
lic space, except when a program or library
depends upon a specific revision of a file, in
which case that file should be referred to by its
full pathname in the package hierarchy.

5. To the extent possible, keep files not needed
during package operation separate from needed
files so unneeded files can be deleted.

An ideal package tree contains a bin for com-
mands, a /ib for libraries, a man for manual pages, a

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 209

SLINK: Simple, Effective Filesystem Maintenance Abstractions ... Couch

src for source code, etc. It may also contain an etc, an
sbin, etc, as appropriate.

In this policy, all requirements are voluntary, and
designed to be taught to aspiring administrators in one
day of instruction, along with instructions on using
SLINK. The policy above is the first level of several
levels of detail, written to be easily understood by
novices. Advanced administrators can take the time to
delve deeper into its subtleties.

Delegation

Our policy and SLINK simply suggest the appro-
priate course without enforcing it. A particular admin-
istrator’s powers and privilege are determined instead
by normal UNIX filesystem protections. We maintain
order in the community by carefully delegating both
increasing privilege and trust relative to experience
and prior performance.

There are five levels of delegation: beginning,
novice, apprentice, root, and netadmin. Beginning
administrators are asked to install packages in their
home directories or in a practice tree until they are
proficient enough to work in the real package tree.
Novices are given ownership of particular package
directories in the true package tree and asked to install
particular packages in each. When they prove compe-
tent, they become apprentices and are given member-
ship in a group with privileges to modify the package
tree and user image tree. When apprentices prove
competent, they are given root privileges and addi-
tional instruction on modifying files in places other
than the package and image trees. When root users
become proficient, they are trained in network admin-
istration and control of global network configuration.

SLINK is not a set-user-id program. It always
operates with the privileges of the invoker. Without
appropriate group privileges, SLINK will do nothing
for novices. Apprentices can execute SLINK or mod-
ify the user environment directly in emergencies, but
cannot modify system files outside the trees made
available to normal users. Virtual protections are not
limits, but reminders of one’s responsibility to the
community. For this reason, any administrator is
allowed to override virtual protections in SLINK’s
configuration file (though the master file of virtual
protections cannot be changed). Anyone who has the
physical ability to make such changes might as well be
trusted to do so through SLINK rather than manually.

Security

System integrity and security are serious prob-
lems in any system maintained by extensive delega-
tion. Our strategy has always been to evaluate people
carefully before increasing their privilege or responsi-
bility. To avoid inadvertent system corruption, we typ-
ically only allow one undergraduate to hold root privi-
leges at a time, so that conflicting actions between two
students are less likely. While this makes root

privileges a much sought trophy, we continually stress
that these privileges are a responsibility, not a power.

In six years and for about 20 students, we have
guessed wrong only once. One student administrator
did not take his responsibility seriously, and violated
the privacy of other students. He was suspended from
the University for his actions.

Of course, there have been many times when a
new software package did not function, or when a stu-
dent’s actions disrupted service for a short time. For-
tunately, SLINK allows one to easily reinstall older
versions by changing the configuration file, so we
have experienced minimal downtime due to these
errors. In cases where the operation of a new package
revision is questionable, we install it first in the exper-
imental tree /local/new. When it is verified as work-
ing, we install the new version in /local and the old
version in the archive tree /local/old, so that users who
still need the old version can access it. Users are told
that new packages always appear first in /local/new
and old packages persist in /local/old, so there is mini-
mal disruption of service even if a new package fails.

Advanced Usage

Of course, the description of our policy and
SLINK above is quite oversimplified and suitable
mainly for novices. In practice, however, few reposi-
tory maintainers must deal with more complex issues,
and these issues are almost always issues of policy
rather than tool use.

One pressing problem in installing advanced
software packages is to insure that users have proper
settings for environment variables. Solving this prob-
lem is simple provided that policy clearly indicates a
course of action. Our policy is that /local/env contains
files of the form package.cshrc, package.profile, etc.,
for each installed package and relevant shell. When
the user invokes a shell, all startup files matching that
shell in /local/env are sourced by the system shell
startup file. These startup files are general shell scripts
that can perform a variety of functions, including
defining aliases and setting environment variables.

Admittedly, this is an imperfect solution. Mis-
takes in a startup file can disable a shell, and any stu-
dent with access to /local/env can execute an arbitrary
command as any user. So trust between students and
administrators is again essential, and /local/env must
be constantly monitored for malicious changes.

A second problem that plagues all repository
management tools is that inter-package dependencies
make it difficult to separate interdependent software
tools into distinct packages. A classic example of this
is the emacs info tree, to which all gnu applications
contribute, but which has a unique index in a separate
package from any of the applications. Our policy,
where possible, is to separate such trees into their own
packages so that they will outlive any contributing
package. In the case of info, we utilize the image

210 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Couch

/local/info as the actual info tree, and create the index
as a file in that tree. This is terrible style, but no
object-oriented approach can do better.

Libraries for Developers

Our tools are not only provided in a Perl5 script
‘slink’, but are also included in a set of Perl5 library
modules that can be utilized by other tool implemen-
tors. Creating this library was much more difficult
than writing SLINK itself, because of the amount of
specification required by library functions and the
complex couplings that occur between them. The
library has several general-purpose modules for dis-
tinct purposes, of which the most important are:

* Duper.pm — implement high-level filesystem
assertions.

* Logger.pm — enable writing of log and error
files to disk.

* Mapper.pm — remember a map of things created
by SLINK.

* Protector.pm — read and interpret virtual protec-
tions.

To utilize the library within a Perl5 program, one
must create an object instance of Slink::Duper by a
somewhat involved procedure:

use Slink::Logger;
use Slink::Mapper;
use Slink::Protector;
use Slink::Duper;

$logger = new Slink::Logger ({ });
Smapper = new Slink::Mapper ({

*logger’ => Slogger

1)

Sprotector = new Slink::Protector ({
"logger’ => Slogger

1)
Sduper = new Slink::Duper ({

"logger’ => Slogger,
"mapper’ => Smapper,
"protector’ => $protector,

1)

After this quite complex initialization, with many
other options not listed due to space requirements,
SLINK’s functions are available as the following
library functions, where $source is a source pathname
and @images is a Perl5 array of images to create:

Sduper->1ink(S$source,@images) ;
Sduper->unlink($source,@images) ;
S$duper->copy(Ssource,@images) ;
Sduper->uncopy ($source,@images) ;
Sduper->destroy(@images) ;

The Future

Several ongoing enhancements are under devel-
opment for SLINK.

SLINK: Simple, Effective Filesystem Maintenance Abstractions ...

SLINK’s major deficiency is that it can not
check the consistency of a configuration before imple-
menting it. Each SLINK command is incremental, so
that its effect is dependent upon existing conditions
that may be created by preceding commands. Thus,
the only way to reliably check a sequence of com-
mands for consistency is to implement them. A safe
way of checking a configuration is to create a memory
representation of the machine’s filesystem and have
SLINK work upon that image rather than the real
filesystem in order to check consistency. This would
provide a dry-run mode for SLINK that would inform
users of what SLINK would do if invoked. This is dif-
ficult, however, because of the lack of truly portable
mechanisms for manipulating UNIX filesystems in
Perl, and because of subtle differences in the function
of particular filesystem commands in different vari-
eties of UNIX. NFS semantics are particularly difficult
to infer without trying to modify an NFS-mounted
filesystem. We currently think it unlikely that a per-
fect, portable simulation will ever be achieved.

Root access is too powerful and needs to be con-
trolled by informing root users of the consequences of
their acts, or even by prohibiting dangerous acts. In
solving this major problem, SLINK’s virtual protec-
tion scheme is only a rough beginning. As systems
become more complex and file sources more varied,
we need a mechanism whereby vendors and adminis-
trators alike can document the disposition of files so
that administrators and tools will not make mistakes in
modifying those files. SLINK’s protections are the
bare minimum needed for our maintenance policy to
work; I foresee many more, for uses beyond our site
and needs:

* rdist — this file is distributed via rdist.

* vendor — this file should only be modified by
the vendor.

* from <host> — this file was generated on the
given host.

* created-by <command> — this file can be gen-
erated by running the given command.

* depends-upon <path> — this file depends upon
the given one for its contents.

Several times I have learned the need for the
rdist protection, by changing files that were later over-
written by rdist automatically! It would have helped
greatly if [was informed, at the time, that I was doing
something foolish.

Conclusions

While we are quite happy with our community of
apprentices and admins and the educational experi-
ence the community provides, there are many limits to
using a community for system and network mainte-
nance. A community is a rapidly changing con-
stituency, where students become involved, become
uninterested, and are hired by industry to run networks
(even before graduating!) without warning. As the pri-
mary goal of an advocate is to control her or his own

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 21

SLINK: Simple, Effective Filesystem Maintenance Abstractions ... Couch

environment, documentation is nonexistent. This in
turn means that an ideal task for an advocate is an
installation that will be obsolete soon, so that another
advocate can start over and redo the work each time a
release becomes available. It is thus essential to have a
full-time system administrator for the purpose of pro-
viding a sense of continuity in this rapid-turnover
environment.

Also, we have admittedly made a conscious deci-
sion to favor productive output over system consis-
tency. This decision is not for everyone, and would not
work in production environments, though we have
fared well. Serious concerns over security, integrity,
and trust of student workers invalidate our whole man-
agement philosophy when sensitive information is at
risk. In these cases a volunteer is nothing less than a
security risk.

Rather than being diminished in importance, the
full-time administrator must perform more roles: men-
tor, manager, and auditor. The result, however, is that
much more can be accomplished than one full-time
administrator could possibly do without a backup of a
community of helpers. Another very positive side-
effect is that users who need something very often
stop complaining and start taking responsibility for
everyone’s environment. This leads to a general appre-
ciation for the job of administrator and the difficulties
and skills it encompasses. And this, in my view,
advances the profession from skill to art.

Acknowledgements

I wish to thank the many people whose thought-
ful input and tolerance improved this software and
policy. David Krumme was a constant supporter and
advocate of the software and endured many brain-
storming sessions to hammer out the truth from rough
ore. Greg Owen was instrumental in implementing the
initial algorithms. Grant Taylor forced me to put my
policy in writing, and his thoughtful arguments over
several months convinced both of us that we were
moving in the correct direction. George Preble, Chris
Leduc, Jonathan Rozes, Allan Stratton, and many oth-
ers endured the initial bugs in trying out new features.

Availability

SLINK is freely available from ftp:/ftp.cs.tufts.
edu/pub/slink. The version described herein is 5.0.2.

Author Information

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M.LT. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts

in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Electrical
Engineering and Computer Science at Tufts. In 1996
he received the Leibner Award for excellence in teach-
ing and advising from Tufts. He has assisted in main-
taining the Tufts computer systems for Computer Sci-
ence teaching and research since 1985, when he was a
Ph.D. student, and is currently responsible for main-
taining the largest independent departmental computer
network at Tufts. He can be reached by surface mail at
the Department of Electrical Engineering and Com-
puter Science, 161 College Avenue, Tufts University,
Medford, MA 02155. He can be reached via electronic
mail as couch@cs.tufts.edu. His work phone is
(617)627-3674.

References

[1] Jonathan Abbey, “opt depot web site”, http://
www.arlut.utexas.edu/csd/opt_depot/opt_depot.
html .

[2] David Bianco, Travis Priest, and David Cordner,
“Cicero: a Package Installation System for an
Integrated Computing Environment” http://
ice-www.larc.nasa.gov/ICE/doc/Cicero/cicero.
html .

[3] Wallace Colyer and Walter Wong, “Depot: a
Tool for Managing Software Environments”,
Proc. LISA-VI, 1992.

[4] Michael Cooper, “Overhauling Rdist for the
’90’s™, Proc. LISA-VI, 1992.

[5] Alva Couch and Greg Owen, “Managing Large
Software Repositories with SLINK™, Proc.
SANS-95, 1995.

[6] Alva Couch, SLINK Manual, 1996.
http://www.cs.tufts.edu/ couch/slink. html

[7] Tim Hunter and Scott Watanabe, “Guerrilla Sys-
tem Administration: Scaling Small Group Sys-
tems Administration To a Larger Installed Base”
Proc. LISA-VII, 1993.

[8] Kenneth Manheimer, Barry Warsaw, Stephen
Clark, and Walter Rowe, “The Depot: a Frame-
work for Sharing Software Installation Across
Organizational and UNIX platform boundaries”,
Proc. LISA-1V, 1990.

[9] Arch Mott, “Link Globally, Act Locally: A Cen-
trally Maintained Database of Symlinks” Proc.
LISA-V, 1991.

[10] John P. Rouillard and Richard B. Martin,
“Depot-Lite: A Mechanism for Managing Soft-
ware”” Proc. LISA-VIII, 1994.

[11] John Sellens, “Software Maintenance in a Cam-
pus Environment: the Xhier Approach”, Proc.
LISA-V, 1991.

[12] Walter C. Wong, “Local Disk Depot - Customiz-
ing the Software Environment” Proc. LISA-VII,
1993.

212 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

