

# Towards Detecting Target Link Flooding Attack

Lei Xue+, Xiapu Luo+<sup>†</sup>, Edmond W. W. Chan+, and Xian Zhan+ Department of Computing, The Hong Kong Polytechnic University+ The Hong Kong Polytechnic University Shenzhen Research Institute<sup>†</sup> {cslxue,csxluo} @comp.polyu.edu.hk, {edmond0chan,chichoxian} @gmail.com



### Target Link Flooding Attack





### Challenges for Detection

- Attackers use low-rate and legitimate traffic for LFA.
- Target links are not in the target area.
- Attackers can change target links.
- Prevalence of asymmetric routes.



### LinkScope

#### Basic idea

- Congestions caused by LFA will result in anomalies in network path performance.
- Conduct end-to-end active network measurements to capture the anomalies.
- Propose new non-cooperative network measurement approaches to measure a large amount of network paths without the need of controlling the other end of each path.
- Combine both end-to-end and hop-by-hop measurement to locate target links on the forward path.

#### Detection process





### Deployment Strategies



**Probe to client** 

**Probe from client** 



### Topology Analysis

Persistent links with high Link-occurrence are selected as the conditional monitor links.





#### Monitor path selection.

- Paths that contain one target link will be selected.
- Minimize the number of paths having the same remote host.
- Minimize the number of paths initialized by one prober.



### Probe Approaches

#### Round Trip Probing (RTP)

• Per-hop RTT, Per-hop  $\theta_e$ .





### Probe Approaches

#### Extended Two Way Probing (eTWP)

Packet loss, Packet reordering, RTT, RTT jitter, Backward capacity.



#### Modified Recursive Packet Train (mRPT)

Packet loss, Packet reordering, RTT, RTT jitter, Forward capacity.  $R_{a(1),s(1)}$   $R_{a(2),s(3)}$ Server





### Detection





### Implementation

- Measurement manager
  - Collect basic information about the path.
  - Enumerate suitable web objects in a web server.
  - Schedule probing processes.
- Measurement engine
  - Construct TCP connections.
  - Do probes.
- RST packet filter
  - IPTables.
  - Modify TTL.





Host 4 (NAT) Switch 2

Guard area

#### Evaluation in a Test Bed

#### **Goal**

 To validate whether LinkScope can detect different kinds of LFA.

#### > Results





#### Detection rate.

Attack traffic

**Bottleneck** 

D-ITG (Host 2)

Host 3 (Switch)

D-ITG (Host 1)

<sup>I</sup>Testbed

**Campus Network** 

Internet

| Training data | path   | $\alpha = 10$ | $\alpha = 20$ | $\alpha = 30$ |
|---------------|--------|---------------|---------------|---------------|
| 20 probes     | path 1 | 100.0%        | 100.0%        | 100.0%        |
| 20 probes     | path 2 | 100.0%        | 100.0%        | 100.0%        |
| 40 probes     | path 1 | 100.0%        | 100.0%        | 100.0%        |
| 40 probes     | path 2 | 100.0%        | 100.0%        | 100.0%        |



### Internet Experiments

#### > Goals

 To evaluate the false positive of LinkScope and characterize network paths' performance.

#### > Result

#### False positive rate on paths to Hong Kong.



| Prober type | Path                       | $\alpha = 20$ | $\alpha = 30$ | $\alpha = 40$ | $\alpha = 50$ | $\alpha = 60$ |
|-------------|----------------------------|---------------|---------------|---------------|---------------|---------------|
| EC2         | Virginia - Hong Kong       | 6.23%         | 5.03%         | 3.84%         | 3.18%         | 2.78%         |
| EC2         | Sydney - Hong Kong         | 5.26%         | 3.42%         | 3.02%         | 2.89%         | 2.76%         |
| EC2         | Tokyo - Hong Kong          | 3.92%         | 3.01%         | 1.96%         | 1.57%         | 1.57%         |
| EC2         | California - Hong Kong     | 6.07%         | 4.22%         | 3.30%         | 3.17%         | 3.03%         |
| PL node     | Tokyo - Hong Kong          | 3.53%         | 2.75%         | 1.96%         | 1.57%         | 1.44%         |
| PL node     | Amsterdam - Hong Kong      | 1.32%         | 1.19%         | 0.79%         | 0.79%         | 0.66%         |
| PL node     | Beijing - Hong Kong        | 1.95%         | 1.56%         | 1.30%         | 1.04%         | 0.91%         |
| PL node     | South Carolina - Hong Kong | 0             | 0             | 0             | 0             | 0             |



#### Conclusion

- Propose LinkScope, a non-cooperative measurement based system to detect LFA.
- LinkScope employs both end-to-end and hop-by-hop network measurement to capture anomlies.
- Evaluate LinkScope in a test bed and through Internet. experiments.
- Future work.
  - Decide optimal deployment strategy.
  - Conduct large-scale and continuous measurements.





# Thanks!



## **Backup Slides**



### Locating Target Links





#### Architecture

