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Abstract
The virtual machine abstraction provides a wide va-

riety of benefits which have undeniably enabled cloud
computing. Virtual machines, however, are a double-
edged sword as hypervisors they run on top of must treat
them as a black box, limiting the information which the
hypervisor and virtual machine may exchange, a prob-
lem known as the semantic gap. In this paper, we present
the design and implementation of a new mechanism, hy-
perupcalls, which enables a hypervisor to safely execute
verified code provided by a guest virtual machine in or-
der to transfer information. Hyperupcalls are written in
C and have complete access to guest data structures such
as page tables. We provide a complete framework which
makes it easy to access familiar kernel functions from
within a hyperupcall. Compared to state-of-the-art par-
avirtualization techniques and virtual machine introspec-
tion, Hyperupcalls are much more flexible and less in-
trusive. We demonstrate that hyperupcalls can not only
be used to improve guest performance for certain oper-
ations by up to 2× but hyperupcalls can also serve as a
powerful debugging and security tool.

1 Introduction

Hardware virtualization introduced the abstraction of a
virtual machine (VM), enabling hosts known as hyper-
visors to run multiple operating systems (OSs) known
as guests simultaneously, each under the illusion that
they are running in their own physical machine. This is
achieved by exposing a hardware interface which mim-
ics that of true, physical hardware. The introduction of
this simple abstraction has led to the rise of the modern
data center and the cloud as we know it today. Unfortu-
nately, virtualization is not without drawbacks. Although
the goal of virtualization is for VMs and hypervisors to
be oblivious from each other, this separation renders both
sides unable to understand decisions made on the other
side, a problem known as the semantic gap.
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or Paravirtual, Executed by: Uncoordinated
Hypervisor Guest Introspection

Guest Hypercalls Pre-Virt [42] HVI [72]
HV Hyperupcalls Upcalls VMI [25]

Table 1: Hypervisor-Guest Communication Mecha-
nisms. Hypervisors (HV) and guests may communi-
cate through a variety of mechanisms, which are char-
acterized by who initiates the communication, who exe-
cutes and whether the channel for communication is co-
ordinated (paravirtual). Shaded cells represent channels
which require context switches.

Addressing the semantic gap is critical for perfor-
mance. Without information about decisions made in
guests, hypervisors may suboptimally allocate resources.
For example, the hypervisor cannot know what memory
is free in guests without understanding their internal OS
state, breaking the VM abstraction. State-of-the-art hy-
pervisors today typically bridge the semantic gap with
paravirtualization [11, 58], which makes the guest aware
of the hypervisor. Paravirtualization alleviates the guest
from the limitations of the physical hardware interface
and allows direct information exchange with the hyper-
visor, improving overall performance by enabling the hy-
pervisor to make better resource allocation decisions.

Paravirtualization, however, involves the execution of
code both in the context of the hypervisor and the guest.
Hypercalls require that the guest make a request to be
executed in the hypervisor, much like a system call, and
upcalls require that the hypervisor make a request to be
executed in the guest. This design introduces a num-
ber of drawbacks. First, paravirtual mechanisms intro-
duce context switches between hypervisors and guests,
which may be substantial if frequent interactions be-
tween guests and the hypervisor are needed [7]. Sec-
ond, the requestor of a paravirtual mechanism must wait
for it to be serviced in another context which may be
busy, or waking the guest if it is idle. Finally, par-
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avirtual mechanisms couple the design of the hypervi-
sor and guest: paravirtual mechanisms need to be imple-
mented for each guest and hypervisor, increasing com-
plexity [46] and hampering maintainability [77]. Adding
paravirtual features requires updating both the guest and
hypervisor with a new interface [69] and has the potential
to introduce bugs and the attack surface [47, 75].

A different class of techniques, VM introspection
(VMI) [25] and the reverse, hypervisor introspection
(HVI) [72] aim to address some of the shortcomings of
paravirtualization by introspecting the other context, en-
abling communication transfer without context switch-
ing or prior coordination. These techniques however,
are fragile: small changes in data structures, behavior
or even security hardening [31] can break introspective
mechanisms, or worse, introduce security vulnerabilities.
As a result, introspection is usually relegated to the area
of intrusion detection systems (IDSs) which detect mal-
ware or misbehaving applications.

In this paper, we describe the design and implemen-
tation of hyperupcalls 1, a technique which enables a
hypervisor to communicate with a guest, like an upcall,
but without a context switch, like VMI. This is achieved
through the use of verified code, which enables a guest
to communicate to the hypervisor in a flexible manner
while ensuring that the guest cannot provide misbehav-
ing or malicious code. Once a guest registers a hyper-
upcall, the hypervisor can execute it to perform actions
such as locating free guest pages or running guest inter-
rupt handlers without switching into the guest.

Hyperupcalls are easy to build: they are written in a
high level language such as C, and we provide a frame-
work which allows hyperupcalls to share the same code-
base and build system as the Linux kernel that may be
generalized to other operating systems. When the kernel
is compiled, a toolchain translates the hyperupcall into
verifiable bytecode. This enables hyperupcalls to be eas-
ily maintained. Upon boot, the guest registers the hype-
rupcalls with the hypervisor, which verifies the bytecode
and compiles it back into native code for performance.
Once recompiled, the hypervisor may invoke the hyper-
upcall at any time.

We show that using a hyperupcalls can significantly
improve performance by allowing a hypervisor to be
proactive about resource allocation, rather than waiting
for guests to react through existing mechanisms. We
build hyperupcalls for memory reclamation and dealing
with interprocessor interrupts (IPIs) and show a perfor-
mance improvement of up to 2×. In addition to improv-
ing performance, hyperupcalls can also enhance both the
security and debuggability of systems in virtual environ-
ments. We develop a hyperupcall to enables guests to

1Hyperupcalls were previously published as “hypercallbacks” [5].

write-protect memory pages without the use of special-
ized hardware, and another which enables ftrace [57]
to capture both guest and hypervisor events in a unified
trace, allowing us to gain new insights on performance in
virtualized environments.

This paper makes the following contributions:
• We build a taxonomy of mechanisms for bridging

the semantic gap between hypervisor and guests and
place hyperupcalls within that taxonomy (§2).
• We describe and implement hyperupcalls (§3) with:

– An environment for writing hyperupcalls and
a framework for using guest code (§3.1)

– A compiler (§3.2) and verifier (§3.4) for hype-
rupcalls which addresses the complexities and
limitations of verified code.

– Registration (§3.3) and execution (§3.5) mech-
anisms for hyperupcalls.

• We prototype and evaluate hyperupcalls and show
that hyperupcalls can improve performance (§4.3,
§4.2), security (§4.5) and debuggability (§4.4).

2 Communication Mechanisms

It is now widely accepted that in order to extract the most
performance and utility from virtualization, hypervisors
and their guests need to be aware of one another. To that
end, a number of mechanisms exist to facilitate commu-
nication between hypervisors and guests. Table 1 sum-
marizes these mechanisms, which can be broadly char-
acterized by the requestor, the executor, and whether the
mechanism requires that the hypervisor and the guest co-
ordinate ahead of time.

In the next section, we discuss these mechanisms and
describe how hyperupcalls fulfill a need for a communi-
cation mechanism where the hypervisor makes and ex-
ecutes its own requests without context switching. We
begin by introducing state-of-the-art paravirtual mecha-
nisms in use today.

2.1 Paravirtualization
Hypercalls and upcalls. Most hypervisors today
leverage paravirtualization to communicate across the se-
mantic gap. Two mechanisms in widespread use today
are hypercalls, which allow guests to invoke services
provided by the hypervisor, and upcalls, which enable
the hypervisor to make requests to guests. Paravirtual-
ization means that the interface for these mechanisms
are coordinated ahead of time between hypervisor and
guest [11].

One of the main drawbacks of upcalls and hypercalls is
that they require a context switch as both mechanisms are
executed on the opposite side of the request. As a result,
these mechanisms must be invoked with care. Invoking
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a hypercall or upcall too frequently can result in high
latencies and computing resource waste [3].

Another drawback of upcalls in particular that the re-
quests are handled by the guest, which could be busy
handling other tasks. If the guest is busy or if a guest is
idle, upcalls incur the additional penalty of waiting for
the guest to be free or for the guest or woken up. This
can take an unbounded amount of time, and hypervisors
may have to rely on a penalty system to ensure guests
respond in a reasonable amount of time.

Finally, by increasing the coupling between the hyper-
visor and its guests, paravirtual mechanisms can be dif-
ficult to maintain over time. Each hypervisor have their
own paravirtual interfaces, and each guest must imple-
ment the interface of each hypervisor. The paravirtual in-
terface is not thin: Microsoft’s paravirtual interface spec-
ification is almost 300 pages long [46]. Linux provides a
variety of paravirtual hooks, which hypervisors can use
to communicate with the VM [78]. Despite the effort to
standardize the paravirtualization interfaces they are in-
compatible with each other, and evolve over time, adding
features or even removing some (e.g., Microsoft hyper-
visor event tracing). As a result, most hypervisors do not
fully support efforts to standardize interfaces and special-
ized OSs look for alternative solutions [45, 54].

Pre-virtualization. Pre-virtualization [42] is another
mechanism in which the guest requests services from
the hypervisor, but the requests are served in the context
of the guest itself. This is achieved by code injection:
the guest leaves stubs, which the hypervisor fills with
hypervisor code. Pre-virtualization offers an improve-
ment over hypercalls, as they provide more flexible in-
terface between the guest and the hypervisor. Arguably,
pre-virtualization suffers from a fundamental limitation:
code that runs in the guest is deprivileged and cannot per-
form sensitive operations, for example, accessing shared
I/O devices. As a result, in pre-virtualization, the hyper-
visor code that runs in the guest still needs to commu-
nicate with the privileged hypervisor code using hyper-
calls.

2.2 Introspection

Introspection occurs when a hypervisor or guest attempts
to infer information from the other context without di-
rectly communicating with it. With introspection, no in-
terface or coordination is required. For instance, a hy-
pervisor may attempt to infer the state of completely un-
known guests simply by their memory access patterns.
Another difference between introspection and paravirtu-
alization is that no context switch occurs: all the code to
perform introspection is executed in the requestor.

Virtual machine introspection (VMI). When a hy-
pervisor introspects a guest, it is known as VMI [25].
VMI was first introduced to enhance VM security by
providing intrusion detection (IDS) and kernel integrity
checks from a privileged host [10, 24, 25]. VMI has also
been applied to checkpointing and deduplicating VM
state [1], as well as monitoring and enforcing hypervisor
policies [55]. These mechanisms range from simply ob-
serving a VM’s memory and I/O access patterns [36] to
accessing VM OS data structures [16], and at the extreme
end they may modify VM state and even directly inject
processes into it [26, 19]. The primary benefits of VMI
are that the hypervisor can directly invoke VMI without a
context switch, and the guest does not need to be “aware”
that it is inspected for VMI to function. However, VMI
is fragile: an innocuous change in the VM OS, such as a
hotfix which adds an additional field to a data structure
could render VMI non-functional [8]. As a result, VMI
tends to be a “best effort” mechanism.

HVI. Used to a lesser extent, a guest may introspect
the hypervisor it is running on, known as hypervisor in-
trospection (HVI) [72, 61]. HVI is typically employed
either to secure a VM from untrusted hypervisors [62] or
by malware to circumvent hypervisor security [59, 48].

2.3 Extensible OSes

While hypervisors provide a fixed interface, OS research
suggested along the years that flexible OS interfaces can
improve performance without sacrificing security. The
Exokernel provided low level primitives, and allowed ap-
plications to implement high-level abstractions, for ex-
ample for memory management [22]. SPIN allowed
to extend kernel functionality to provide application-
specific services, such as specialized interprocess com-
munication [13]. The key feature that enables these ex-
tensions to perform well without compromising security,
is the use of a simple byte-code to express application
needs, and running this code at the same protection ring
as the kernel. Our work is inspired by these studies, and
we aim to design a flexible interface between the hyper-
visor and guests to bridge the semantic gap.

2.4 Hyperupcalls

This paper introduces hyperupcalls, which fulfill a need
for a mechanism for the hypervisor to communicate to
the guest which is coordinated (unlike VMI), executed by
the hypervisor itself (unlike upcalls) and does not require
context switches (unlike hypercalls). With hyperupcalls,
the VM coordinates with the hypervisor by registering
verifiable code. This code is then executed by the hyper-
visor in response to events (such as memory pressure, or
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Hyperupcall Code (C)

Hyperupcall Table

Hyperupcall
Framework

int is_page_free {
   if (page��free)
 return false;
   else {
 int page;

eBPF Bytecode

BPF_MOV_64 r0, r1
BPF_JMP_IMM #04
BPF_LD_ABS r1, #08
BPF_ALU64_IMM r3, #
BPF_EXIT_INSN

Native  Code

movl $0xff12AB45, %
addl %ecx, %eax
xorl %esi, %esi
movl 4(%esp), %ebx
retl
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Figure 1: System Architecture. Hyperupcall registration
(left) consists of compiling C code, which may refer-
ence guest data structures, into verifiable bytecode. The
guest registers the generated bytecode with the hypervi-
sor, which verifies its safety, compiles it into native code
and sets it in the VM hyperupcall table. When the hy-
pervisor encounters an event (right), such as a memory
pressure, it executes the respective hyperupcall, which
can access and update data structures of the guest.

VM entry/exit). In a way, hyperupcalls can be thought of
as upcalls executed by the hypervisor.

In contrast to VMI, the code to access VM state is pro-
vided by the guest so the hyperupcalls are fully aware
of guest internal data structures— in fact, hyperupcalls
are built with the guest OS codebase and share the same
code, thereby simplifying maintenance while providing
the OS with an expressive mechanism to describe its state
to underlying hypervisors.

Compared to upcalls, where the hypervisor makes
asynchronous requests to the guest, the hypervisor can
execute a hyperupcall at any time, even when the guest
is not running. With an upcall, the hypervisor is at the
mercy of the guest, which may delay the upcall [6]. Fur-
thermore, because upcalls operate like remote requests,
upcalls may be forced to implement OS functionality in
a different manner. For example, when flushing remote
pages in memory ballooning [71], the canonical tech-
nique for identifying free guest memory, the guest in-
creases memory pressure using a dummy process to free
pages. With a hyperupcall, the hypervisor can act as if
it were a guest kernel thread and scan the guest for free
pages directly.

Hyperupcalls resemble pre-virtualization, in that code
is transferred across the semantic gap. Transferring code
not only allows for more expressive communication, but
it also moves the execution of the request to the other
side of the gap, enhancing performance and functional-

Local
Hyperupcalls

Global
Hyperupcalls

event VM-exit memory reclaim
examples VM-entry memory aging

interrupt injection VCPU preemption
page mapping

use
notifications and
local policy
decisions

global policy
decisions

preemptable yes no
memory
mappings host user-space host kernel-space

memory
limit high low

memory
pinning no yes

callback
chaining yes no

hyperupcall IPI handling scheduler activation
examples security agent memory discard hints

tracing

Table 2: Hyperupcall event types. The hypervisor en-
forces certain limitations on global hyperupcalls, which
are used to make policy decisions.

ity. Unlike pre-virtualization, the hypervisor cannot trust
the code being provided by the virtual machine, and the
hypervisor must ensure that execution environment for
the hyperupcall is consistent across invocations.

3 Architecture

Hyperupcalls are short verifiable programs provided by
guests to the hypervisor to improve performance or pro-
vide additional functionality. Guests provide hyperup-
calls to the hypervisor through a registration process at
boot, allowing the hypervisor to access the guest OS state
and provide services by executing them after verification.
The hypervisor runs hyperupcalls in response to events
or when it needs to query guest state. The architecture of
hyperupcalls and the system we have built for utilizing
them is depicted in Figure 1.

We aim to make hyperupcalls as simple as possible
to build. To that end, we provide a complete frame-
work which allows a programmer to write hyperupcalls
using the guest OS codebase. This greatly simplifies
the development and maintenance of hyperupcalls. The
framework compiles this code into verifiable code which
the guest registers with the hypervisor. In the next sec-
tion, we describe how an OS developer writes a hyperup-
call using our framework.
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3.1 Building Hyperupcalls
Guest OS developers write hyperupcalls for each hyper-
visor event they wish to handle. Hypervisors and guests
agree on these events, for example VM entry/exit, page
mapping or virtual CPU (VCPU) preemption. Each hy-
perupcall is identified by a predefined identifier, much
like the UNIX system call interface [56]. Table 2 gives
examples of events a hyperupcall may handle.

3.1.1 Providing Safe Code

One of the key properties of hyperupcalls is that the code
must be guaranteed to not compromise the hypervisor.
In order for a hyperupcall to be safe, it must only be able
to access a restricted memory region dictated by the hy-
pervisor, run for a limited period of time without block-
ing, sleeping or taking locks, and only use hypervisor
services that are explicitly permitted.

Since the guest is untrusted, hypervisors must rely on a
security mechanism which guarantees these safety prop-
erties. There are many solutions that we could have cho-
sen: software fault isolation (SFI) [70], proof-carrying
code [51] or safe languages such as Rust. To implement
hyperupcalls, we chose the enhanced Berkeley Packet
Filter (eBPF) VM.

We chose eBPF for several reasons. First, eBPF is
relatively mature: BPF was introduced over 20 years
ago and is used extensively throughout the Linux ker-
nel, originally for packet filtering but extended to sup-
port additional use cases such as sandboxing system calls
(seccomp) and tracing of kernel events [34]. eBPF en-
joys wide adoption and is supported by various run-
times [14, 49]. Second, eBPF can be provably verified
to have the safety properties we require, and Linux ships
with a verifier and JIT which verifies and efficiently exe-
cutes eBPF code [74]. Finally, eBPF has a LLVM com-
piler backend, which enables eBPF bytecode to be gen-
erated from a high level language using a compiler fron-
tend (Clang). Since OSes are typically written in C, the
eBPF LLVM backend provides us with a straightforward
mechanism to convert unsafe guest OS source code into
verifiably safe eBPF bytecode.

3.1.2 From C to eBPF — the Framework

Unfortunately, writing a hyperupcall is not as simple re-
compiling OS code into eBPF bytecode. However, our
framework aims to make the process of writing a hyper-
upcalls simple and maintainable as possible. The frame-
work provides three key features that simplify the writ-
ing of hyperupcalls. First, the framework takes care of
dealing with guest address translation issues so guest OS
symbols are available to the hyperupcall. Second, the
framework addresses limitations of eBPF, which places

significant constraints on C code. Finally, the framework
defines a simple interface which provides the hyperup-
call with data so it can execute efficiently and safely.

Guest OS symbols and memory. Even though hyper-
upcalls have access to the entire physical memory of the
guest, accessing guest OS data structures requires know-
ing where they reside. OSes commonly use kernel ad-
dress space layout randomization (KASLR) to random-
ize the virtual offsets for OS symbols, rendering them un-
known during compilation time. Our framework enables
OS symbol offsets to be resolved at runtime by associat-
ing pointers using address space attributes and injecting
code to adjust the pointers. When a hyperupcall is reg-
istered, the guest provides the actual symbol offsets en-
abling a hyperupcall developer to reference OS symbols
(variables and data structures) in C code as if they were
accessed by a kernel thread.

Global / Local Hyperupcalls. Not all hyperupcalls
need to be executed in a timely manner. For example,
notifications informing the guest of hypervisor events
such as a VM-entry/exit or interrupt injection only affect
the guest and not the hypervisor. We refer to hyperup-
calls that only affect the guest that registered it as local,
and hyperupcalls that affect the hypervisor as a whole
as global. If a hyperupcall is registered as local, we re-
lax the timing requirement and allow the hyperupcall to
block and sleep. Local hyperupcalls are accounted in the
VCPU time of the guest similar to a trap, so a misbehav-
ing hyperupcall penalizes itself.

Global hyperupcalls, however, must complete their ex-
ecution in a timely manner. We ensure that for the guest
OS pages requested by global hyperupcalls are pinned
during the hyperupcall, and restrict the memory that can
be accessed to 2% (configurable) of the guest’s total
physical memory. Since local hyperupcalls may block,
the memory they use does not need to be pinned, allow-
ing local hyperupcalls to address all of guest memory.

Addressing eBPF limitations. While eBPF is expres-
sive, the safety guarantees of eBPF bytecode mean that
it is not Turing-complete and limited, so only a subset
of C code can be compiled into eBPF. The major lim-
itations of eBPF are that it does not support loops, the
ISA does not contain atomics, cannot use self-modifying
code, function pointers, static variables, native assembly
code, and cannot be too long and complex to be verified.

One of the consequences of these limitations is that
hyperupcall developers must be aware of the code com-
plexity of the hyperupcall, as complex code will fail
the verifier. While this may appear to be an unintuitive
restriction, other Linux developers using BPF face the
same restriction, and we provide a helper functions in our
framework to reduce complexity, such as memset and
memcpy, as well as functions that perform native atomic
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Helper Name Function
send vcpu ipi Send an interrupt to VCPU

get vcpu register Read a VCPU register
set vcpu register Read a VCPU register

memcpy memcpy helper function
memset memset helper function
cmpxchg compare-and-swap

flush tlb vcpu Flush VCPU’s TLB
get exit info Get info on an VM EXIT event

Table 3: Selected hyperupcall helper functions. The hy-
perupcall may call these functions implemented in the
hypervisor, as they cannot be verified using eBPF.

operations such as cmpxchg. A selection of these helper
functions is shown in Table 3. In addition, our frame-
work masks memory accesses (§3.4), which greatly re-
duces the complexity of verification. In practice, as long
as we were careful to unroll loops, we did not encounter
verifier issues while developing the use cases in (§4) us-
ing a setting of 4096 instructions and a stack depth of
1024.

Hyperupcall interface. When a hypervisor invokes a
hyperupcall, it populates a context data structure, shown
in Table 4. The hyperupcall receives an event data struc-
ture which indicates the reason the callback was called,
and a pointer to the guest (in the address space of the hy-
pervisor, which is executing the hyperupcall). When the
hyperupcall completes, it may return a value, which can
be used by the hypervisor.

Writing the hyperupcall. With our framework, OS
developers write C code which can access OS variables
and data structures, assisted by the helper functions of
the framework. A typical hyperupcall will read the
event field, read or update OS data structures and po-
tentially return data to the hypervisor. Since the hyper-
upcall is part of the OS, the developers can reference the
same data structures used by the OS itself—for example,
through header files. This greatly increases the main-
tainability of hyperupcalls, since data layout changes are
synchronized between the OS source and the hyperupcall
source.

It is important to note that a hyperupcall cannot invoke
guest OS functions directly, since that code has not been
secured by the framework. However, OS functions can
be compiled into hyperupcalls and be integrated in the
verified code.

3.2 Compilation
Once the hyperupcall has been written, it needs to be
compiled into eBPF bytecode before the guest can reg-
ister it with the hypervisor. Our framework generates
this bytecode as part of the guest OS build process by
running the hyperupcall C code through Clang and the

Input field Function
event Event specific data including event ID.
hva Host virtual address (HVA) in which the

guest memory is mapped.
guest mask Guest address mask to mask bits which

are higher than the guest memory address-
width. Used for verification (§ 3.4).

vcpus Pointers to the hypervisor VCPU data
structure, if the event is associated with a
certain VCPU, or a pointer to the guest OS
data structure. Inaccessible to the hyperup-
call, but used by helper functions.

vcpu reg Frequently accessed VCPU registers: in-
struction pointer and VCPU ID.

env Environment variables, provided by the
guest during hyperupcallregistration. Used
to set address randomization offsets.

Table 4: Hyperupcall context data. These fields are pop-
ulated by the hypervisor when a hyperupcall is called.

eBPF LLVM backend, with some modifications to assist
with address translation and verification:

Guest memory access. To access guest memory, we
use eBPF’s direct packet access (DPA) feature, which
was designed to allow programs to access network pack-
ets safely and efficiently without the use of helper func-
tions. Instead of passing network packets, we utilize
this feature by treating the guest as a “packet”. Using
DPA in this manner required a bug fix [2] to the eBPF
LLVM backend, as it was written with the assumption
that packet sizes are ≤64KB.

Address translations. Hyperupcalls allow the hyper-
visor to seamlessly use guest virtual addresses (GVAs),
which makes it appear as if the hyperupcall was running
in the guest. However, the code is actually executed by
the hypervisor, where host virtual address (HVAs) are
used, rendering guest pointers invalid. To allow the use
of guest pointers transparently in the host context, these
pointers therefore need to be translated from GVAs into
HVAs. We use the compiler to make these translations.

To make this translation simple, the hypervisor maps
the GVA range contiguously in the HVA space, so ad-
dress translations can easily be done by adjusting the
base address. As the guest might need the hyperupcall to
access multiple contiguous GVA ranges—for example,
one for the guest 1:1 direct mapping and of the OS text
section [37]—our framework annotates each pointer with
its respective “address space” attribute. We extend the
LLVM compiler to use this information to inject eBPF
code that converts each of the pointer from GVA to HVA
by a simple subtraction operation. It should be noted that
the generated code safety is not assumed by the hypervi-
sor and is verified when the hyperupcall is registered.
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Bound Checks. The verifier rejects code with direct
memory accesses unless it can ensure the memory ac-
cesses are within the “packet” (in our case, guest mem-
ory) bounds. We cannot expect the hyperupcall program-
mer to perform the required checks, as the burden of
adding them is substantial. We therefore enhance the
compiler to automatically add code that performs bound
checks prior to each memory access, allowing verifica-
tion to pass. As we note in Section 3.4, the bounds check-
ing is done using masking and not branches to ease veri-
fication.

Context caching. Our compiler extension introduces
intrinsics to get a pointer to the context or to read its data.
The context is frequently needed along the callback for
calling helper functions and for translating GVAs. Deliv-
ering the context as a function parameter requires intru-
sive changes and can prevent sharing code between the
guest and its hyperupcall. Instead, we use the compiler
to cache the context pointer in one of the registers and
retrieve it when needed.

3.3 Registration
After a hyperupcall is compiled into eBPF bytecode, it is
ready to be registered. Guests can register hyperupcalls
at any time, but most hyperupcalls are registered when
the guest boots. The guest provides the hyperupcall event
ID, hyperupcall bytecode and the virtual memory the hy-
perupcall will use. Each parameter is described below:

Hyperupcall event ID. ID of the event to handle.

Memory registration. The guest registers the virtual
contiguous memory regions used by the hyperupcall. For
global hyperupcalls, this memory is restricted to a max-
imum of 2% of the guest’s total physical memory (con-
figurable and enforced by the hypervisor).

Hyperupcall bytecode. The guest provides a pointer
to the hyperupcall bytecode with its size.

3.4 Verification
The hypervisor verifies that each hyperupcall is safe to
execute at registration time. Our verifier is based on the
Linux eBPF verifier and checks three properties of the
hyperupcall: memory accesses, number of runtime in-
structions, and helper functions used.

Ideally, verification is sound, ensuring only safe code
passes verification, and complete, successfully verifying
any safe program. While soundness cannot be compro-
mised as it might jeopardize the system safety, many ver-
ification systems, including eBPF, sacrifice completeness
to keep the verifier simple. In practice, the verifier re-
quires programs to be written in a certain way to pass
verification [66], and even then verification can fail due

to path explosion. These limitations are at odds of our
goal of making hyperupcalls simple to build.

We discuss the properties our verifier checks below,
and how we simplify these checks to make verification
as straightforward as possible.

Bounded runtime instructions. For global hyperup-
calls, the eBPF verifier ensures that any possible execu-
tion of the hyperupcall contains a limited number of in-
structions, which is set by the hypervisor (defaulted to
4096). This ensures that the hypervisor can execute the
hyperupcall in a timely manner, and that there are no in-
finite loops which can cause the hyperupcall not to exit.

Memory access verification. The verifier ensures that
memory accesses only occur in the region bounded by
the “packet”, which in a hyperupcall is the virtual mem-
ory region provided during registration. As noted before,
we enhance the compiler to automatically add code that
proves to the verifier that each memory access is safe.

However, adding such code naively results in frequent
verification failures. The current Linux eBPF verifier is
quite limited in its ability to verify the safety of mem-
ory accesses, as it requires that they will be preceded
by compare and branch instructions to prevent out of
bound accesses. The verifier explores the possible exe-
cution paths and ensures their safety. Although the veri-
fier employs various optimizations to prune branches and
avoid walking every possible branch, verification often
exhausts available resources and fails as we and others
have experienced [65].

Therefore, instead of using compare and branch to en-
sure memory access safety, our enhanced compiler adds
code that masks memory accesses offset within each
range, preventing out-of-bounds memory accesses. We
enhance the verifier to recognize this masking as safe.
After applying this enhancement, all the programs we
wrote passed verification.

Helper function safety. Hyperupcalls may call helper
functions to both improve performance and to help limit
the number of runtime instructions. Helper functions
are a standard eBPF feature and the verifier enforces
the helper functions which can be called, which may
vary from event to event depending on hypervisor pol-
icy. For example, the hypervisor may disallow the use of
flush tlb vcpu during memory reclamation, as it may
block the system for an extended amount of time.

The verifier checks to ensure that the inputs to the
helper function are safe, ensuring that the helper func-
tion only accesses memory which it is permitted to ac-
cess. While these checks could be done in the helper
function, new eBPF extensions allow the verifier to stat-
ically verify the helper function inputs. Furthermore, the
hypervisor can also set a policy for inputs on a per-event
basis (e.g, memcpy size for global hyperupcalls).
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The number and complexity of helper functions
should be limited as well, as they become part of the
trusted computing base. We therefore only introduce
simple helper functions, which mostly rely on code that
the guest can already trigger today directly or indirectly,
for example interrupt injection.

eBPF security. Two of the proof-of-concept exploits
of the recently discovered “Spectre” hardware vulnera-
bilities [38, 30] targeted eBPF, which might raise con-
cerns about eBPF and hyperupcall safety. While exploit-
ing these vulnerabilities is simpler if an attacker can run
unprivileged code in privileged context, just as hyperup-
calls do, discovered attacks can be prevented [63]. In
fact, these security vulnerabilities can make hyperupcalls
more compelling as their mitigation techniques (e.g, re-
turn stack buffer stuffing [33]) induce extra overheads
when context switches take place using traditional par-
avirtual mechanisms such as upcalls and hypercalls.

3.5 Execution

Verified hyperupcalls are installed into a per guest hype-
rupcall table. Once the hyperupcall has been registered
and verified, the hypervisor executes hyperupcalls in re-
sponse to events.

Hyperupcall patching. To avoid the overhead of test-
ing whether hyperupcall is registered, the hypervisor
uses a code patching technique, known in Linux as
“static keys” [12]: a no-op instruction is set on each of
the hypervisor hyperupcall invocation code only when
hyperupcalls are registered.

Accessing remote VCPU state. Some hyperupcalls
read or modify the state of remote VCPUs. These VC-
PUs may not be running or their state may be accessed by
a different thread of the hypervisor. Even if the remote
VCPU is preempted, the hypervisor may have already
read some registers and not expect them to change until
the VCPU resumes execution. If the hyperupcall writes
to remote VCPU registers, it may break the hypervisor
invariants and even introduce security issues.

Furthermore, reading remote VCPU registers can in-
duce high overheads, as part of the VCPU state may
be cached in another CPU, and must be written back
to memory first if the VCPU state is to be read. More
importantly, in Intel CPUs the VCPU state cannot be
accessed by common instructions, and the VCPU must
be “loaded” first before its state can be accessed by us-
ing special instructions (VMREAD and VMWRITE). Switch-
ing the loaded VCPU incurs significant overhead, which
roughly 1800 cycles on our system.

For performance, we define synchronization points
where the hypervisor is commonly preempted, and ac-
cessing the VCPU state is known to be safe. At these

points we “decache” VCPU registers from the VMCS
and write them to the memory so the hyperupcall can
read them. The hyperupcall writes to remote VCPU reg-
isters and updates the decached value to flag the hyper-
visor to reload the register values into the VMCS before
resuming that VCPU. Hyperupcalls that access remote
VCPUs are executed on a best-effort basis, running only
if the VCPU is in a synchronization point. The remote
VCPU is prevented from resuming execution while the
hyperupcall is running.

Using guest OS locks. Some of the OS data-structures
are protected by locks. Hyperupcalls that require con-
sistent guest OS data structure view should abide the
synchronization scheme that the guest OS dictates. Hy-
perupcall, however, can only acquire locks opportunis-
tically, since a VCPU might be preempted while hold-
ing a lock. The lock implementation might need to be
adapted to support locking by an external entity, different
than any VCPU. Releasing a lock can require relatively
large code to handle slow-paths, which might prevent the
timely verification of the hyperupcall.

While various ad-hoc solutions may be proposed, it
seems a complete solution requires the guest OS locks
to be hyperupcall-aware. It also necessitates support for
calling eBPF function from eBPF code to avoid inflated
code size that might cause verification failures. Since
this support has been added very recently, our implemen-
tation does not include lock support.

4 Use Cases and Evaluation

Our evaluation is guided by the following questions:
• What are the overheads of using verified code

(eBPF) versus native code? (§4.1).
• How do hyperupcalls compare to other paravirtual

mechanisms (§4.3, 4.2, 4.5)?
• How can hyperupcalls enhance not only the perfor-

mance (§4.3, 4.2) but also the security (§4.5) and
debuggability (§4.4) of virtualized environments?

Testbed. Our testbed consists of a 48 core dual-socket
Dell PowerEdge R630 server with Intel E5-2670 CPUs,
a Seagate ST1200 disk, which runs Ubuntu 17.04 with
Linux kernel v4.8. The benchmarks are run on guests
with 16 VCPUs and 8GB of RAM. Each measurement
was performed 5 times and the average result is reported.

Hyperupcall prototype. We implemented a prototype
for hyperupcall support on Linux v4.8 and KVM, the hy-
pervisor which is integrated in Linux. Hyperupcalls are
compiled through a patched LLVM 4, and are verified
through the Linux kernel eBPF verifier with the patches
we described in §3. We enable the Linux eBPF “JIT” en-
gine , which compiles the eBPF code to native machine
code after verification. The correctness of the BPF JIT
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h-visor runtime (cycles) eBPF C
use case event h-upcall native instr. SLoC
discard § 4.3 reclaim 185 147 357 32
tracing § 4.4 exit 568 336 3308 889
TLB § 4.2 interrupt 395 530 111 112
protect § 4.5 exit 43 25 119 74

map 108 92 170 52

Table 5: Evaluated hyperupcall use cases, comparison of
runtime, eBPF instructions and number of lines of code.

engine has been studied and can be verified [74].

Use cases. We evaluate four hyperupcall use cases as
listed in Table 5. Each use case demonstrates the use
of hyperupcalls on different hypervisor events, and uses
hyperupcalls of varying complexity.

4.1 Hyperupcall overheads
We evaluate the overheads of using verified code to ser-
vice hypervisor requests by comparing the runtime of a
hyperupcall versus native code with the same function
(Table 5). Overall, we find that the absolute overhead of
the verified code relative to native is small (< 250 cy-
cles). For the TLB use case which handles TLB shoot-
down to inactive cores, our hyperupcall runs faster than
native code since the TLB flush is deferred. The over-
head of verifying a hyperupcall is minimal. For the
longest hyperupcall (tracing), verification took 67ms.

4.2 TLB Shootdown
While interrupt delivery to VCPUs can usually be done
efficiently, there is a significant penalty if the target
VCPU is not running. This can occur if CPUs are over-
committed and scheduling the target VCPU requires pre-
empting another VCPU. With synchronous interproces-
sor interrupts (IPIs), the sender resumes execution only
after the receiver indicates the IPI was delivered and han-
dled, resulting in prohibitive overheads.

The overhead of IPI delivery is most notable in the
case of translation lookaside buffer (TLB) shootdowns, a
software protocol that OSs use to keep TLBs—caches of
virtual to physical address mapping—coherent. As com-
mon CPU architectures (e.g., x86) do not keep TLBs co-
herent in hardware, an OS thread that modifies a mapping
sends an IPI to other CPUs that may cache the mapping,
and these CPUs then flush their TLBs.

We use hyperupcalls to handle this scenario by reg-
istering a hyperupcall which handles TLB shootdowns
when interrupts are delivered to a VCPU. The hypervisor
provides that hyperupcall with the interrupt vector and
the target VCPU after ensuring it is in quiescent state.
Our hyperupcall checks whether this vector is the “re-
mote function invocation” vector and whether the func-
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Figure 2: The latency of Apache when CPUs are over-
committed, with and without a hyperupcall that handle
interrupts to preempted VCPUs. Numbers above data
points indicate speedup over base.

tion pointer equals to the OS TLB flush function. If
it does, it runs this function with few minor modifica-
tions: (1) instead of flushing the TLB using native in-
struction, the TLB flush is performed using a helper func-
tion, which defers it to the next VCPU re-entry; (2) TLB
flush is performed even when the VCPU interrupts are
disabled, as experimentally it improves performance.

Admittedly, an alternative solution is available: intro-
ducing a hypercall that delegates TLB flushes to the hy-
pervisor [52]. Although this solution can prevent TLB
flushes, it requires a different code path, which may in-
troduce hidden bugs [43], complicate the integration with
OS code or introduce additional overheads [44]. This
solution is also limited to TLB flushes, and cannot deal
with other interrupts, for example, rescheduling IPIs.

Evaluation We run Apache Web server [23] in a guest
using the default mpm event module, which runs mul-
tithreaded workers to handle incoming requests. To
measure performance, we use ApacheBench, an Apache
HTTP server benchmarking tool, generating 10k re-
quests using 16 connections, and measuring the request
latency. The results, which are shown in Figure 2, show
hyperupcalls reduce the latency by up to 1.3×. It might
appear surprising that performance improves even when
the physical CPUs are not oversubscribed. However, as
VCPUs are often momentarily idle in this benchmark,
they can also trigger an exit to the hypervisor.

4.3 Discarding Free Memory

Free memory, by definition, holds no needed data and
can be discarded. If the hypervisor knows what memory
is free in the guest, it can discard it during memory recla-
mation, snapshotting, live migration or lock-step execu-
tion [20] and avoid I/O operations for saving and restor-
ing their content. Information on which memory pages
are free, however, is held by the guest and unavailable to
the hypervisor due to the semantic gap.

Throughout the years several mechanisms have been
proposed to inform the hypervisor which memory pages
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Figure 3: Time of guest memory reclaim of 7GB and refault, when reading a 4GB file, when CPUs are overcommitted.
The x-axis shows the number of physical cores available. (a) As the number of physical cores decrease (and overcom-
mitment increases), the time to reclaim memory increases. (b) refaulting free memory incurs a significant penalty for
uncooperative swapping (swap-base) on its own because it swaps out active and free pages.

are free using paravirtualization. These solutions, how-
ever, either couple the guest and hypervisor [60]; induce
overheads due to frequent hypercalls [41] or are limited
to live migration [73]. All of these mechanisms suffer for
an inherent limitation: without coupling the guest and the
hypervisor, the guest needs to communicate to the hyper-
visor which pages are free.

In contrast, a hypervisor that supports hyperupcalls
does not need to be notified about free pages. In-
stead, the guest sets a hyperupcall that describes whether
a page is discardable based on the page metadata
(Linux’s struct page) and is based in Linux on the
is free buddy page function. When the hypervisor
performs an operation that can benefit from discarding
a free guest memory page such as reclaiming a page, the
hypervisor invokes this hyperupcall to check whether the
page is discardable. The hyperupcall is also called when
the page is already unmapped, preventing a race in which
it is discarded when it is no longer free.

Checking whether a page can be discarded must be
done through a global hyperupcall, since the answer must
be provided in a bounded and short time. As a result, the
guest can only register part of its memory to be used by
the hyperupcall, since this memory is never paged out to
ensure timely execution of the hyperupcall. Our Linux
guest registers the memory of the pages’ metadata, which
accounts to about 1.6% of the guest’s physical memory.

Evaluation. To evaluate the performance of the “mem-
ory discard” hyperupcall, we measure its impact on a
guest whose memory is reclaimed due to memory pres-
sure. When memory is scarce, hypervisors can per-
form “uncooperative swapping”—directly reclaim guest
memory and swap it out to disk. This approach, how-
ever, often leads to suboptimal reclamation decisions.
Alternatively, hypervisors can use memory ballooning,
a paravirtual mechanism in which a guest module is in-
formed on host memory pressures and causes the guest
to reclaim memory directly [71]. The guest can then

make knowledgeable reclamation decisions and discard
free pages. Although memory ballooning usually per-
forms well, performance suffers when memory needs to
be abruptly reclaimed [4, 6] or when the guest disk is set
on a network attached storage [68], and it is therefore not
used under high memory pressure [21].

To evaluate memory ballooning, uncooperative swap-
ping and swapping with hyperupcalls we run a scenario
in which memory and physical CPU need to be abruptly
reclaimed, such as to accommodate a new guest. In
the guest, we start and exit “memhog”, making 4GB
available to be reclaimed in the guest. Next, we make
the guest busy by running a CPU intensive task with
low memory footprint - the SysBench CPU benchmark,
which computes primes using all VCPUs [39].

Now, with the the system busy, we simulate the need
to reclaim resources to start a new guest by increasing
memory and CPU overcommitment. We lower the num-
ber of physical CPUs available to the guest and restrict
it to only 1GB of memory. We measure the time it
takes to reclaim memory against the number of physi-
cal CPUs that were allocated for the guest (Figure 3a).
This simulates a new guest starting up. Then, we stop
increasing memory pressure and measure the time to run
a guest application with a large memory footprint using
the SysBench file read benchmark on 4GB (Figure 3b).
This simulates the guest reusing pages that have been re-
claimed by the hypervisor.

Ballooning reclaims memory slowly (up to 110 sec-
onds) when physical CPUs are overcommitted, as the
memory reclamation operations compete with the CPU
intensive tasks on CPU time. Uncooperative swapping
(swap-base) can reclaim faster (32 seconds), but as it
is oblivious to whether memory pages are free, it in-
curs higher overhead in refaulting guest free pages. In
contrast, when hyperupcalls are used, the hypervisor
can promote free pages’ reclamation and discard them,
thereby reclaiming memory up to 8 times faster than bal-
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loon, with only 10% slowdown in refaulting the memory.
CPU overcommitment, of course, is not the only

scenario where ballooning is non-responsive or unus-
able. Hypervisors refrain from ballooning when memory
pressure is very high, and use host-level swapping in-
stead [67]. It is possible for hyperupcalls to operate syn-
ergistically with ballooning: the hypervisor may use the
balloon normally and use hyperupcalls when resource
pressures are high or the balloon is not responding.

4.4 Tracing
Event tracing is an important tool for debugging correct-
ness and performance issues. However, collecting traces
for virtualized workloads is somewhat limited. Traces
collected inside a guest do not show hypervisor events,
such as when a VM-exit is forced, which can have signif-
icant effect on performance. For traces that are collected
in the hypervisor to be informative, they require knowl-
edge about guest OS symbols [15]. Such traces cannot be
collected in cloud environments. In addition, each trace
collects only part of the events and does not show how
guest and hypervisor events interleave.

To address this issue, we run the Linux kernel trac-
ing tool, ftrace [57], inside a hyperupcall. Ftrace is
well suited to run in a hyperupcall. It is simple, lock-
less, and built to enable concurrent tracing in multiple
contexts: non-maskable interrupt (NMI), hard and soft
interrupt handlers and user processes. As a result, it was
easily be adapted to trace hypervisor events concurrently
with guest events. Using the ftrace hyperupcall, the
guest can trace both hypervisor and guest events in one
unified log, easing debugging. Since tracing all events
use only guest logic, new OS versions can change the
tracing logic, without requiring hypervisor changes.

Evaluation. Tracing is efficient, despite the hyperup-
callcomplexity (3308 eBPF instructions), as most of the
code deals with infrequent events that handles situations
in which trace pages fill up. Tracing using hyperupcalls
is slower than using native code by 232 cycles, which
is still considerably shorter time than the time a context
switch between the hypervisor and the guest takes.

Tracing is a useful tool for performance debugging,
which can expose various overheads [79]. For example,
by registering the ftrace on the VM-exit event, we see
that many processes, including short-lived ones, trigger
multiple VM exits due to the execution of the CPUID in-
struction, which enumerates the CPU features and must
be emulated by the hypervisor. We find that the GNU C
Library, which is used by most Linux applications, uses
CPUID to determine the supported CPU features. This
overhead could be prevented by extending Linux virtual
dynamic shared object (vDSO) for applications to query
the supported CPU features without triggering an exit.

4.5 Kernel Self-Protection
One common security hardening mechanisms that OSs
employ is “self-protection”: OS code and immutable
data write protection. However, this protection is done
using page tables, allowing malware to circumvent it by
modifying page table entries. To prevent such attacks,
the use of nested page tables has been suggested, as these
tables are inaccessible from the guest [50].

However, nesting can only provide a limited number
of policies and for example, cannot whitelist guest code
that is allowed to access protected memory. Hyperup-
calls are much more expressive, allowing the guest to
specify memory protection in a flexible manner.

We use hyperupcalls to provide hypervisor-level guest
kernel self-protection, which can be easily modified to
accommodate complex policies. In our implementation
the guest sets a bitmap which marks protected pages, and
registers hyperupcall on exit events, which checks the
exit reason, whether a memory access occurred and if the
guest attempted to write to protected memory according
to the bitmap. If there is an attempt to access protected
memory, a VM shutdown is triggered. The guest sets an
additional hyperupcall on the “page map” event, which
queries the required protection of the guest page frames.
This hyperupcall prevents situations in which the hyper-
visor proactively prefaults guest memory.

Evaluation. This hyperupcall code is simple, yet in-
curs overhead of 43 cycles per exit. Arguably, only work-
loads which already experience very high number of con-
text switches would be affected by the additional over-
heads. Modern CPUs prevent such frequent switches.

5 Conclusion

Bridging the semantic gap is critical performance and for
the hypervisor to provide advanced services to guests.
Hypercalls and upcalls are now used to bridge the gap,
but they have several drawbacks: hypercalls cannot
be initiated by the hypervisor, upcalls do not have a
bounded runtime, and both incur the penalty of context
switches. Introspection, an alternative which avoids con-
text switches can be unreliable as it relies on observations
instead of an explicit interface. Hyperupcalls overcome
these limitations by allowing the guest to expose its logic
to the hypervisor, avoiding a context switch by enabling
the hyperupcall to safely execute guest logic directly.

We have built a complete infrastructure for develop-
ing hyperupcalls which allow developers to easily add
new paravirtual features using the codebase of the OS.
We have written and evaluated several hyperupcalls and
show hyperupcalls improve virtualized performance by
up to 2×, ease debugging of virtualized workloads and
improve VM security.
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