
This paper is included in the Proceedings of the 
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the 
30th USENIX Security Symposium 

is sponsored by USENIX.

CipherLeaks: Breaking Constant-time Cryptography 
on AMD SEV via the Ciphertext Side Channel

Mengyuan Li, The Ohio State University; Yinqian Zhang, Southern University 
of Science and Technology; Huibo Wang and Kang Li, Baidu Security; 

Yueqiang Cheng, NIO Security Research
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan



CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV
via the Ciphertext Side Channel

Mengyuan Li∗

The Ohio State University
Yinqian Zhang† B

Southern University of Science and Technology
Huibo Wang

Baidu Security

Kang Li
Baidu Security

Yueqiang Cheng‡

NIO Security Research

Abstract
AMD’s Secure Encrypted Virtualization (SEV) is a hard-

ware extension available in AMD’s EPYC server processors
to support confidential cloud computing. While various prior
studies have demonstrated attacks against SEV by exploiting
its lack of encryption in the VM control block or the lack of
integrity protection of the encrypted memory and nested page
tables, these issues have been addressed in the subsequent
releases of SEV-Encrypted State (SEV-ES) and SEV-Secure
Nested Paging (SEV-SNP).

In this paper, we study a previously unexplored vulner-
ability of SEV, including both SEV-ES and SEV-SNP. The
vulnerability is dubbed ciphertext side channels, which allows
the privileged adversary to infer the guest VM’s execution
states or recover certain plaintext. To demonstrate the sever-
ity of the vulnerability, we present the CIPHERLEAKS attack,
which exploits the ciphertext side channel to steal private keys
from the constant-time implementation of the RSA and the
ECDSA in the latest OpenSSL library.

1 Introduction

AMD’s Secure Encrypted Virtualization (SEV) is an exten-
sion of the AMD Virtualization (AMD-V) technology. It pro-
vides security features, such as memory encryption and isola-
tion to virtual machines (VM), in order to support scenarios
like confidential cloud computing where hypervisors are not
trusted to respect the security of the VMs [2].

However, with the assumption of a malicious hypervisor,
SEV faces numerous attacks. One vulnerability of the SEV
is that the VM Control Block (VMCB) is not encrypted dur-
ing the world switch between the guest VM and the hypervi-
sor [15,31,35], which enables the hypervisor to inspect and/or
alter the control flow of the victim VM. AMD thus released
SEV Encrypted States (SEV-ES) [17], the second generation
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of SEV that encrypts the sensitive portion of VMCB and
stores them into the VM Save Area (VMSA) during the world
switch. Therefore, these attacks can be mitigated.

However, other vulnerabilities of SEV, including unauthen-
ticated encryption [9, 11, 36], unprotected nested page table
(NPT) [15,26,27], unprotected I/O [23] and unauthorized Ad-
dress Space identifier (ASID) [22], have been demonstrated to
threaten the security of SEV-ES. To perform these attacks, the
hypervisor must alter the encrypted memory or the physical
address mapping of the victim VM. This is possible because
SEV does not have sufficient protection for memory integrity.
To tackle these issues, AMD has announced to release SEV
Secure Nested Paging (SEV-SNP) in the next generation of
SEV processors [4]. SEV-SNP protects the integrity of the
guest VM by introducing a Reverse Map Table (RMP) to
record and check the ownership of the guest VM’s memory
pages [2,4]. Therefore, although not yet available to be tested
by security researchers, SEV-SNP is expected to be immune
to all previously known attacks.

Unlike all prior work on SEV attacks, this paper presents a
new side channel on SEV (including SEV-ES and SEV-SNP)
processors. We call it the ciphertext side channel. It allows
the privileged hypervisor to monitor the changes of the cipher-
text blocks on the guest VM’s memory pages and exfiltrate
secrets from the guest. The root cause of the ciphertext side
channel are two-fold: First, SEV’s memory encryption en-
gine uses an XOR-Encrypt-XOR (XEX) mode of operation,
which encrypts each 16-byte memory block independently
and preserves the one-to-one mapping between the plaintext
and ciphertext pairs for each physical address. Second, the
design of SEV does not prevent the hypervisor from reading
the ciphertext of the encrypted guest memory, thus allowing
its monitoring of the ciphertext changes during the execution
of the guest VM.

To demonstrate the severity of leakage due to the ciphertext
side channel, we construct the CIPHERLEAKS attack, which
exploits the ciphertext side channel on the encrypted VMSA
page of the guest VM. Specifically, the CIPHERLEAKS attack
monitors the ciphertext of the VMSA area during VMEXITs,
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then (1) by comparing the ciphertext blocks with the ones
observed during previous VMEXITs, the adversary is able
to learn that the corresponding register values have changed
and thereby infer the execution state of the guest VM; and
(2) by looking up a dictionary of plaintext-ciphertext pairs
collected during the VM bootup period, the adversary is able
to recover some selected values of the registers. With these
two attack primitives, we show that the malicious hypervisor
may leverage the ciphertext side channel to steal the private
keys from the constant-time implementation of the RSA and
ECDSA algorithms in the latest OpenSSL library, which are
believed to be immune to side channels.

We discuss countermeasures of the ciphertext side channel
and the specific CIPHERLEAKS attack. While there are some
seemingly feasible software countermeasures, we show they
become fragile when the CIPHERLEAKS attack is performed
using Advanced Programmable Interrupt Controller (APIC).
Therefore, we conjecture that the ciphertext side-channel vul-
nerability is difficult to eradicate from the software. Therefore,
alternative hardware solutions must be adopted in the future
SEV hardware.

Contributions. This paper contributes to the security of
AMD SEV and confidential computing technology in general
in the following aspects:
• It presents a novel ciphertext side channel on SEV pro-
cessors. This discovery identifies a fundamental flaw in the
SEV’s use of XEX mode memory encryption.
• It presents a new CIPHERLEAKS attack that exploits the ci-

phertext side channel to infer register values from encrypted
VMSA. Two primitives were constructed for inferring the
execution states of the guest VM and recovering specific
values of the registers.
• It presents successful attacks against the constant-time RSA
and ECDSA implementation of the latest OpenSSL library,
which has been considered secure against side channels.
• It discusses the applicability of the CIPHERLEAKS attack
on SEV-SNP. To the best of our knowledge, the CIPHER-
LEAKS attack is the only working attack against SEV-SNP
that breaches the memory encryption of the guest VM.
• It discusses potential software and hardware countermea-
sures for the ciphertext side channel and the demonstrated
CIPHERLEAKS attack.

Responsible disclosure. We disclosed the vulnerability of
the ciphertext side channel and the CIPHERLEAKS attack
to AMD via emails in December 2020. We also distributed
the first draft of this paper with AMD engineers in January
2021. AMD engineers have acknowledged the vulnerability
on SEV, SEV-ES, and SEV-SNP, and filed an embargo that
is effective until August 10, 2021. As of the time of writing,
CVE number, CVE-2020-12966, has been reserved for the
vulnerability. AMD will announce a security bulletin together
with a hardware patch for SEV-SNP in August 2021.

We have also reported the vulnerable OpenSSL algorithms
(see Section 4) to OpenSSL in January 2021. The OpenSSL
community has acknowledged our notification, but OpenSSL
will not be patched, because to properly mitigate such an at-
tack within OpenSSL, it would require significant changes to
the whole software stack. We will describe software counter-
measures in Section 6.

Paper outline. The rest of the paper is outlined as follows.
Section 2 describes some background knowledge of this paper.
Section 3 presents an overview of the ciphertext side channel,
their root causes, and two attack primitives. Section 4 sketches
two end-to-end attacks against constant-time cryptography
implementations in the latest OpenSSL library. Section 6 dis-
cusses the potential countermeasures. Section 7 presents the
related work and Section 8 concludes the paper.

2 Background

2.1 Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a new feature in
AMD processors [19]. AMD introduces SEV for protecting
virtual machines (VMs) from the untrusted hypervisor. Us-
ing the memory encryption technology, each VM will be
encrypted with a unique AES encryption key, which is not
accessible from the hypervisor or the VMs. The encryption
is transparent to both hypervisor and VMs and happens in-
side dedicated hardware in the on-die memory controller.
The in-use data in each VM will be encrypted by their corre-
sponding key automatically, and thus no additional software
modifications are needed to run programs containing sen-
sitive secrets in the SEV platform. Open Virtual Machine
Firmware (OVMF), the UEFI for x86 VM, and Quick Emula-
tor (QEMU), the device simulator, are the other two critical
components for the SEV-enabled VM.

Encrypted Memory. SEV hardware encrypts the VM’s mem-
ory using 128-bit AES symmetric encryption. The AES en-
gine integrated into the AMD System-on-Chip (SOC) auto-
matically encrypts the data when it is written to the memory
and automatically decrypts the data when it is read from
memory. For SEV, the AES encryption uses the XOR-and-
Encrypt encryption mode [12], which is later changed to an
XEX mode encryption. Thus, each aligned 16-byte mem-
ory block is encrypted independently. SEV utilizes a physi-
cal address-based tweak function T () to prevent the attacker
from directly inferring plaintext by comparing 16-byte cipher-
text [19]. It adopts a basic Xor-and-Encrypt (XE) mode on
the first generation of EPYC processors (e.g., EPYC 7251).
The ciphertext c is calculated by XORing the plaintext m
with the tweak function for system physical address Pm using
c= ENC(m⊕T (Pm)), where the encryption key is called VM
encryption key (Kvek). This basic XE encryption mode can
be easily reverse-engineered by the adversary as the tweak
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function vectors tis are fixed. AMD then replaces the XE
mode encryption with the XOR-Encrypt-XOR (XEX) mode
in EPYC 7401P processors where the ciphertext is calculated
by c = ENC(m⊕T (Pm))⊕T (Pm). The tweak function vec-
tors tis are proved to have only 32-bit entropy by Wilke et
al. [36] at first, which allows an adversary to reverse engineer
the tweak function vectors. AMD adopted a 128-bit entropy
tweak function vectors in their Zen 2 architecture EPYC pro-
cessors from July 2019 [33] and thus fixed all existing vulner-
abilities in SEV AES encryption. However, the same plaintext
always has the same ciphertext in system physical address Pm
during the lifetime of a guest VM.

SEV, SEV-ES, and SEV-SNP. The first version of SEV [19]
was released in April, 2016. AMD later released the second
generation SEV-ES [17] in February, 2017 and the whitepa-
per of the third generation SEV-SNP [18] in January, 2020.
SEV-ES is designed to protect the register states during the
world switch and introduces the VMSA to store the register
states encrypted by Kvek. SEV-SNP is designed to protect the
integrity of the VM’s memory and introduces the RMP to
store the ownership of each memory pages. Although SEV,
SEV-ES, and SEV-SNP use the same AES encryption engine,
some additional memory access restrictions are included in
SEV-SNP for integrity protection. In SEV and SEV-ES, the
hypervisor has read/write access to the VM’s memory regions,
which means the hypervisor can directly read or replace the
ciphertext of the guest VM. In SEV-SNP, the RMP checks pre-
vent the hypervisor from altering the ciphertext in the guest
VM’s memory by adding the ownership check before memory
accesses. However, the hypervisor still has read accesses to
the ciphertext of the guest VM’s memory [4].

Non-Automatic VM Exits. VMEXITs in SEV-ES and SEV-
SNP are classified as either Automatic VM Exits (AE) or
Non-Automatic VM Exits (NAE). AE VMEXITs are events
that do not need to expose any register state to the hypervisor.
These events include machine check exception, physical inter-
rupt, physical Non-Maskable-Interrupt, physical Init, virtual
interrupt, pause instruction, hlt instruction, shutdown, write
trap of CR[0-15], Nested page fault, invalid guest state, busy
bit, and VMGEXIT [2]. All other VMEXITs are classified as
NAE VMEXITs, which require exposing some register values
to the hypervisor.

Instead of being trapped directly by the hypervisor, NAE
events first result in a VC exception, which is handled by a VC
handler inside the guest VM. The VC handler then inspects
the NAE event’s error code and decides which registers need
to be exposed to the hypervisor. The VC handler copies those
registers’ states to a special structure called Guest-Hypervisor
Communication Block (GHCB), which is a shared memory
region between the guest and the hypervisor. After copying
those necessary registers’ states to GHCB, the VC handler
executes a VMGEXIT instruction to trigger an AE VMEXIT.
The hypervisor then traps the VMGEXIT VMEXIT, reads

those states from the GHCB, handles the VMEXIT, writes the
return registers’ states into GHCB if needed, and executes a
VMRUN. After the VMRUN, the guest VM’s execution will
resume after the VMGEXIT instruction inside the VC handler,
which copies the return values from GHCB to the correspond-
ing registers, and then exits the VC handler. For example, to
handle CPUID instructions, the VC handler stores the states of
RAX and RCX and the VM EXITCODE (0x72 for CPUID)
into GHCB and executes a VMGEXIT. The hypervisor then
emulates the CPUID instruction and updates the values of
RAX, RBX, RCX, and RDX in GHCB. After VMRUN, the
VC handler checks if those return registers’ states are valid
and copies those states to its internal registers.

IOIO_PROT. During the Pre-Extensible Firmware Interface
(PEI) initialization phase of SEV VM, IOIO port is used in-
stead of DMA. The reason is that DMA inside SEV VM
requires a shared bounce buffer between VM and the hyper-
visor [23]. The guest VM needs to copy DMA data from
the bounce buffer to its private memory for input data and
copy data from its private memory to bounce buffer for output
data. Implementing bounce buffer requires allocating dynamic
memory and additional memory copy operations, which is a
challenge in the PEI initialization phase.

IOIO_PROT event is one of the NAE events that need to ex-
pose register states to the hypervisor. In an IOIO_PROT event,
several pieces of information are returned to the hypervisor in
GHCB. SW_EXITCODE contains the error code (i.e., 0x7b)
of IOIO_PROT events. SW_EXITINFO1 contains the inter-
cepted I/O port (bit 31:16), address length (bit 9:7), operand
size (bit 6:4), repeated port access (bit 3), and access type
(i.e., IN, OUT, INS, OUTS) (bit 2,0). The SW_EXITINFO2
is used to save the next RIP in non-SEV VM and SEV VM,
masked to 0 in SEV-ES and SEV-SNP. For IN instructions, the
hypervisor puts the RAX value into the RAX field of GHCB
before VMRUN; for OUT instructions, the VC handler places
the RAX register value into the RAX field of GHCB before
the VMGEXIT.

2.2 Cryptographic Side-Channel Attacks

Timing attack. Timing attacks against cryptographic imple-
mentations are a subset of side-channel attacks, where the
attacker exploits the time difference in the execution of a
specific cryptographic function to steal the secret informa-
tion. Any functions that have secret-dependent execution time
variation is vulnerable to timing attacks. However, whether se-
crets can be stolen in practice depends on many other factors,
such as the implementation of the cryptographic function,
the hardware supporting the program, the accuracy of the
timing measurements, etc.. In 1996, Paul Kocher published
the first timing attack on RSA implementation [20]. Boneh
and Brumley demonstrated a practical timing attack against
SSL-enabled network servers in 2003, where they recovered
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a server’s private key based on the RSA execution time differ-
ence [8]. In fact, timing attacks are not only practical against
RSA, but to other crypto algorithms, including ElGamal and
the Digital Signature Algorithm [29].

Architecture side channel attack. Micro-architecture side
channels are side channels that use shared CPU architec-
ture resources to infer a victim program’s behaviors. Most
micro-architecture side channels exploit timing differences to
infer the victim program’s behaviors. Some commonly used
shared resources in micro-architecture side channels include
Branch Target Buffer (BTB), Cache (L1, L2, L3 cache), Trans-
lation Look-aside Buffer (TLB) and the CPU internal load-
/store buffers, etc.. Some representative micro-architecture
side-channel techniques include Flush+Reload attacks [38],
Prime+Probe attack [28], utag attacks [24] and Flush+Flush
attacks [14]. Those existing works show that architecture side
channels can be exploited and used to break confidentiality in
a local or cloud setting.

Constant-time Cryptography. Constant-time cryptography
implementations [7] are widely used in mainstream cryptogra-
phy library to mitigate timing attacks, the design of constant-
time functions is used to reduce or eliminate data-dependent
timing information. Specifically, Constant-time implementa-
tions are making the execution time independent of the secret
variables, therefore, do not leak any secret information to tim-
ing analysis. To achieve constant execution time, there are
three rules to follow. First, the control-flow paths cannot de-
pend on the secret information. Second, the accessed memory
addresses can not depend on the secret information. Third, the
inputs to variable-time instructions such as division and mod-
ulus cannot depend on the secret information. There are a few
tools developed assessing the constant-time implementations,
including ImperialViolet [21], dudect [30], ct-verif [1].

2.3 Advanced Programmable Interrupt Con-
troller

AMD processors provide an Advanced Programmable Inter-
rupt Controller (APIC) for software to trigger interrupts [2].
Each CPU core is associated with one APIC, and several
interrupt resources are supported, including APIC timer, per-
formance monitor counter, and I/O interrupts. In the APIC
timer mode, a programmable 32-bit APIC-timer counter can
be used by software to generate APIC interrupts. Two modes
(periodic and one-shot mode) are supported. In the one-shot
mode, the counter can be set to a software-defined initial value
and decrease with a clock rate. Once the counter reaches zero,
an APIC interrupt is generated on this CPU core. In the pe-
riod mode, the counter is automatically initialized to the initial
value after reaching zero; an interrupt is generated every time
the counter reaches zero.

The APIC is used in SGX-Step [34] to single-step the
enclave program on Intel SGX [10]. SGX-Step builds a user-

space APIC interrupt handler to intercept every APIC timer
interrupt. Meanwhile, SGX-Step sets a one-shot APIC timer
with a fixed value right before ERESUME. The fixed timer
value is configured so that an APIC timer interrupt is gener-
ated after a single instruction is executed inside the enclave.
These steps are repeated to a single step every instruction
inside the enclave. SGX-Step can achieve a single-step ratio
of around 98% under a machine-specific fixed counter value.
However, as far as we know, no research has studied the APIC
timer on the SEV platform to single-step SEV VMs.

3 The CIPHERLEAKS Attack

This section explores the side-channel leakage caused by
SEV’s XEX mode encryption and demonstrates its conse-
quences when applied on the encrypted VMSA page. We
particularly construct two attack primitives: execution state
inference and plaintext recovery.

3.1 The Ciphertext Side Channel

We consider a scenario where the victim VM is a SEV-SNP
protected VM hosted by a malicious hypervisor. We assume
SEV properly protects the integrity of the encrypted VM
memory as well as the VMSA pages. As such, all prior known
attacks against SEV and SEV-ES (such as [15, 22, 23, 26,
27, 35]) are not applicable in our setting. The goal of the
CIPHERLEAKS attack is to steal secrets from the victim VM.
Denial-of-service attacks and speculative execution attacks
are out-of-scope.

3.1.1 Root Cause Analysis

Because SEV’s memory encryption engine uses 128-bit XEX-
mode AES encryption, each 16-byte aligned memory blocks
in the VMSA is independently encrypted with the same
AES key. Since each 16-byte plaintext is first XORed with
a physical-address-specific 16-byte value (a.k.a., the output
of the tweak function) before encryption, the same plaintext
may yield different ciphertext when placed in a different phys-
ical address. However, the same 16-byte plaintext is always
encrypted into the same ciphertext when placed in the same
physical address. Most importantly, SEV (including SEV-ES
and SEV-SNP) does not prevent the hypervisor from read
accessing the ciphertext of the encrypted memory (which is
different from SGX).

This observation forms the foundation of our ciphertext
side channel: By monitoring the changes in the ciphertext of
the victim VM, the adversary is able to infer the changes of
the corresponding plaintext. This ciphertext side channel may
seem innocuous at first glance, but when applied to certain
encrypted memory regions, it may be exploited to infer the
execution of the victim VM.
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3.1.2 CIPHERLEAKS: VMSA Inferences

The CIPHERLEAKS attack is a category of attacks that exploit
the ciphertext side channel by making inferences on the ci-
phertext of the VMSA. We first explain in more details the
VMSA structure and then outline an overview of attack.

VMSA structure. Before SEV-ES, the register states were di-
rectly saved into VMCB during the VMEXITs without hiding
their states from the hypervisor, which gives the hypervisor
a chance to inspect the internal states of the VM’s execu-
tion or change the control flow of software inside the VM [].
AMD fixes this unencrypted-register-state vulnerability by
encrypting the registers during VMEXITs. In SEV-ES and
SEV-SNP, the register states are encrypted and then saved
into VMSA during VMEXITs. SEV-ES and SEV-SNP add
additional confidentiality and integrity protection of the saved
register values in VMSA.

• Confidentiality. The VMSA is a 4KB page-aligned memory
region specified by the VMSA pointer in VMCB’s offset
108h [2]. All register states saved in the VMSA are also
encrypted with the VM encryption key Kvek.
• Integrity. To prevent the hypervisor from tampering VMSA,
SEV-ES calculates the hash of the VMSA region before
VMEXITs and stores the measurement into a protected mem-
ory region. Upon VMRUN, the hardware checks the integrity
of the VMSA to prevent any modification of the VMSA data.
Instead of performing such integrity checks, SEV-SNP pre-
vents the hypervisor from writing to the guest VM’s memory
(including VMSA pages) via RMP permission checks.

Overview of CIPHERLEAKS. Our CIPHERLEAKS attack ex-
ploits the ciphertext side channel on the encrypted VMSA
during VMEXITs. During an AE VMEXIT, all guest register
values are stored in the VMSA, which is an encrypted memory
page [2]. The encryption of the VMSA page also follows the
same rule as other encrypted memory pages. Moreover, as the
physical address of the VMSA page is chosen by the hyper-
visor and remains the same during the guest VM’s life cycle,
the hypervisor can monitor specific offsets of the VMSA to
infer changes of any 16-byte plaintext. Some saved registers
and their offset in the VMSA are listed in Table 1.

Some 16-byte memory blocks store two 8-byte register val-
ues. For instance, CR3 and CR0 are stored at offset 0x150. If
either of the two registers changes its value, the corresponding
ciphertext will change. Because CR0 does not change very
frequently, in most cases, the ciphertext of this block differs
because the CR3 value changes, which can infer a context
switch has taken place inside the victim VM. Thus, the cipher-
text pair of (CR0, CR3) can be used as identifiers of processes
inside the victim VM. For other cases, like the (RBX, RDX)
and (R10, R11) pairs, as both registers are subject to frequent
changes, it is only possible to learn that the value of one (or
both) of the two registers has changed. The adversary may
learn which register has changed if she knows the executed

Table 1: Ciphertext of registers collected in the VMSA. If the
content at a specific offset is 8 bytes, it means the remaining
8 bytes are reserved.

Offset Size Content

150h 16 bytes CR3 & CR0
170h 16 bytes RFLAGS & RIP
1D8h 8 bytes RSP
1F8h 8 bytes RAX
240h 8 bytes CR2
308h 8 bytes RCX
310h 16 bytes RDX & RBX
320h 8 bytes RBP
330h 16 bytes RSI & RDI
340h 16 bytes R8 & R9
350h 16 bytes R10 & R11
360h 16 bytes R12 & R13
370h 16 bytes R14 & R15

binary code between the two VMEXITs.
Some 16-byte memory blocks only store values for a single

8-byte register (e.g., RAX and RCX), and the remaining 8
bytes are reserved. Reserved fields are all 0s, so they never
change. Therefore, from Table 1, we can see that it is possible
to construct one-to-one mappings from the ciphertext to the
plaintext for the values of RAX, RCX, RSP, RBP, and CR2.

3.2 Execution State Inference

We next describe two attack primitives of CIPHERLEAKS, one
in Section 3.2 and the other in Section 3.3.1. First, we show
the use of the ciphertext side channel to infer the execution
states of processes inside the guest VM, which helps locate the
physical address of targeted functions and infer the executing
function of a process.

3.2.1 Attack Primitives

To infer the execution states of the encrypted VM, one could
follow the steps below:

• À At time t0, the hypervisor clears the present bits (P bits)
of all memory pages in the victim VM’s NPT. The next
memory access from the victim VM will trigger a VMEXIT
caused by a nested page fault (NPF).
• Á During VMEXITs, the hypervisor reads and records the
ciphertext blocks in the victim VM’s VMSA, as well as
the timestamp and VMEXIT’s EXITCODE. Before VM-
RUN, The hypervisor needs to reset the P bit of the faulting
page so that the victim VM may continue execution. How-
ever, she may choose to clear the P bit again later to trigger
more VMEXITs. This step is similar to controlled channel
attacks [32, 37].
• Â The hypervisor collects a sequence of ciphertext blocks

and timestamps. By comparing the ciphertext of the CR3 and
CR0 fields, the hypervisor may associate each observation
to a particular process in the victim VM. Therefore, changes
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Table 2: Information revealed from NPF error code.

Bit Description

Bit 0 (P) Cleared to 0 if the nested page was non-present.
Bit 1 (RW) Set to 1 if it was a write access.
Bit 2 (US) Set to 1 if it was a user access.
Bit 3 (RSV) Set to 1 if reserved bits were set.
Bit 4 (ID) Set to 1 if it was a code fetch.
Bit 6 (SS) Set to 1 if it was a shadow stack access.
Bit 32 Set to 1 if it was a final physical address.
Bit 33 Set to 1 if it was a page table.
Bit 37 Set to 1 if it was a supervisor shadow stack page.

in the ciphertext blocks belonging to the same process can
be collected to infer its execution states.

The NPF’s error code passed to the hypervisor via VMCB’s
EXITINFO2 field reveals valuable information for the side-
channel analysis. For example, as shown in Figure 1b, error
code 0x100000014 always means the NPF is caused by an
instruction fetch. The NPF error code is specified in Table 2.

The ciphertext itself is meaningless, but the fact that it
changes matters. We use a vector whose size is the same as
the number of registers we monitor to represent value changes
in the ciphertext. A value +1 in the vector indicates that
the corresponding register has changed since the last NPF.
Therefore, a sequence of such vectors can be collected.

With the information described above, the hypervisor is
able to profile the applications through a training process.

3.2.2 Examples

One example of such attack primitives is locating the physical
address of targeted functions in the victim. Next, we illustrate
such attacks using the example shown in Figure 1. We target
at two callq instructions (· and ¸) in the caller function.
We assume the hypervisor has some pre-knowledge of the
application code running in the guest VM and the hypervisor
begins to monitor the application, by clearing the P bits, before
the two call instructions (e.g., before ¶). In handling each
NPFs, the hypervisor collects the ciphertext of those saved
registers listed in Table 1 as well as the NPF’s error code.

The hypervisor then collects a sequence of ciphertext
blocks as shown in Figure 1b. The callq instruction at ·
touches a new instruction page that contains the code of
sum(). Therefore it triggers an NPF. Compared to the pre-
vious snapshot, the changes of the ciphertext of RIP, RSP,
RBP, and RDI are observed; the ciphertext of CR3 and RAX
remains unchanged. When sum() returns, the return value is
stored in RAX. The ciphertext changes of the RAX register
will be observed in the next NPF (at ¸), where RIP will also
change. In this way, the hypervisor can locate the physical
address of the functions and trace the control flow of the
target application. In particular, NPF1 reveals the physical
address of function sum(), NPF2 reveals the physical address
of expand().

int main( ) {
…    

int a = sum(10);
int b = expand(10);

…
}

int expand(int i){
return i+10;

}

int sum(int n){
int result = 0;
for (int i = 0; i < n; i++){

result = result + i;
}
return result;

}

mov    $0xa,%edi
callq 13dd <sum>
mov    %eax,-
0x8(%rbp)
mov    $0xa,%edi
callq 5fa <expand>

push   %rbp
mov    %rsp,%rbp
…
mov    -0x8(%rbp),%eax
pop    %rbp
retq

push   %rbp
mov    %rsp,%rbp
mov    %edi,-0x4(%rbp)
…
retq

Caller function

Callee functions

❷

❸

❶

(a) C source code with assembly code.

Exitcode: 100000004
NPF0

[CR3, RIP,  RSP,  RAX, RBP, RDI, …]

[0, 0, 0, 0, 0, 0, …]

Exitcode: 100000014
[CR3, RIP,  RSP,  RAX, RBP, RDI, …]

[0, 1, 1, 0, 1, 1, …]

Exitcode: 100000014
[CR3, RIP,  RSP,  RAX, RBP, RDI, …]

[0, 2, 1, 2, 1, 1, …]

NPF1

NPF2

(b) Ciphertext blocks.

Figure 1: Example about the ciphertext changes in NPFs.

3.3 Plaintext Recovery

The ciphertext side channel can also be exploited to recover
the plaintext from some of the ciphertext blocks. To recover
plaintext from the ciphertext, the adversary first needs to build
a dictionary of plaintext-ciphertext pairs for the targeted reg-
isters, and then make use of the dictionary to recover the
plaintext value of the registers of interest during the execution
of a sensitive application.

3.3.1 Attack Primitive

During some NAE events, the guest kernel may exchange
register states with the hypervisor through GHCB. Thus, the
plaintext value of specific registers can be learned when these
register states are stored in the GHCB. The hypervisor can
thus collect plaintext-ciphertext pairs for those registers. Be-
cause different registers have different offset in the VMSA
and different physical addresses, we need to build the dictio-
nary of plaintext-ciphertext pairs for each register separately.

There are two ways to collect such pairs, depending on
who stores the register values to GHCB. First, for those NAE
events where the hypervisor returns emulated registers to the
guest VM, the hypervisor may clear the P bit of the instruc-
tion page that triggers the NAE events before VMRUN. Thus,
after the VC handler use IRET to return to the original in-
struction page, an NPF will occur, and the hypervisor can
obtain the ciphertext of corresponding registers while han-
dling this NPF. Figure 2a shows an example about collecting
plaintext-ciphertext pairs of RAX from IOIO_PROT events
(ioread). The hypervisor records the plaintext of RAX when
emulating the VMEXIT and obtains the ciphertext of RAX
when handling the NPF caused by IRET.

Second, for those NAE events where the VM exposes reg-
isters to the hypervisor, the hypervisor may periodically clear
the P bit of the VC handler code and record the ciphertext of
all registers in VMSA whenever there is an NPF triggered
by the VC handler code. At the next NAE, the plaintext of
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Figure 2: Workflow of how VC handler handles IOIO_PROT
events.

some registers will be written to the GHCB, and their corre-
sponding ciphertext can be found from the last VC handler
triggered NPF. Figure 2b shows an example about collecting
plaintext-ciphertext pairs of RAX from IOIO_PROT events
(iowrite). The hypervisor obtains the ciphertext of RAX
either when handling the VC-exception-triggered NPF after
the NAE event or when handling the NPF caused by IRET
and learns the plaintext of RAX when handling the VMEXIT.

3.3.2 Examples

The adversary could use the NAE VMEXITs to collect a
dictionary of plaintext-ciphertext pairs for certain registers
stored in VMSA. Here we present a method that leverages the
IOIO_PROT (error code = 0x7b) NAE VMEXIT events to
collect the ciphertext of the RAX register when its plaintext
values are 0 to 127.

Building the dictionary of plaintext-ciphertext pairs. Dur-
ing the PEI phase, the guest VM needs to access the mem-
ory region that stores the information about the Nonvolatile
BIOS settings (CMOS) and the Real-Time Clock (RTC)
through IO ports 0x70 and 0x71. The OVMF code ensures
the correctness of the CMOS/RTC by calling a function
named DebugDumpCmos when loading the PlatformPei PEI
Module (PEIM) during the initialization of the guest VM.
DebugDumpCmos checks the CMOS/RTC by writing the off-
set of CMOS/RTC to port 0x70 and then reading one byte
of data from port 0x71. DebugDumpCmos enumerates offset
0x00-0x7f (i.e., 0-127) during the PEI phase to access the
CMOS/RTC information.

In both SEV-ES and SEV-SNP, every iowrite and ioread
in IOIO_PROT are first trapped and handled by the VC han-
dler. The VC handler and the hypervisor then cooperate to
emulate iowrite and ioread as shown in Figure 2. For
iowrite, the VC handler copies the RAX value to GHCB
before calling VMGEXIT. For ioread, the VC handler copies

the RAX state from GHCB to RAX register after VMGEXIT.
In the iowrite cases, the RAX state after the VC handler
finishing handling an iowrite exception and before returning
to the sequential instruction, should be the same as the RAX
state passed to the hypervisor in the VMGEXIT.

In our case of DebugDumpCmos in PlatformPei PEIM,
the hypervisor can observe 128 IOIO_PROT events with
SW_EXITINFO1 being 0x700210 (indicating that the guest
VM is accessing CMOS/RTC information) and increasing
RAX values from 0x00 to 0x7f. The hypervisor can also trap
the sequential instruction by clearing the P bit of the physical
address of the PlatformPei PEIM’s EntryPoint, which will
be accessed after the guest VM exiting the VC handler. The
guest physical address of EntryPoint is always 0x83a000 in
our setting. Note that the hypervisor can also easily locate
the physical address of the PlatformPei PEIM because the
plaintext of the OVMF file is known by both the guest VM
owner and the hypervisor [3] for in-place encryption during
the remote attestation.

Each IOIO_PROT event in DebugDumpCmos helps the hy-
pervisor record the ciphertext of a known RAX plaintext value
in VMSA when handling the NPF caused by returns to the
PlatformPei PEIM. After the DebugDumpCmos, the hypervi-
sor can build a dictionary with 128 plaintext-ciphertext pairs
in total, where the plaintext are from 0x00 to 0x7F. Some other
IOIO_PROT events with the same SW_EXITINFO1 can also
occur during the execution of DebugDumpCmos. The hypervi-
sor can distinguish those events by looking at the ciphertext of
RFLAG/RIP field in VMSA since all target iowrites inside
DebugDumpCmos have the same RFLAG/RIP value.

3.3.3 Other Plaintext-ciphertext Pairs

In this section, we show other plaintext-ciphertext pairs the ad-
versary may collect during the boot period of a SEV-enabled
VM. We also analyze plaintext recovery under different
OVMF versions and different build configurations.

All data shown in this section were collected on a
workstation with 8-Core AMD EPYC 7251 Processor.
The OVMF version used to boot the SEV-ES-enabled
VMs may vary according to different settings that we
will illustrate later. The victim VMs were configured
as SEV-ES-enabled VMs with one virtual CPU, 4 GB
DRAM, and 30 GB disk storage. The host and guest
OS kernel were forked from branch sev-es-v3, and the
QEMU version was QEMU sev-es-v12. All code is directly
downloaded from AMD’s Github repository [5] (com-
mit:96f2b75aaa9801646b410568d12b928cc9f06e0c,
Nov, 25th, 2020). We only performed the attacks on SEV-ES
machines, as SEV-SNP machines were not available to us at
the time of writing. But SEV-SNP is equally vulnerable (see
Section 6).

Plaintext Range. To show the potential plaintext range the
hypervisor can collect, we monitored all NAE events which
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Table 3: Number of NAE events observed during boot period and registers state range maybe exposed. Num: the number of NAE
event being observed. *: state to hypervisor. **: state from hypervisor, N/A: not observed. -: this register is not supposed to be
used during this NAE event. Range R1: numbers of different exposed register states lying in [0,1], Range R2: [0,15], Range R3:
[0,127], Range R4: [0,264-1].

NAE Event Code Num RAX RBX RCX RDX
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

DR7 Read* 0x27 0 N/A N/A N/A N/A - - - - - - - - - - - -
DR7 Write* 0x37 1 0 0 0 1 - - - - - - - - - - - -
RDTSC* 0x6e 0 N/A N/A N/A N/A - - - - - - - - N/A N/A N/A N/A
RDPMC* 0x6f 0 - - - - - - - - N/A N/A N/A N/A - - - -
RDPMC** 0x6f 0 N/A N/A N/A N/A - - - - - - - - N/A N/A N/A N/A
CPUID* 0x72 35328 2 6 6 276 - - - - 2 11 18 1467 - - - -
CPUID** 0x72 35328 1 5 6 18 2 2 3 15 1 2 3 17 2 3 4 10
IOIO_PROT* 0x7b 260648 2 16 128 8717 - - - - - - - - - - - -
IOIO_PROT** 0x7b 246527 2 15 82 9033 - - - - - - - - - - - -
RDMSR* 0x7c 1261 - - - - - - - - 0 0 1 104 - - - -
RDMSR** 0x7c 1261 2 4 4 51 - - - - - - - - 1 1 2 6
WRMSR* 0x7c 12532 1 4 6 10363 - - - - 0 0 1 71 1 1 2 8
RDTSCP** 0x87 0 N/A N/A N/A N/A - - - - N/A N/A N/A N/A N/A N/A N/A N/A

have register state interactions with the hypervisor during the
boot period of a SEV-ES-enabled VM. The OVMF version
used was downloaded from branch sev-es-v27 with the default
setting. As shown in Table 3, the collected register states are
divided into 4 intervals. Range 1 (R1) is field [0,1] with only
two numbers and is the most important interval since a return
of true or false is very common in function implementation.
Most observed NAE events can help the hypervisor to collect
both two values in R1 while frequent IOIO_PROT (260648
for IO out and 246527 for IO in) events during the boot period
can help the hypervisor to fill Range 2 (R2) which is [0,15]
and Range 3 (R3) which is [0,127]. Range 4 (R4) contains all
264 for an 8-byte register. Some NAE events are not observed
during the boot period like RDPMC and RDTSC. However, these
NAE events are still considered exploitable as long as some
programs use these instructions during VM’s lifetime. In the
table, we separate RBX and RDX to present different register
values the hypervisor can observe during the boot period.
However, the adversary is only able to observe the ciphertext
of the (RBX, RDX) pair, as these two registers are in an the
same aligned 16-byte encryption block.

Different Versions. We have tested three latest (as of Nov.,
25th, 2020) OVMF git branches provided by AMD [5] for
SEV-ES (“sev-es-v27”1) and SEV-SNP (“sev-es-v21+snp”2)
as well as the official OVMF repository used by SEV
(“https://github.com/tianocore/edk2.git”3). All these three ver-
sions adopt the same CMOS/RTC design flow we mentioned
in this section under the default configuration provided by
AMD [5], and the hypervisor is able to collect all the 7-bits
(plaintext from 0 to 0x7F) plaintext-ciphertext pairs in all
these three versions.

Different Settings. We have also tested OVMF debug config-

1commit:834f296d3e1864b676fac9db53bc7dbb83c6eee7
2commit:e7bf4dfeaba60089f427af518936f29db79dd159
3commit:21f984cedec1c613218480bc3eb5e92349a7a812

uration options. The default debug configuration is to write
debug messages to IO port 0x402. OVMF also supports orig-
inal debug behavior where the debug messages are written
to the emulated serial port if the DEBUG_ON_SERIAL_PORT
option is set. AMD adopts the DEBUG_ON_SERIAL_PORT op-
tion according to their Github repository [5]. In both these
two settings, the hypervisor is able to collect all the 7-bits
plaintext-ciphertext pairs by monitoring CMOS/RTC activi-
ties in I/O PORT 0x70. The DebugDumpCmos can be disabled
if the developer chooses to ignore all debug information by
setting the -b RELEASE option. However, the hypervisor can
still collect 19 out of the 7-bits plaintext-ciphertext pairs (with
2 numbers lying in R1, 13 numbers in R2, and 19 numbers
in R3) by monitoring CMOS/RTC activities in I/O PORT
0x70. When targets at all IOIO_PROT OUT events, the hy-
pervisor shows the potential ability to collect 115 out of the
7bits plaintext-ciphertext pairs (with 2 numbers lying in R1,
16 numbers in R2, and 115 numbers in R3), even disabling
all debug activities.

4 Case Studies

In this section, we present two case studies to illustrate the
CIPHERLEAKS attack. In the first attack, we show that the
constant-time RSA implementation in OpenSSL can be bro-
ken with known ciphertext for the plaintext values of 0 to 31.
In the second attack, we show that the constant-time ECDSA
signature can be compromised with known ciphertext of the
plaintext values of 0 and 1.

4.1 Breaking Constant-Time RSA
RSA is asymmetric cryptography, which is widely used in
various crypto systems. In the RSA algorithm, the plaintext
message m can be recovered from the ciphertext c via m =
cd mod n, where d is the private key and n is the modulus
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of the RSA public key system. As such, we show how the
CIPHERLEAKS attack steals the private key d.

Targeted RSA implementation. Our demonstrated attack
targets at the modular exponentiation used in RSA opera-
tions from the latest OpenSSL implementation (as of Nov,
4th, 2020)4 . OpenSSL implements the modular exponentia-
tion using a fixed-length sliding window method in function
BN_mod_exp_mont_consttime(). We target at a while loop
inside this function, which iteratively calculates the exponen-
tiation in a 5-bit windows. The while loop is shown in Listing
1. For a 2048-bit private key, the while loop has about 2048/5
= 410 iterations. In each iteration, bn_get_bits5 is called to
retrieve the 5-bit of the private key d.

1 /*
2 * Scan the exponent one window at a time starting

from the most significant bits.
3 */
4 while (bits > 0) {
5 bn_power5(tmp.d, tmp.d, powerbuf , np, n0, top,
6 bn_get_bits5(p->d, bits -= 5));
7 }

Listing 1: Code snippet of BN_mod_exp_mont_consttime.

The attacker can steal the 2048-bit private key d in the
following steps:

À Infer the physical address of the target function. The
attacker first uses the method introduced in Section 3.2 to
obtain the physical address of the target function. We use
gPAt0 and gPAt1 to denote the guest physical addresses of the
target functions bn_power5 and bn_get_bits5, respectively.

Á Monitor NPFs. The attacker clears the P bit of the two tar-
geted physical pages. Once a NPF of gPAt0 is intercepted, she
clears the P bit of gPAt1; when a NPF of gPAt1 is intercepted,
she clears the P bit of gPAt0. For a 2048-bit RSA encryption,
410 iterations can be observed, the attacker will observe 820
NPFs of gPAt0 and gPAt1 in total.

Â Extract the private key d. As shown in Listing 2,
bn_get_bits5 obtains 5 bits of d in each iteration, stores
the value in RAX, and returns. Since the hypervisor clears
the P bit of gPAt0, returns to bn_power5 will trigger a NPF
of gPAt0. When the hypervisor handles this NPF, it reads and
records the ciphertext of RAX in the VMSA. The RAX now
stores 5 bits of the private key d, and its value range is 0 to
31. The hypervisor can infer the plaintext by searching the
plaintext-ciphertext pairs collected during the boot period as
described in Section 3.3.2. The hypervisor can recover the
whole 2048-bit private key d after a total of 410 iterations.

1 .globl bn_get_bits5
2 ......
3 cmova %r11 ,%r10
4 cmova %eax ,%ecx
5 movzw (%r10,$num ,2) ,%eax
6 shrl %cl,%eax

4Github commit: 8016faf156287d9ef69cb7b6a0012ae0af631ce6

7 and \$31 ,%eax
8 ret
9 ......

Listing 2: Code segment of bn_get_bits5().

4.2 Breaking Constant-time ECDSA
Elliptic Curve Digital Signature Algorithm ECDSA) is a cryp-
tographical digital signature based on the elliptic-curve cryp-
tography (ECC). ECDSA follows the steps below to generate
a signature:

1. Randomly generate a 256-bit nonce k.
2. Calculate r = (k×G)x mod n
3. Calculate s = k−1(h(m)+ rda) mod n

where G is a base point of prime order on the curve, n is the
multiplicative order of the point G, da is the private key, h(m)
is the hash of the message m, and (r, s) form the signature.
With a known nonce k, the private key da can be calculated
directly:

da = r−1 × ((ks)−h(m)) mod n

As such, a side-channel attack against ECDSA aims to steal
the nonce k. The secret private key can be inferred thereafter.

Targeted ECDSA implementation. Our demonstrated at-
tack targets the secp256k1 curve, which is also used in
Bitcoin wallets. In the latest OpenSSL’s implementation
(as of Nov, 4th, 2020) , when ECDSA_do_sign is called to
generate a signature, ecdsa_sign_setup is first called to
generate a random 256-bit nonce k per NIST SP 800-90A
standard. To do so, EC_POINT_mul, ec_wNAF_mul, and then
ec_scalar_mul_ladder are called to compute r, which is
the x-coordinate of nonce k. ec_scalar_mul_ladder is used
regardless of the value of the BN_FLG_CONSTTIME flag.

As shown in Listing 3, the core component of
ec_scalar_mul_ladder uses conditional swaps (a.k.a.,
EC_POINT_CSWAP) to compute point multiplication without
branches. Specifically, in each iteration, BN_is_bit_set(k,
i) is called to get the ith bit of the nonce k. The conditional
swaps are determined by kbit, which is the XOR result of
the ith bit of the nonce k and pbit.

1 for (i = cardinality_bits - 1; i >= 0; i--) {
2 kbit = BN_is_bit_set(k, i) ^ pbit;
3 EC_POINT_CSWAP(kbit ,r,s,group_top ,Z_is_one);
4 // Perform a single step of the Montgomery ladder
5 if (!ec_point_ladder_step(group , r, s, p, ctx)

){
6 ERR_raise(ERR_LIB_EC ,
7 EC_R_LADDER_STEP_FAILURE);
8 goto err;
9 }

10 // pbit logic merges this cswap with that of the
next iteration

11 pbit ^= kbit;
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12 }

Listing 3: Code snippet of ec_scalar_mul_ladder().

The attacker can steal the nonce k in the following steps:

À Infer the functions’ physical addresses. The attacker first
obtains the guest physical addresses of the target functions
ec_scalar_mul_ladder gPAt0 and BN_is_bit_set gPAt1
using the execution inference method we introduced.

Á Monitor NPFs. The attacker clears the P bit of the two
targeted physical pages. Once a NPF of gPAt0 is intercepted,
she clears the P bit of gPAt1; when a NPF of gPAt1 is inter-
cepted, she clears the P bit of gPAt0. In this way, the control
flow internal to the ec_scalar_mul_ladder function can be
learned by the attacker.

Â Learn the value of k. In the 256-iteration while loop, the
attacker will observes 256*5 = 1280 NPFs of gPAt0 and 1280
NPFs of gPAt1. In each iteration of the while loop, the first
NPFs of gPAt0 is triggered when BN_is_bit_set returns. As
shown in Listing 4, the ith bit of the nonce k is returned in
RAX. Thus, the ith bit of the nonce k is stored in the RAX
field of the VMSA for the first NPFs of gPAt0 in each iteration.
The attacker then compares the ciphertext of the RAX field
to recover the nonce k.

1 000f8e20 <BN_is_bit_set >:
2 ......
3 f8e38: 48 8b 04 d0 mov (%rax ,%rdx ,8) ,%rax
4 f8e3c: 48 d3 e8 shr %cl,%rax
5 f8e3f: 83 e0 01 and $0x1 ,%eax
6 f8e42: f3 c3 repz retq
7 ......

Listing 4: Assembly code snippet of BN_is_bit_set().

4.3 Evaluation
All end-to-end attacks shown in this section were evaluated
on a workstation with 8-Core AMD EPYC 7251 Processor.
The victim VM was configured as SEV-ES-enabled VMs
with one virtual CPU, 4 GB DRAM, and 30 GB disk
storage. The versions of the guest and host OS, QEMU, and
OVMF are the same as described in Section 3.3.3. The latest
OpenSSL from Github was used in the evaluation (com-
mit:8016faf156287d9ef69cb7b6a0012ae0af631ce6,
Nov, 4th, 2020). These attacks can also be applied to VMs
with multiple vCPUs as well, but the adversary needs to
collect ciphertext-plaintext dictionaries for each vCPU
independently, since each vCPU has its own VMSA.

To locate the physical address of the target function, the at-
tacker must train the pattern of ciphertext changes in a training
VM (a different VM from the victim VM). In the training VM,
the attacker first repeats the RSA encryption and the ECDSA
signing several times by calling APIs from the OpenSSL li-
brary (with the same version as the targeted OpenSSL library
in the victim VM). The attacker also collects the NPF se-
quence, the corresponding VMSA ciphertext changes (see

Section 3.2), as well as the ground truth (guest physical ad-
dress) for the target functions. In our experiments, the pattern
of ciphertext changes is very stable, especially for a func-
tion call without many branches (e.g., ECDSA_do_sign() for
ECDSA). As such, simple string comparison is sufficient
for pattern matching and no sophisticated machine learning
techniques are required.

In the attack phase, the victim VM performs an RSA
encryption or an ECDSA signature using the OpenSSL
library, which can be triggered by the attacker remotely but
it is not a necessary condition for a successful attack. As the
attacker does not know the start time of the targeted program,
she must consider every newly observed CR3 ciphertext as
the beginning of the targeted crypto code. It clears all P bits
and starts monitoring the pattern of ciphertext changes. If the
expected ciphertext change pattern is observed, the attacker
can continue to steal the secret from the victim VM.

In both of the two cases we presented, we repeated the ex-
periment 10 times and each time the attacker was able to iden-
tify the trained ciphertext pattern and recover the private key d
and the secret nonce k with 100% accuracy. We measured the
time needed to steal the 2048-bit private key d and the secret
nonce k 10 times after the ciphertext change pattern is iden-
tified. The average time needed to obtain the private key d is
0.40490 seconds with a standard deviation of 0.08920 seconds.
The average time needed to steal the secret nonce k is 0.10226
seconds with a standard deviation of 0.00330 seconds.

5 Countermeasures

In this section, we first discuss several potential software-level
countermeasures for the CIPHERLEAKS attack. We then show
the CIPHERLEAKS attack can still work by exploiting the Ad-
vanced Programmable Interrupt Controller (APIC) to collect
the function’s internal state. Thus, none of that software may
work properly. We also discuss hardware-level countermea-
sures in Section 5.3.

5.1 Software Mitigation

Solutions to the ciphertext side channel can be categorized
into two kinds: preventing the collection of the plaintext-
ciphertext dictionary and preventing exploitation by modify-
ing targeted functions.

Preventing dictionary collection. One potential solution is
to remove unnecessary IOIO_PROT events. However, other
NAE event may still serve the same purposes as IOIO_PROT.
More importantly, as we have shown in Section 4.2, the hyper-
visor can steal the nonce k with only two plaintext-ciphertext
pairs. Complete removal of all such leak sources is required
to make the solution effective, almost impossible in SEV’s
current design.
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Preventing exploitation. To fix the target functions, changes
to the whole software stack may be necessary. We list three
potential solutions below, but unfortunately, these approaches
can be bypassed using the method we outline in Section 5.2.

• Masking the return value in RAX. If the return value
only needs a few bits to represent, compilers can intro-
duce randomness into the higher bits of the return value.
For example, if the return is 1, then a random number
can be added to mask the RAX, e.g., by returning RAX
= 0x183af6b800000001, where the higher 4-byte are gen-
erated randomly. The caller of the function can ignore the
higher bits. In this way, the ciphertext of RAX will be new
and thus unknown to the adversary.
• Passing return values through memory or other regis-

ters. The return value can be passed to the caller via stack.
As the physical address of the stack frame is hard to predict
and collect beforehand, attacks can be prevented. Similarly,
the software can also write the return value to other registers
(e.g., R10), which can avoid using the RAX register.
• Using inline functions or keep the callee code on the

same page. If the code of the caller and the callee are on the
same page, for instance, by using inline functions, no NPFs
will be triggered during function return.

These three potential solutions require significant rewriting
of sensitive functions, which may require compiler-assisted
tools to perform. However, the success of all these solutions
relies on the assumption that the hypervisor cannot infer the
internal states of a function call, which, as we will show in
Section 5.2 shortly, is not true.

5.2 Function’s Internal States Intercept

We present an APIC-based method to allow the hypervisor to
single-step the functions in order to intercept the function’s
internal states. Therefore, the adversary can learn the internal
states of a targeted function. Our method, though conceptu-
ally similar to SGX-Step [34], requires integrating the APIC
handling code into the VMEXIT handler of KVM. Moreover,
unlike SGX-Step that uses a static APIC interval to interrupt
the controller, we need to select APIC intervals as the execu-
tion time of VMRUN is not constant. More specifically, the
following steps are taken to interrupt VMRUN:

À Infer the functions’ physical addresses. The attacker first
obtains the guest’s physical addresses of the target function,
namely gPAt , using the execution state inference method we
introduced.

Á Dynamically determine APIC timer intervals. The at-
tacker follows a “0 steps is better than several steps" princi-
ples to single step or intercept a small advancement of the
execution of the target function. Because the time used for
VMRUN instruction is not fixed, the hypervisor always starts
with a small APIC interval to single step into the guest VM

as much as possible. The hypervisor then checks the VMSA
field to see if the ciphertext in VMSA has changed; if so, it
means that one or several registers’ value have changed and
the guest VM executes one or several instructions before in-
terrupted by APIC. The algorithm to choose the proper APIC
time interval is specified in Algorithm 1.

Algorithm 1: Dynamic Timer Interval Prediction

int apic_time_interval; //APIC interrupts the VM after the interval
int roll_back ; //roll back to a small interval after any movement
apic_time_interval = 20 ;
roll_back = 10; // initialize the setting, may vary in different CPU
while true do

apic_timer_oneshot(apic_time_interval);
__svm_sev_es_vcpu_run(svm->vmcb_pa);
svm_handle_exit(vcpu, physical interrupt VMEXIT) ;
if not observe VMSA changes then

apic_time_interval ++;
else

apic_time_interval = apic_time_interval - roll_back ;
end

end

Â Collect the target function’s internal states. The hyper-
visor can collect the internal states of the target function after
a WBINVD instruction which is used to flush VMSA’s cache
back to the memory. With a known binary, the hypervisor
may also determine the number of the instructions that have
been executed by comparing the ciphertext blocks changes
with the assembly code.

Evaluation. To evaluate the effectiveness of single-stepping
the guest VM’s execution, we perform experiments on a work-
station with 8-Core AMD EPYC 7251 Processor. The victim
VM was configured as SEV-ES-enabled VMs with two virtual
CPUs, 4 GB DRAM, and 30 GB disk storage. The versions
of the guest and host OS, QEMU, and OVMF are the same
as described in Section 3.3.3. Unlike the previous settings,
we enable SEV-ES’s debug option in the guest policy, which
allows the hypervisor to use SEV_CMD_DBG_DECRYPT com-
mand to decrypt the guest VM’s VMSA. This configuration
is only to collect ground truth of the experiments, which will
not influence the guest VM’s execution and is not a required
step in practical attacks.

To make the experiments representative, we randomly se-
lect the starting point during the VM’s execution to initi-
ate our tests. In each test, we follow Algorithm 1 to col-
lect 100 trials. Each trial is collected only when the hy-
pervisor observes changes in the register’s ciphertext in the
VMSA. Meanwhile, we collected ground truth by using the
SEV_CMD_DBG_DECRYPT command from the hypervisor to de-
crypt the RIP filed in VMSA. We use ∆ to represent the
number of bytes that the RIP has advanced between two con-
secutive VMEXITs. Note that the SEV_CMD_DBG_DECRYPT
command will not affect the execution of the guest VM. We
repeat the test 60 times. In total, 6000 trials are collected.
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Figure 3: Performance of stepping VM execution using APIC.

Among the 6000 trials, 454 lead to ∆ greater than 20 because
of a jmp instruction (thus can be filtered out). For the remain-
ing 5546 trials, the APIC-timer intervals used to trigger APIC
interrupts range from 40 to 90 (with a divide value of 2, this
translates from 80 to 180 CPU cycles). The distribute is shown
in Figure 3a. These results suggest that the runtime of the
VMRUN instruction is not constant (on SEV-ES VM), which
may be caused by the presence of VMCB cache states and
the non-constant time VMSA integrity checks. Even though
VMRUN is not constant-time, as shown in Figure 3b, 78.7%
trials lead to ∆ smaller than 3 bytes. 90.1% trials lead to ∆

smaller than 5 bytes. Note that a typical x86 instruction has
2 to 4 bytes [16]. These results show that the APIC-based
method can successfully interrupt the execution of the guest
VM with very small steps.

5.3 Hardware Countermeasures
The root cause of the ciphertext side channel is the mode of
encryption adopted in the memory encryption. AMD uses
the XEX encryption mode in all SEV versions (e.g., SEV,
SEV-ES, and SEV-SNP) and all CPU generation (e.g., Zen,
Zen 2, and Zen 3). This results from a well-known dilemma in
the design of memory encryption: On one hand, if the cipher-
text of each 16 blocks is chained together (like in the CBC
mode encryption), the static mapping between ciphertext and
plaintext can be broken. However, changing one bit in the
plaintext will lead to changes in a large number of ciphertext
blocks. On the other hand, if freshness is introduced to each
block (like the CTR mode encryption used in Intel SGX), a
large amount of memory needs to be reserved for storing the
counter values. However, this idea may be applied to only
selected memory regions, such as VMSA. In this way, the
CIPHERLEAKS attack against VMSA can be prevented. To
our knowledge, the hardware patch that will be integrated in
SEV-SNP takes a similar idea for protecting VMSA. How-
ever, the ciphertext side channel still exists in other memory
regions.

Alternatively, a plausible hardware solution is to prevent
the hypervisor’s read accesses to the guest VM’s memory.
This idea could be implemented with the RMP table (see
Section 6), by restricting the read access from the hypervisor
on guest pages. However, this feature is not yet available in

SEV-SNP.

6 Applicability to SEV-SNP

To mitigate memory integrity attacks against SEV and SEV-
ES [23,27,35,36], AMD introduced another extension of SEV,
named SEV Secure Nested Paging (SEV-SNP) [18]. AMD
released the whitepaper describing in January, 2020 [4] and a
hardware API document in August, 2020 [6]. Nevertheless,
commercial processors supporting SEV-SNP have not been
released yet. According to the technical details revealed in
SEV-SNP’s whitepaper, all prior attacks listed in Section 7
can be mitigated by SEV-SNP.

In this section, we discuss some of the new features intro-
duced by SEV-SNP and discuss CIPHERLEAKS’s applicabil-
ity on SEV-SNP.

6.1 Overview of SEV-SNP

SEV-SNP protects guest VM’s memory integrity by introduc-
ing a new structure called Reverse Map Table (RMP). Each
RMP entry is indexed by the system page frame numbers; it
contains the page states (e.g., page’s ownership, guest-valid,
guest-invalid, and guest physical address) of this system page
frame. The SEV-SNP VM must interact with the hypervisor
to validate each RMP entry. Specifically, the guest VM needs
to issue a new instruction PVALIDATE, a new instruction for
guest VMs, to validate a guest physical address before the first
access to that guest physical address. Any memory access to
an invalid guest physical address will result in an NPF. More
importantly, once a guest page is validated, the hypervisor
cannot modify the RMP entry. Therefore, the guest VM itself
can guarantee that its memory page is only validated once,
and a one-to-one mapping between the guest physical address
and system physical address mapping can be maintained.

As shown in Figure 4, RMP limits the hypervisor’s capabil-
ities of managing NPT. The RMP check is performed before
the NPT walk is finished. Without RMP check, the hypervisor
can easily remap guest physical address (gPA) to an arbitrary
memory page by manipulating the page table entry in the NPT.
With RMP check, if the hypervisor remaps the guest physical
address to a memory page not belonging to the current guest
VM or a memory page mapped to the current guest VM’s
other guest physical address, an invalid NPF or a mismatch
NPF will be triggered, which can prevent attacks that require
modification of the NPT [15, 26, 27].

Another protection enabled by RMP is that the ownership
included in the RMP entry restricts the hypervisor’s write
permission towards the guest VM’s private memory, which
can prevent attacks that require directly modifying the cipher-
text [11, 23, 36]. More details about existing attacks and how
RMP can mitigate these attacks are introduced in Section 7.
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6.2 The CIPHERLEAKS attack on SEV-SNP
There are two key requirements of the CIPHERLEAKS attack:

• Mapping of plaintext-ciphertext pairs of the same ad-
dress does not change. When applying the CIPHERLEAKS
attack on SEV-SNP, the memory encryption mode in SEV-
SNP needs to preserve the mapping between the plaintext
and the ciphertext throughout the lifetime of the VM. Ac-
cording to [2], SEV-SNP still adopts the XEX mode of en-
cryption, which satisfies this requirement.
• The hypervisor must have read access to the ciphertext.
When applying the CIPHERLEAKS attack on SEV-SNP, the
adversary needs to have read access to the ciphertext of
guest VM’s memory. According to [4], even though RMP
limits the hypervisor’s write access towards VM’s private
memory, the hypervisor still has read access to the guest
VM’s memory, including the VMSA area.

AMD has confirmed that SEV-SNP is also vulnerable to the
CIPHERLEAKS attack. A CVE number will be assigned the
discovered vulnerability for SEV-SNP and a hardware patch
will be available to protect the VMSA during VMEXITs.

7 Related Work

7.1 Known Attacks against SEV
With the assumption of an untrustworthy hypervisor, SEV has
faced numerous attacks caused by unencrypted VMCB [15,
31, 35], unauthenticated encryption [9, 11, 36], unprotected
NPT [15, 26, 27], unprotected I/O [23] and unauthorized key
use [22]. These attacks successfully break the confidentiality
and/or the integrity of SEV design. AMD patched SEV with
additional features SEV-ES.

Unencrypted VMCB. The VMCB is not encrypted during
VMEXIT in SEV mode, which exposes SEV VM’s registers
state to the hypervisor. Hetzelt and Buhren [15] first showed
that the untrusted hypervisor could manipulate guest VM’s
register during VMEXIT to perform return-oriented program-
ming (ROP) attacks [31]. Werner et al. also showed by con-
tinuously monitoring unencrypted VMCB, the adversary is
able to fingerprint applications inside guest VM and partially

extract guest VM’s memory [35]. However, SEV-ES and SEV-
SNP fix the unencrypted VMCB problem by encrypting most
registers in the VMSA page during VMEXIT.

Unauthenticated encryption. The hypervisor can read and
write the SEV/SEV-ES VM’s memory because there is no au-
thentication in these two modes. Previous research [9,11,36]
showed by reverse-engineering the physical address-based
tweak function, the adversary is able to generate useful cipher-
text when there are enough known plaintext-ciphertext pairs.
However, EPYC processor after the EPYC 3xx1 series fixed
this problem by increasing the entropy of the tweak functions,
which makes it impossible to reverse engineer the physical
address-based tweak function. SEV-SNP further fixed this
problem by removing hypervisor’s write permission in guest
VM’s memory.

Unprotected NPT. Hetzelt and Buhren [15] first demon-
strated address translation redirection attacks in SEV and
discussed changing guest VM’s control flow by remapping
guest pages in the nPT. This method is later explored by other
research works [26,27]. In the SEVered attack [27], the adver-
sary extracts guest VM’s memory by changing the memory
mapping in some network-facing applications. The adversary
first triggers some network requests and then changes the
mapping of the guest physical address, which is supposed
to contain network data before guest VM responding to the
request. Thus, some wrong memory pages will be sent back,
which leaks secrets to the adversary. SEV-SNP fixed this
problem by restricting unauthorized NPT remapping.

Unprotected I/O. Li et al. [23] exploited unprotected I/O in
SEV and SEV-ES. More specifically, they showed that SEV
and SEV-ES rely on a shared region within a guest VM called
Software I/O Translation Lookaside Buffer (SWIOTLB) to
perform I/O behaviors. This design allows the hypervisor to
alter parts of I/O traffic, which helps to construct encryption
and decryption oracles that can encrypt and decrypt arbitrary
memory with the victim’s VEK. Even SEV-SNP did not fix
the unprotected I/O problem, the restriction of the hypervi-
sor’s write permission in SEV-SNP mitigates this attack.

ASID abuses. Li et al. [22] studied SEV’s “Security-by-
Crash” principle and Address Space Identify (ASID) man-
agement problem. They presented a series of attacks named
CROSSLINE attacks by exploiting these problems. ASID is
used as an index of encryption keys in AMD firmware as
well as TLB tags and cache tags. While the hypervisor is not
considered trusted, SEV still leaves the ASID management to
the hypervisor and relies on a “Security-by-Crash” principle
where incorrect ASIDs always cause VM crashes to protect
guest VM’s integrity and confidentiality. In CROSSLINE at-
tacks, the authors showed that the adversary is able to extract
the guest VM’s memory blocks, which conforms to the PTE
format in a stealthy way. The CROSSLINE attack can work
as long as the target VM’s memory encryption key is not deac-
tivated by the hypervisor, even if the victim VM is terminated.
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SEV-SNP did not change its ASID management design, but
the ownership check restricts other software components from
accessing the target VM’s memory pages. Thus, CROSSLINE
attacks cannot work in SEV-SNP.

Side-channel attacks. Architectural side channels like cache
side channels [25, 38–41], performance counter tracking or
TLB side channels [13] are common attacks in cloud. SEV’s
design increases the difficulty of performing some kinds of
architectural side channels. For example, it is rather hard to
perform a Flush+Reload attack when SEV is enabled [38].
This is because cache lines are tagged with the VM’s ASID,
indicating to which VM this data belongs, thus preventing
the data from being misused by entities other than its owner.
Since the cache is now tagged with ASID, cache coherence of
the same physical address is not maintained if the two virtual
memory pages do not have the same ASID and C-bit. So
although the malicious hypervisor can access the guest VM’s
arbitrary physical address, she cannot directly tell whether the
guest VM has accessed particular memory by measuring the
time using the Flush+Reload method.

While resistant to some architectural side channels, SEV is
still vulnerable to page-fault side-channel attacks, in which the
adversary monitors the page faults of the SEV-enabled VM
to track its execution. In SEV mode, although the mapping
between the guest VM’s guest virtual address (gVA) to gPA
is maintained by the guest VM’s page table and encrypted by
the VM Encryption Key, the hypervisor could still manipulate
the NPT by clearing the P bit to trap the translation from gPAs
to system physical address (sPAs). Hetzelt et al. [15] relies on
this NPF side channel to identify memory pages containing
web data. Li et al. use the page fault side channels to locate
network buffer pages [23].

8 Conclusion

This paper describes the ciphertext side channel on SEV (in-
cluding SEV-ES and SEV-SNP) processors. The root causes
of the side channel are two-fold: First, SEV uses XEX mode
of encryption with a tweak function of the physical addresses,
so that the one-to-one mapping between the ciphertext and
plaintext of the same address is preserved. Second, the VM
memory is readable by the hypervisor, allowing it to monitor
the changes of the ciphertext blocks. The paper demonstrates
the CIPHERLEAKS attack that exploits the ciphertext side-
channel vulnerability to completely break the constant-time
cryptography of OpenSSL when executed in SEV-ES VMs.
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