
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

VerLoc: Verifiable Localization
in Decentralized Systems

Katharina Kohls, Radboud University Nijmegen;
Claudia Diaz, imec-COSIC KU Leuven and Nym Technologies SA

https://www.usenix.org/conference/usenixsecurity22/presentation/kohls

VerLoc: Verifiable Localization in Decentralized Systems

Katharina Kohls
Radboud University Nijmegen

kkohls@cs.ru.nl

Claudia Diaz
imec-COSIC KU Leuven

Nym Technologies SA
claudia.diaz@esat.kuleuven.be

Abstract
We tackle the challenge of reliably determining the geo-
location of nodes in decentralized networks, considering ad-
versarial settings and without depending on any trusted land-
marks. In particular, we consider active adversaries that con-
trol a subset of nodes, announce false locations and strate-
gically manipulate measurements. To address this problem
we propose, implement and evaluate VerLoc, a system that
allows verifying the claimed geo-locations of network nodes
in a fully decentralized manner. VerLoc securely schedules
roundtrip time (RTT) measurements between randomly cho-
sen pairs of nodes. Trilateration is then applied to the set of
measurements to verify claimed geo-locations. We evaluate
VerLoc both with simulations and in the wild using a proto-
type implementation integrated in the Nym network (currently
run by thousands of nodes). We find that VerLoc can localize
nodes in the wild with a median error of 60 km, and that in
attack simulations it is capable of detecting and filtering out
adversarial timing manipulations for network setups with up
to 20 % malicious nodes.

1 Introduction

Whenever network applications depend on specific locations
for service nodes, they also depend on truthful location in-
formation [11, 51]. As GeoIP databases are not always re-
liable [18, 37, 44], active localization approaches that use
timing measurements to derive geo-location have been pro-
posed in prior work. Systems like Spotter [31], Octant [52], or
constraint-based geo-location [21, 25, 30] send timing probes
to targets from trusted landmarks that have a known loca-
tion [13, 15]. Combining the timing measurements obtained
by the set of landmarks allows to narrow down the location of
the target. While this allows for predictions up to street-level
granularity [12,50], landmark-based systems rely on a trusted
setup. Spotter and Co. depend on accurate ground truth infor-
mation for landmark locations, as well as on honest accurate
reporting of timing measurements by the landmarks. Such sys-
tems are neither robust to malicious landmarks that lie about

their location or obtained measurements, nor to malicious tar-
gets that strategically manipulate timing measurements by,
e. g., delaying responses to certain timing probes. This makes
these solutions inadequate for decentralized settings that may
be subject to adversarial conditions.

A scheme that allows to verify geo-location in networks
in a fully decentralized manner – without relying on trusted
landmarks or measurements – can be useful in a variety of
scenarios. Here we highlight two use cases. First, overlay
anonymous communication networks such as Tor 1 and Nym 2

route user connections through relays in multiple jurisdictions
to protect against adversaries who have monitoring and co-
ercion powers within a zone of adversarial control. Location
diversity strengthens security, as it becomes harder to mon-
itor, compromise or censor the full network [48]. Ensuring
location diversity when routing a connection requires reliable
geo-location information. However, prior work demonstrates
that available solutions sometimes result in incorrect location
information, e. g., 194 out of 6042 Tor relays were found to
be in a different country than the one indicated by their GeoIP
entry [27]. We can thus see that misleading location infor-
mation is not only a theoretical possibility, and may even be
actively used to obfuscate the whereabouts of network nodes.
In addition to supporting geographic diversity, publicly veri-
fiable node locations enable other functionalities dependent
on accurate location data, such as location-aware anonymous
routing policies that reduce end-to-end latency by favouring
routes that travel a smaller distance [3, 40].

Second, location diversity is also important for resilience
purposes in peer-to-peer networks that jointly maintain a
blockchain, such as Bitcoin 3. The concentration of network
servers in certain geo-locations makes the network vulnerable
to regional events, including natural disasters [54] as well as
politically motivated interventions [8]. A method to reliably
verify peer locations in a fully decentralized manner would
enable such permissionless networks to incentivize location

1https://www.torproject.org
2https://nymtech.net
3https://bitcoin.org/

USENIX Association 31st USENIX Security Symposium 2637

https://www.torproject.org
https://nymtech.net
https://bitcoin.org/

diversification, while ensuring that malicious peers cannot
take advantage by faking their location. In particular, node
locations can serve as one of the variables in the delegation
criteria in systems based on delegated proof of stake [26].

These functionalities are compelling not just from an aca-
demic standpoint. The Nym network [14] has already inte-
grated and deployed a prototype implementation of VerLoc
that Nym mix nodes run twice a day. Nym wants to verify
node locations to be able to enable in the future: (1) routing
policy constraints to ensure routes traverse multiple juris-
dictions and better protect from nation-state adversaries, (2)
lower-latency location-aware routing, and (3) incentives for
global location diversification via rewards and delegation of
stake (e. g. premium reward rates for nodes located in ge-
ographical areas with lower node density). At the time of
writing 3460 nodes have upgraded to the VerLoc-enabled
version. We take advantage of this experimental prototype im-
plementation to collect measurements and validate VerLoc’s
performance in the wild.
Contribution. VerLoc tackles the challenge of verifying geo-
locations in a fully decentralized network without trusted au-
thorities or landmarks, where up to 20 % of the network may
be actively malicious. To do so, VerLoc uses a novel timing-
based verification algorithm that is robust to network noise
and can withstand strategic adversarial manipulation. VerLoc
securely schedules Round Trip Time (RTT) measurements so
that the adversary cannot influence randomized assignments.
Based on pairwise RTT measurements, VerLoc applies trilat-
eration to estimate the geo-location of nodes and verify their
claimed whereabouts. VerLoc uses a broadcast channel to
enable all nodes to share the information needed to verify all
geo-locations. The measurement overhead involves sending a
few thousand pings, and it remains constant as the network
grows, while the data processing and storage overhead grows
linearly with the number of nodes (by 200 B per node).

As preliminary step, we conduct an empirical study to de-
rive a realistic network propagation model that accounts for
the effects of dynamic routing, congestion, and other natu-
rally occurring noise. This propagation model enables VerLoc
to convert measured times into geographical distances while
accounting for the effects of noise on the confidence intervals.

We first assess VerLoc’s performance baseline in the ab-
sence of active adversaries, i. e., considering that all network
nodes honestly report their location and measurements. We
conduct extensive simulations to evaluate the performance
of VerLoc under different conditions and understand the ef-
fects of parameters that affect the accuracy of the results. We
present results for a challenging deployment scenario and
show that even in sub-optimal conditions VerLoc is able to
localize nodes within a median error range of 103 km and ver-
ify with accuracy 92 % the country where a node is located.
Repeating the experiments in the wild provides even better
results, with a median localization error of 60 km. We then
evaluate VerLoc against an adversary that controls a subset of

nodes, considering that malicious nodes may lie about their
location, report fake timing measurements, and even manip-
ulate pairwise measurements by delaying responses. We in-
troduce a confidence score that qualifies location verification
decisions and show that the score is effective for accurately
distinguishing between true (honest) and false (adversarial)
reported locations. We find that adversaries need to control
more than 20 % of nodes to begin to degrade the location
verification accuracy for honest nodes, and more than 30 %
to trick VerLoc into accepting fake locations.

2 Preliminaries

2.1 Problem Statement
We consider a network of servers, which we refer to as nodes,
that are geographically disperse and work together to enable
a service, e. g., the relays that constitute the Tor network or
the peers that are part of the Bitcoin network. Note that the
network may provide services to end clients that do not publi-
cize their contact and location information or take part in the
verification process. We consider that only the nodes that form
the network infrastructure participate in the VerLoc protocols.

Network nodes announce their geographical location and
conduct a limited number of pairwise RTT measurements that
they also broadcast. Based on the set of claimed locations and
pairwise measurements, VerLoc allows everyone to verify all
the claimed locations in a fully decentralized manner. VerLoc
is designed to function in an adversarial environment where
a subset of malicious nodes coordinate to claim false loca-
tions. The goal of VerLoc is to distinguish between true and
false locations with high accuracy, even in the face of random
network noise and active adversaries that control a subset of
colluding nodes. Considering an adversary that claims false
node locations and manipulates reported measurements, Ver-
Loc’s main security goals can be formulated as follows: first,
an adversarial node na at geo-location la cannot successfully
claim being at a distant location l′a (e.g., that is in a different
country); and second, honest nodes that correctly follow the
protocols and report truthful information are successful in
verifying their geo-location.
Network model. We model the network as a set of N nodes
ni with i = 1..N. Each node ni broadcasts a descriptor with its
public key pki, its network address IPi, and its geographical
location loci (ideally with an error of less than 10 km), speci-
fied by latitude and longitude. This information is periodically
broadcast and nodes are ‘committed’ to their keys, address
and location until the next update. We also assume that it is
possible for any two nodes ni and n j to communicate directly
via the Internet, i. e., the network graph is fully connected.
Broadcast channel. We assume that each node knows the
full set of N−1 other nodes, with their node descriptors (in-
cluding pki, IPi, and loci). This may be achieved in different
ways. In anonymous communication networks this informa-

2638 31st USENIX Security Symposium USENIX Association

tion is typically updated in a consensus document published
every hour or few hours, while in peer-to-peer networks main-
taining blockchains the information may be continuously
updated via gossip protocols. The timing measurements col-
lected by nodes, which are needed to verify locations, must
also be broadcast to ensure public verifiability of results. Ver-
Loc thus requires a broadcast channel. We propose using a
blockchain that acts as a public, append-only log maintained
in a decentralized manner by the nodes. Note however that this
blockchain can be replaced by any technology that provides
secure broadcast with Byzantine fault-tolerance [32]. The key
security features required by VerLoc from the channel are
integrity and availability, i.e., that once uploaded, information
is publicly available to all participants and cannot be altered.
Node descriptors must be digitally signed to ensure that they
have been generated by the node associated to the descriptor’s
public key and have not been altered by others. In turn, the
list of descriptors of the nodes that constitute the network for
a period of time is jointly signed by the entities maintaining
the broadcast channel. We assume all participants can authen-
ticate the channel without being tricked into believing that a
separate channel (controlled by the adversary) is the authentic
one containing VerLoc’s information. Furthermore we assume
that it is not possible for the adversary to censor participant’s
read or write access to the channel, i.e., all nodes are able to
broadcast their descriptor and measurements, and to read the
descriptors and measurements of all the other nodes.
Epochs. We consider that nodes commit to being available at
a location for a finite amount of time. The network is updated
periodically, e. g. every few hours, with the epoch length be-
ing dependent on the expected churn in the network. Before
the start of an epoch, nodes broadcast their updated keys, ad-
dresses and locations. The VerLoc protocols run during the
epoch and produce results that enable identifying malicious
nodes and possibly excluding them from the next epoch.
Timing information. VerLoc relies on timing information
to estimate locations, using the relation between measurable
transmission times and geographical distances between nodes,
which is bound by the speed of light. More precisely, the
transmission time defines the area that can be reached within
that amount of time – with larger distances being impossible
to reach, as that would imply transmissions speeds that are
faster than light.
Timing probes. Nodes in the network probe a subset of other
nodes and measure the round trip time (RTT), i. e., the time
elapsed between sending a request and receiving a response.
These pairwise measurements do not require any central au-
thority and can be conducted using existing protocols such as
the Internet Control Message Protocol (ICMP).
Trilateration. Combining transmission times measured from
reference points situated in different directions allows to nar-
row down the location of a node. As all nodes measure various
other nodes in VerLoc, there is redundancy in the overall set
of network measurements. This redundancy allows to detect

inconsistencies created by the malicious activity of adversar-
ial nodes, as well as distortions introduced by exceptionally
bad network conditions.
Inference of geographical coordinates. Based on all the
claimed node locations and reported timing measurements,
VerLoc estimates the most likely geographical coordinates
(latitude, longitude) of each node and checks the distance to
the node’s claimed location.
Most likely geographical zone. We consider that space may
be divided into countries, regions, zones, or any other terri-
torial division, with each location (and therefore each node)
belonging to precisely one zone. In addition to the most likely
geographical coordinates, VerLoc computes the probability
that a node is located within a zone.
Confidence scores. Finally, VerLoc compares the set of empir-
ically measured propagation times with the times one would
expect given the locations claimed by all nodes and the prop-
agation model. This is used to define a confidence score that
expresses the discrepancy between expected and measured
times. A low confidence score is indicative that a node local-
ization result (coordinates as well as zone) may be wrong and
possibly malicious.

2.2 Information Propagation Model

Considering propagation speed, the transmission time be-
tween two nodes is proportional to the distance between them.
However, network effects introduce noise and variance in
the transmission speed, and consequently error when esti-
mating nodes’ locations from measured times. To provide
real-world capabilities, VerLoc must be robust to realistic lev-
els of noise and account for the actual speed function in the
underlying Internet. We conduct experiments where we mea-
sure the timings of Internet transmissions between servers
placed in different locations around the world. From these
experiments we distill a realistic propagation model that is
shown in Figure 1. The steps we took to derive this model are
explained in detail in Appendix A. Note that the propagation
model is pre-computed once and provided as a component
of VerLoc. While a better model can be created with a larger
number of measurements, once it is obtained it does not need
to be updated until the Internet infrastructure undergoes a
significant enough update to change its overall propagation
characteristics.

We find that transmission speed is, in practice, more com-
plex than a simple constant due to background noise caused by
varying transmission medium characteristics, asymmetric and
dynamic routing, congestion, and a host of other effects. As
shown in Figure 1, propagation speed and background noise
depend on end-to-end distance. By applying a fitting function,
we can model the scattered and noisy transmission speeds as
an estimate f (x) that provides us the most likely propagation
speed for a given distance x. The speed function f (x) (and
its inverse f−1(t), which converts times to distances) is used

USENIX Association 31st USENIX Security Symposium 2639

0 1000 2000 3000 4000
Distance [km]

0.00

0.20

0.40

0.60

0.80

1.00

S
p

ee
d

[c
]

Speed Fit

Noise Weight

0.00

0.08

0.16

0.24

0.32

0.40

N
oi

se
W

ei
gh

t

Figure 1: Propagation Speed Model. The scattered points
show the individual speeds of ICMP traffic RTTs; the blue
is the speed fit; the orange line summarizes the impact of
background noise.

to estimate node locations (§3.3.1) and compute confidence
scores (§3.3.3). Furthermore, the variance of observed times
for similar distances allows us to capture background noise
characteristics. We find that noise is lower for longer transmis-
sions. To account for this effect, we compute a noise weight
that we later use for localization.

Our propagation model is based on real-world data and
therefore captures the actual transmission characteristics of
the Internet. We base our simulation experiments on this
model, and thus our sampled transmission times incorporate
congestion latency and variance due to dynamic routing that
is characteristic of the Internet.

3 System Concept

In this section we introduce the architecture and core system
components of VerLoc. We explain how the measurement
component schedules the random selection of references and
the symmetric timing measurements, and how the localization
and verification component analyzes the measured timings to
produce location verification results.

3.1 System Components
As illustrated in Fig. 2, VerLoc consists of a measurement
component (green) that outputs timing measurements for se-
lected pairs of nodes, and a location verification component
(blue) that analyzes those timings to estimate the locations of
network nodes. In addition, the nodes collaboratively main-
tain a publicly accessible broadcast channel [32], allowing
all nodes to broadcast their information and access the in-
formation broadcast by others. This makes the verification
process fully decentralized, as everyone can locally compute
localization results based on broadcast data. The blockchain
stores the public network parameters, the node descriptors
(public key, IP address, claimed location), a per-epoch random
beacon, and the reported RTT measurements.

Measurements Localization and Verification

Upload Results

Measure RTTs

Schedule
Measurements

Nonce

Random
Beacon

Broadcast Channel
Select

Measurements

Analyze Timings

Estimate
Location

Verify
Zone

Rate
Confidence

Result

Figure 2: Complete measurement and analysis process. The
green part includes steps involved in conducting RTT mea-
surements, the blue part depicts the location estimation.

3.2 Measurement component

The measurement component involves three tasks that are
executed by all network nodes:

1. Schedule Measurements. In each epoch, the network
derives nodes’ reference sets, which determine the sched-
ule of pairwise measurements, using as seed a random
beacon [46] (§3.2.1).

2. Perform Measurements. Nodes conduct pairwise mea-
surements according to the scheduled reference sets by
sending timing probes and recording the observed RTT
(§3.2.2).

3. Upload Measurements. Nodes broadcast the minimum
measured RTT for each node in their reference set
(§3.2.3).

3.2.1 Schedule Measurements

VerLoc is designed to function in a fully decentralized fashion,
without relying on any trusted authorities or third parties,
and with all nodes performing the same tasks. To provide
robustness, it is crucial that the reference sets are chosen
in a way that cannot be biased by an adversary. Otherwise,
the adversary may manipulate and exploit reference sets, e. g.,
selecting adversarial reference sets to successfully verify false
locations and reject true locations. To prevent this, VerLoc
assigns reference sets pseudorandomly.

VerLoc’s reference set construction algorithm scales to ar-
bitrarily large networks while maintaining a constant (rather
than quadratic) complexity in terms of the number of mea-
surements conducted per node. As shown in Sect. 4.3, the
localization accuracy of VerLoc increases with the number of
references per node, but the improvement has diminishing re-
turns and, after a certain point, additional references consume
resources without significantly improving performance.

2640 31st USENIX Security Symposium USENIX Association

We empirically determine that the best tradeoff is between
40 and 80 references per node, and use those values in our
experiments.
Reference Set Construction. Reference sets are derived from
the node’s public keys pki and a random beacon x that is
jointly computed by nodes and published in the blockchain
once all public keys have been committed. Alternatively, the
random beacon may be obtained from an external source
of randomness [29], e.g., the hash of the first bitcoin block
published after the start of the epoch. The beacon must only
become available once all nodes have committed to their
public keys and are ready for a new run of the VerLoc protocol.
The key security requirements are that the same x is available
to all nodes, and that the adversary can neither determine the
value of x, nor predict it before committing to its node public
keys. Given x, everyone can derive a random hash hi for node
i as: hi = H(x||pki), where H() is a hash function [5].

We denote as Ri the reference set of node ni. Given hi,
nodes follow Algorithm 1 to derive an initial set of t references
to be included in Ri. These t references are only a part of a

Algorithm 1 Derive initial reference set Ri for node ni

Ri := /0

y := hi
while |Ri|< t do

r := y mod N;
if r /∈ Ri and r 6= ni then

Ri.add(r)
end if
y := Hash(y)

end while
return Ri

node’s reference set Ri. In VerLoc, references are symmetric,
meaning that n j ∈ Ri ⇐⇒ ni ∈ R j. Note that n j can verify
that ni correctly selected it, using hi and Algorithm 1. Nodes
complete their reference set Ri following Algorithm 2.

Algorithm 2 Complete reference set Ri

for j = 1..N do
if n j /∈ Ri and ni ∈ R j then

Ri.add(n j)
end if

end for
return Ri

With this algorithm, the complete reference set Ri will have
a variable size depending on the instance, as it is the sum of
two components: the t references (constant number) derived
from hi, and an additional t ′ references (variable number)
that are derived from all the other h j, i 6= j. Note that the t
nodes that are already included in Ri do not add any new
reference to Ri even if ni ∈ R j. Given the network size N and

the number of references t, a new node n j /∈ Ri is added to Ri
with probability t

N , and this applies to all the N− t nodes that
are not in the initial Ri. The probability of t ′ taking a certain
value k thus follows a binomial distribution:

Pr
[
t ′ = k;N− t,

t
N

]
=

(
N− t

k

)
·
(t

N

)k
·
(

1− t
N

)N−t−k

(1)
We select the parameter t to ensure that with overwhelming

probability all N nodes have sufficient t + t ′ references.
Symmetric Measurements. We use symmetric measure-
ments for two reasons. First, they help leveling out noise and
effects of asymmetric routing, as the timing RT T (ni → n j)
might differ from RT T (n j → ni). Moreover, burst noise in
one direction does not necessarily occur in the other direction
and thus averaging both directions improves the overall ro-
bustness to noise. Second, averaging the times measured in
both directions improves the robustness of VerLoc not just to-
wards random noise, but also active attacks. In settings where
of two nodes involved in the measurement one is honest and
the other malicious, the adversary could try to report a very
short transmission time to manipulate (speed up) the average
transmission time. Similarly, the average could be slowed
down to a desired number by the adversary reporting a very
large time. However, these attempts at manipulating the av-
erage are easily detectable by the confidence score (§3.3.3).
Speeding up the average transmission means that the adver-
sary must contribute a measurement that is significantly too
fast. Overly fast transmissions (faster than 2/3 · c) violate the
upper speed bound and decrease the confidence score. Report-
ing a measurement that is significantly too slow will violate
the lower speed bound and also result in marking the measure-
ment as unreliable. This lowers the confidence score for both
the target and the adversary nodes, meaning that adversaries
that lower the confidence score of honest nodes will cause
their own confidence score to diminish in equal measure.

3.2.2 Conduct Measurements

Given a set of references Ri for node ni, VerLoc conducts
pairwise measurements RT T (ni← r j) and RT T (ni→ r j) be-
tween ni and all its reference nodes r j ∈ Ri. A node ni con-
ducts a measurement RT T (ni→ r j) by sending timing probes
to r j, to which r j responds as fast as possible, and recording
the round trip time (RTT) of the responses. In their simplest
form, timing probes can be implemented, e. g., as ICMP echo
requests.
Freshness. To guarantee freshness, the node that initiates
the timing probe includes a locally generated random nonce.
When using ICMP, it is possible to encode the nonce in the
variable-length data field. The responding node has to copy
this nonce in the response. This prevents adversaries from
speeding up measurements. More precisely, it is always pos-
sible for a node to hold back the response to incoming probes,

USENIX Association 31st USENIX Security Symposium 2641

increasing the RTT and faking a longer transmission distance
(§5.1). By including an unpredictable nonce, an adversarial
node cannot respond to an incoming probe before it arrives,
which eliminates the capability to fake a shorter distance. The
nonce can be hashed with a previously established shared se-
cret to protect against man-in-the-middle adversaries (§5.6).
Multiple Probes and Minimum RTT. The number of timing
probes sent between a pair of nodes to conduct one mea-
surement strikes a tradeoff between measurement accuracy
and overhead. Increasing the number of probes allows to bet-
ter overcome high-frequency, high-delta noise at the cost of
sending more messages and taking longer to complete the
protocol. As with measurements taken to infer the propaga-
tion model, nodes take the minimum RTT of all the timing
probes exchanged with another node as the least noisy value.
In our experiments we use series of 200 probes and extract
the minimum value for each RT T (ni→ n j).

3.2.3 Upload Measurements

Nodes broadcast the minimum measured RTT with each of
their references. These measurements are the input for the
localization and verification steps.

3.3 Localization and Verification

The analysis steps of VerLoc are executed by all nodes locally
using the reported RTT measurements as input. VerLoc out-
puts three types of results for each node ni: (1) an estimate of
its location coordinates l̂oci, (2) a binary verification decision
for the node’s claimed localization zone zi, and (3) a score ci
that indicates VerLoc’s confidence in the previous two results.

3.3.1 Estimate Location Coordinates

VerLoc uses a gradient descent algorithm to estimate the geo-
graphical location of ni. This optimization model is iterative
and repeats three steps (illustrated in Figure 3) until it finds an
estimated location l̂oci with minimum error. The process is
based on the principle of trilateration [24, 27, 49] and defined
as follows.
Define Candidate Location. In the first step, we compute
the pairwise great circle distances dist between the claimed
locations of nodes in the reference set r j ∈ Ri and a possible
candidate location l̂oci for node ni. Note that we assume that
most nodes are non-adversarial and claim a correct location.
The initial l̂oci is an educated guess for the location of ni that
is adjusted throughout the optimization steps to find the best
result. The resulting vector

−→
dist, of size R = |Ri|, contains the

distances between all references r j and candidate l̂oci.
Estimate Distances. We average measurements in both di-
rections to estimate the distance between ni and r j (§3.2.1).

1

n

Figure 3: Node localization process (§3.3.1). At the start of
the localization process, we collect claimed locations and tim-
ing measurements from each of the references (blue circles)
of a target node (black circle). We guess an initial location
(red circle) for the target and then apply the iterative optimiza-
tion. In the first step À, we take the distance between each
reference’s claimed location and the guessed location (black
lines). We compare this with the distance that corresponds to
the measured RTT (blue dashed line) and evaluate the discrep-
ancy between both values. In the following steps n©, we use
a gradient descent to adjust the guessed location (red circle)
until we find the solution with the least discrepancy.

RT T (ni↔ r j) =
RT T (ni→ r j)+RT T (ni← r j)

2
(2)

RT T (ni → r j) and RT T (ni ← r j) are the minimum RTTs
measured in each direction. As described in Section 2.2, we
can translate transmission time into distance by applying
the inverse speed function f−1(t). This results in a second
distance vector

−−−−→
distRT T that contains f−1(RT T (ni↔ r j)) for

r j ∈ Ri

Apply Error Function. In the third step, we compare the
candidate distances

−→
dist with the distances

−−−−→
distRT T derived

from the measured RTTs. The delta between both vectors
∆(
−→
dist,
−−−−→
distRT T) expresses the discrepancy between the re-

ported RTTs and the candidate location l̂oci. We apply the
root-mean-square error (RMSE) as an error function to eval-
uate how consistent l̂oci is with the reported measurements.
We use an iterative optimization to minimize the RMSE for
possible values of l̂oci:

argmin
l̂oci

√
∑

R
j=1(∆ j ·ω j)2

R
(3)

∆ j = |dist(l̂oci,r j)− f−1(RT T (ni ↔ r j))| is the difference
between the candidate and the measured distances for ref-
erence r j, R is the number of references in Ri, and ω j is a
distance-dependent weighting factor that accounts for noise
effects. We derive ω j empirically as part of the propagation
model introduced in Section 2.2.

2642 31st USENIX Security Symposium USENIX Association

End Result. At the end of this process, we obtain a location
estimate l̂oci that best fits the reported RTT measurements
between ni and its references.

3.3.2 Verify Zone

In localization problems, the specific geographic coordinates
are often part of an area that has a semantic significance,
e. g., a country, jurisdiction, or zone under the control of a
given actor. In this case, all the points within a zone are
considered equivalent. In addition to the coordinates that
best approximate the node’s location, VerLoc can ascertain
whether the node is located within the zone zi that contains
the claimed location loci. The process illustrated in Figure 4
consists of the following steps.
Derive Target Area. In a first step, VerLoc translates the
measured RTTs into a vector of distances. Transmission
speeds on the Internet range from 0.22 c to 0.67 c [25, 34].
In order to find the largest target area that could possibly
meet the constraints of all measurements, we use an upper
bound transmission speed of 2/3 · c to compute the distance
distmax(ni↔ r j) = 2/3 · c ·RT T (ni↔ r j).

We sort the distances in ascending order and pick the first
element in this list, i. e., the reference appearing to be closest
to the target node ni. We “draw a circle” around this first
reference of radius distmax(ni↔ r j). The circle describes the
area that could have been reached in the measured time. This
circle is an initial area where ni must be located, which is
further narrowed down with each additional reference.
Shrink Target Area. We then proceed iteratively with the
next references of the sorted list. For each reference r j, we
draw a new circle around r j of radius distmax(ni ↔ r j) and
compute the intersection with the previous circles. In this iter-
ative process, we narrow down the target area step by step and
exit the process when new references do not shrink the target
area any further. The approach is robust to network distor-
tions, as occurrences of high background noise lead to longer
distances distmax(ni↔ r j), whose resulting intersections are
not overly restrictive.
Apply Grid. In the final step, we apply a grid to the target
area resulting from all intersections. We compute a likelihood
score for each point in the grid based on ∆ j, which expresses
how consistent that point’s location is with the measured
RTTs. We normalize the scores to obtain a probability distri-
bution, and then sum the scores of the points within each zone
that overlaps with the target area. The zone that accumulates
the highest mass is then compared to the claimed zone for
the verification decision. In the example shown in Figure 5
VerLoc would output a positive zone verification if the node
has claimed to be in Italy, and negative otherwise. Note that it
is also possible for VerLoc to output the probability score of
each zone instead of just the zone with the maximum score.

3.3.3 Confidence Scores

Confidence scores express the degree to which measured
RTTs are consistent with the claimed locations of all nodes
given the propagation model. This allows to reject decisions
where the evidence is inconclusive regarding the node’s lo-
cation. In the following, we introduce the generic concept of
confidence scores, whose parameters we later adjust to detect
adversarial timing manipulations (§5).
Speed Bounds. We consider bounds bl and bu that define the
minimum and maximum propagation speeds for a transmis-
sion. The upper bound bu = 2/3 ·c serves as a sanity check and
describes the maximum transmission speed that we usually
observe on the Internet. The lower bound bl is the lower 95 %
confidence bound of the speed fit (§2.2). A tolerance factor
τ accounts for transmission noise that slows down packets
beyond the considered speed limit:

bl = l(x)(1− τ) 0≤ τ≤ 1 (4)

Apply Confidence Scores. Consider a target node ni with a
set of references r j ∈ Ri and reported timings RT T (ni→ r j)
and RT T (ni← r j) for each direction. The node’s confidence
score ci represents the percentage of reference measurement
pairs within bounds, with the highest possible score being
1 and the lowest 0. More precisely, we count a 1 for every
pair of measurements that stays within the bounds and a 0
for every pair where at least one direction (RT T (ni→ r j) or
RT T (ni← r j)) violates at least one bound (bl or bu). We then
normalize the count dividing by the number of references |Ri|.

A threshold can then be used to either accept or reject
ni’s localization results based on its confidence score ci. In
Section 5 we show how confidence scores can be used as
countermeasure to distinguish benign from manipulated mea-
surements.

4 Performance Baseline

We begin our evaluation of VerLoc with a study of its perfor-
mance baseline in a non-adversarial simulation setup.

4.1 Experimental Setup
We evaluate VerLoc with simulations that account for the prop-
agation characteristics of real-world networks. The procedure
includes a preparation phase, where we randomly generate a
network, and a simulation phase, where we apply VerLoc.
Preparation. We generate a network of N nodes ni, each of
which has a randomly chosen true location loci in a zone zi
among fifteen of the most populated European countries: Ger-
many, France, United Kingdom, Italy, Spain, Ukraine, Poland,
Romania, Netherlands, Belgium, Czech Republic, Hungary,
Austria, Switzerland, and Slovakia. Based on these randomly
generated locations we generate a propagation matrix that
contains pairwise timing measurements for all possible pairs

USENIX Association 31st USENIX Security Symposium 2643

1 2 3 4

Figure 4: Zone Verification Process (§3.3.2). In the first step À, we generate an intersection area containing all possible locations
for the node. In the second step Á, we apply a grid to the intersection and compute the distances between each point in the grid
(squares) and each reference node (blue point). In the third step Â, we assign a weight to each point in the grid that describes the
probability of reaching the point from the reference in the measured time, darker colors represent a higher weight. In the final step
Ã, we sum the weights of the grid points within each country, and pick the country with the largest sum (Italy, in this example).

42°N

44°N

46°N

48°N

L
a
ti
tu

d
e

10°E 15°E

Longitude

Esri, HERE
 100 mi

 200 km

0

0.2

0.4

0.6

0.8

1

Figure 5: Sample Target Grid. The black point is the location
of ni (ground truth); the colored area shows the weighted grid;
darker colors indicate a higher likelihood score for a point in
the grid. For the verification decision, we pick the country
with the largest sum of likelihood scores.

of nodes in the network. We sample the transmission speeds,
times, and noise from our empirical propagation model (§2.2).
Simulation. We first generate the set of references r j ∈ Ri
for each node ni. For this, we pick uniformly at random t
references out of the available N−1 nodes and extend the set
to ensure that all measurements are symmetric (cf. Alg. 2).
For each measurement pair we look up timings from the pre-
computed propagation matrix. We then apply the method
described in Section 3.3.1 to estimate ni’s location l̂oci and
the method of Section 3.3.2 to verify its zone, as defined by
country borders.

4.2 Metrics

We use two metrics to evaluate the performance baseline.
First, we measure the location error of a node ni as the great
circle distance between the estimated and actual node loca-
tions, dist(loci, l̂oci). Second, we compute the zone verifica-
tion rate as the fraction of nodes for which the highest weight
zone matches the ground truth of the node’s location zone.

4.3 Experiments

Number of References. As initial step to adjust VerLoc’s
parameters, we analyze how the number of references influ-
ences node localization accuracy and zone verification rates.
The number of references |Ri| of node ni strikes a tradeoff
between the overhead and performance of VerLoc. References
must be picked randomly to prevent attacks. Thus, we can-
not optimize the choice of Ri to maximize proximity to ni
or diversity of directions, which would increase localization
accuracy. Increasing the number of references is the next best
option to ensure diversity of measurement directions and to
level out noise.

To find a suitable target number R of references, we com-
pute the average location error and zone verification rate for
different values of R, and show the results in Figure 6. We
observe a significant performance improvement in the range
of R = 10 to R = 80 references, which then offers diminish-
ing returns for larger values of R. For our simulations we
choose R = 80 as lower bound for the number of references,
and set parameter t = 50 so that reference sets are larger than
R = 80 in at least 98 % of cases, i. e., |Ri| ≥ R for most nodes
(cf. Eq. 1). In the real-world experiments presented later (§6)
we test both R = 40 and R = 80 and find that the difference
in localization accuracy is less than 0.5 km.

2644 31st USENIX Security Symposium USENIX Association

30 40 60 80 100 110 130 150 170 180
R

0.00

0.20

0.40

0.60

0.80

1.00

R
el

.
P

er
fo

rm
an

ce

0

60

120

180

240

300

L
oc

.
E

rr
or

[k
m

]

Zone Verification

Location Error

Figure 6: Performance for Localization and Verification. The
zone verification rate (left y axis) shows the fraction of correct
zone verifications. The localization error (right y axis) shows
the distance between the estimated and true node locations.

Table 1: Simulation Parameter Setup.

Parameter Notation Value Section

Nr Network Nodes N 1000

§4.1

Network Node ni –
Keys (pki,ski) –
True Physical Loc. loci –
Estimated Loc. l̂oci –
Claimed Loc. locA

i –
True Physical Zone zi –
Estimated Zone ẑi –

Base References t 50 §4.3Reference Set r j ∈ Ri |Ri| ≥ 80

Nr Adversarial Nodes |A| 50 .. 300 §5.2Adversarial Nodes a j ∈ A –
Claimed Nodes ck ∈C C ⊆ A

Confidence Threshold υ 0.2 §5.4Tolerance Factor τ 0.01

Baseline Parameter Values. We document the VerLoc pa-
rameters in Table 1. The first two blocks describe the network
setup and the number of references we determined in the per-
formance baseline. The following two blocks are dedicated
to the performance of VerLoc in an adversarial setting, which
we discuss in the following section.
Localization and Zone Verification Results. In our experi-
ments the median localization error is 103 km and the average
is 122 km. The distance between true and estimated locations
is distributed as shown in Figure 7. To get a sense of how
these distances compare to European country sizes, we em-
pirically evaluate the likelihood that the error will move the
node across a country border. As expected, shifts between
small neighboring countries are more likely to happen, but
VerLoc still achieves on average 92 % accuracy when verify-
ing the country in Europe where a node is located. We note

0 100 200 300 400 500
Distance [km]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

K
D

E

AVG
122km

max
80km

Figure 7: KDE Localization Error: Distribution of distances
between the estimated and the true location of nodes.

that experiments in the wild outperform simulation results
(§6.2), confirming that our simulations represent a particularly
difficult deployment scenario.

5 Security Analysis

We consider an adversary that participates in the network with
several malicious nodes. The adversary claims false locations
(different from the nodes’ true physical locations) for a subset
of those nodes and manipulates measurements consistently
with the fake claimed locations. Claiming false locations
undermines the localization and verification capabilities of
VerLoc compared to the baseline. We extend here the initial
network model (§2.1) to account for adversarial setups.

5.1 Adversarial Timing Manipulations
We consider a network of N nodes, of which a subset A of
nodes is adversarial, A⊂ N. The adversary claims false loca-
tions locA

k 6= lock for a subset C of adversarial nodes, C ⊆ A.
The adversary controls all nodes in A and can thus manipu-
late timings whenever an adversarial node participates in a
measurement.

Given a malicious target node ck ∈ C and its reference
set Rk, there are three possible scenarios for the target and
reference pairings ck↔ r j.
Perfect Manipulation. A perfect manipulation is possible
when both the target node ck and the reference r j ∈ Rk are
under adversarial control, i. e., ck ∈C and r j ∈ A. In this case
the adversary contributes spoofed times RT T (ck → r j) and
RT T (ck← r j) for both directions. The spoofed timings match
the expected propagation time for the claimed locations:

RT T (ck→ r j) = RT T (ck← r j) =
dist(locA

k , locA
j)

f (dist(locA
k , locA

j))
(5)

More precisely, the adversary first computes the distance
between the claimed location locA

k and the adversarial refer-
ence node locA

j . Note that locA
j = loc j if r j ∈ A but r j 6∈ C,

USENIX Association 31st USENIX Security Symposium 2645

while locA
j 6= loc j if r j ∈C. This distance serves as an input

to the empirical speed function f (x) (cf. § 2.2). We assume
that all the parameters of VerLoc are known to the adversary,
who can apply the propagation model to compute timings
that match the claimed distance. The adversary can slightly
alter reported RTT values with noise to avoid submitting sus-
piciously identical numbers.

The following two scenarios cover cases in which the ref-
erence node is not adversarial, i. e., ck ∈C but r j 6∈ A.
Slowing Down. If the claimed location locA

k of ck is further
away from reference r j than the true location lock, i. e., if
dist(locA

k , loc j) > dist(lock, loc j), then it is possible for the
adversary to slow down incoming timing probes (ck ← r j).
Slowing down means that the adversary delays its response
to the incoming probe in order to bring the RT T (ck ← r j)
measured by r j close to the value that would be observed if
ck was indeed placed in locA

k .
As in the previous case, we consider the adversary is able

to tamper with timings in both directions to perfectly fit the
claimed location. In one direction, the adversary contributes
a spoofed timing, while in the other direction it adds latency
to manipulate the timing reported by the (honest) reference
node r j.
No Manipulation. If the claimed location locA

k of ck is closer
to the benign reference r j than its true location lock, i. e., if
dist(locA

k , loc j)< dist(lock, loc j), then the adversary cannot
manipulate the measurements taken and reported by r j, as
he cannot speed up probes [27] or reply before receiving the
reference’s probe and seeing the included nonce.

5.2 Experimental Setup
In an adversarial setup, we are interested in the general system
performance (accuracy of localization and zone verification
rate) for honest nodes, as well as the number of successfully
claimed false locations. To this end, we adjust the network
setup and applied metrics.
Network Setup. As in the performance baseline experiments,
we simulate networks of N = 1000 nodes placed in random
locations across Europe and use a reference set size of R = 80.

We additionally define a subset A of adversarial nodes that
can manipulate measurements and a subset C ⊆ A of nodes
for which the adversary claims false locations. We randomly
pick fake claimed locations but ensure that the falsely claimed
location is in a different country than the actual location of
the adversarial node.

We first run a simulation considering true locations for
all nodes. We then substitute the propagation times for all
measurements in which the adversary can either apply a per-
fect manipulation or slow down incoming timing probes. We
re-apply the localization and verification methods for all the
nodes that were affected by the adversarial activities. This
includes all nodes ck ∈ C with false claimed locations, but
also all the benign nodes in their reference sets Rk. We do so

to examine all the discrepancies that the adversary introduces
when introducing bogus locations and measurements
Metrics. To measure the performance of VerLoc in an adver-
sarial setup, we extend the initial performance metrics (§4.2)
with a set of true/false, positive/negative results. In
contrast to the benign setup, these results now include ac-
cept/reject decisions for individual nodes.

We denote a positive decision as an accept, i. e., a de-
cision where the confidence score is sufficiently high; a
negative is a rejected decision where the confidence falls
below a defined threshold υ. Furthermore, we treat a result
as true whenever it matches the ground truth and as false
when it contradicts the ground truth:

• TP A true positive decision denotes an accept for a
node that reports its true location loci ∈ zi, meaning that
VerLoc believes the node to be in the correct zone zi.

• TN A true negative decision denotes a reject for an
adversarial node claiming to be at a false location locA

k ∈
zA

k such that zA
k 6= zk.

• FP A false positive decision denotes an accept for a
node with a false claimed location locA

k ∈ zA
k , meaning

that VerLoc believes the node to be in the falsely claimed
zone zA

k .

• FN A false negative decision denotes a reject for a node
whose claimed location loci ∈ zi was actually true.

In the following, we use a confidence score to identify fake
node locations. We then analyze the attack performance for
an increasing number of adversarial nodes to test the breaking
point of the system.

5.3 Attack Success
In a first step, we analyze the success of the adversary in
claiming false locations for some of its nodes, considering
a network of N = 1000, where each has at least R = 80 ran-
domly chosen references. To this end, we allow the adversary
to control |A|= 50 randomly chosen nodes and evaluate the at-
tack success for an increasing number of false location claims
|C|= 5..50. Note that in the case of |C|= 50 the adversary is
claiming false locations for all adversarial nodes, i. e., C = A.

We show the number of successfully verified false loca-
tions in Figure 8, where we can see that in the absence of
countermeasures the adversary is successful between a third
and half of the times.

5.4 Confidence Scores
To harden VerLoc and mitigate the attack success, we use the
confidence scores introduced previously (§3.3.3). We define
a reject threshold υ to distinguish between benign and mali-
cious location claims. We further define a tolerance factor τ

2646 31st USENIX Security Symposium USENIX Association

5 10 15 20 25 30 35 40 45 50
Num. Claimed

0

5

10

15

20

25

30

F
P

Figure 8: Adversarial success for a given number of false
claimed locations (20000 samples).

to account for background noise that disturbs the end-to-end
timings. These are the two main parameters that determine
accept and reject decisions based on the confidence scores.

The tolerance factor τ defines how much noise is tolerated,
i. e., it relaxes the lower bound bl on the speed, accepting even
slower transmissions. Too many transmissions being too slow
is precisely a distinguishing characteristic of false claimed
locations. Whenever a false claimed location is closer to a
reference r j than the true location, the adversary is unable to
manipulate the measured timing to make it shorter. Conse-
quently, the RTT reported by the reference r j will appear as a
very slow (noisy) transmission.

The threshold υ defines the minimum decision confidence
score required by VerLoc to accept a claimed location as
verified. This parameter influences the tradeoff between false
positive and false negative rates. An overly restrictive υ will
reject many decisions, including those of benign nodes for
which measurements are simply noisy. On the other hand,
a very lax υ increases false positives, correctly verifying a
larger number of honest node locations at the cost of also
accepting some false locations as correct.
Tolerance Factor (τ). To evaluate how the tolerance factor
τ influences the overall performance of VerLoc, we test val-
ues in the range of τ = 0.005..0.025 considering a decision
threshold υ = 0.2. In our evaluation, we first study which
configurations prevent the adversary from claiming any false
location, i. e., cases in which FP = 0. We find that there is
minimal variation for the accept and TP rates. More precisely,
the acceptance rates are in the range of 95 % to 96 %, and the
TP rates achieve 86 % to 87 % within the accepted decisions.
For the simulation experiments we use a tolerance factor of
τ = 0.01.
Decision Threshold (υ). The decision threshold υ defines the
minimum required confidence to accept a decision. Figure 9
shows the distribution of confidence scores for adversarial and
benign nodes considering a scenario where the adversary con-
trols 50 nodes, all of which claim false locations. As we can
see in the figure, both groups can be perfectly distinguished
with a decision threshold of υ = 0.2, as there is no overlap

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Target Confidence

0

5

10

15

20

25

K
D

E

Benign Nodes

Claimed Nodes

Threshold

Figure 9: Distribution (kernel density estimate) of confidence
scores. Benign (blue) and malicious (orange) nodes in a setup
with |C|= |A|= 50 adversarial nodes claiming false locations.
We choose a threshold υ = 0.2 to distinguish both groups.

0.0 0.1 0.2 0.3 0.4 0.5
Target Confidence

0

2

4

6

8

10

12

14

K
D

E

Benign Nodes

Claimed Nodes

Figure 10: Distribution of confidence scores for a setup with
250 out of 1000 (25%) malicious nodes, all claiming false
locations.

between both distributions. We thus choose this value for υ.

5.5 Breaking Point of VerLoc
We have shown that VerLoc can reliably distinguish between
manipulated and benign node decisions. This prevents adver-
sarial success while maintaining a reliable verification and
localization performance in situations where the adversary
controls a limited percentage of nodes. However, we are also
interested in identifying the breaking point of the system, i. e.,
the required amount of adversarial resources that degrades the
performance of VerLoc to unacceptable levels. To this end,
we gradually increase the fraction of adversarial control in
the network (cf. Table 2). We observe:

• Confidence Score Distribution. An increasing number
of adversarial nodes with false claimed locations intro-
duces distortions in many measurements, and the manip-
ulations lead to network-wide inconsistencies between
claimed locations and reported timing measurements.
Figure 10 shows how the confidence scores begin to
overlap for benign and malicious nodes at 25 % compro-
mise.

USENIX Association 31st USENIX Security Symposium 2647

Table 2: System Breaking Point.

Claimed Reject TP FP FN Recall

5 % 50 815 0 0 1.00
10 % 102 756 0 2 0.99
15 % 152 691 0 3 0.99
20 % 214 627 0 23 0.96
25 % 284 555 0 58 0.91

30 % 335 476 3 105 0.82
35 % 352 401 3 151 0.73

• False Positives. VerLoc begins to output FP results when
reaching around a third of adversarial nodes with false
location claims. While the adversarial success is limited
in this setup (FP = 3), it indicates that at this point the
adversary is capable of compromising the verification
process to successfully claim false locations. Note that a
FP only occurs when (1) the estimated zone ẑi coincides
with the zone that contains the location locA

i claimed by
the adversary, and (2) the adversarial node has a confi-
dence score larger than υ. A confidence score above υ

does not lead to a FP if the estimated and claimed zones
do not coincide.

• False Negatives. False negatives do not compromise
the system’s security directly but they have the risk of
unfairly rejecting honest nodes from the system. Further-
more, an increasing FN rate indicates that VerLoc looses
the ability to make reliable accept and reject decisions.
We see that FN begins to increase when adversaries con-
trol 20 % or more of the network.

Conclusion. The confidence scores of VerLoc allow distin-
guishing true and false location claims. This protection mech-
anism is robust to adversaries that control up to about 20 % of
nodes in the network while still providing high performance
rates for all remaining honest nodes. Note that these results
correspond to a network setup restricted to Europe, which is
a challenging use case (§5.6).

5.6 Additional Threats
5.6.1 Framing Benign Nodes

Instead of trying to successfully claim false locations (FP) for
malicious nodes, the adversary can attempt to frame benign
nodes as claiming a false location (FN) by, e. g., contributing
timings that violate bounds and reduce the confidence score of
an honest node. An adversary that controls a fraction α = |A|

N
of all the nodes is on average able to manipulate a fraction α

of an honest node’s reference measurements, in one of the two
directions.4 This is in contrast with claiming false locations,

4The exact number of corrupt references in a node’s set is given by a
hypergeometric distribution with population size N, R draws, and |A| special

where the adversary controls all the reference measurements
in at least one direction, and a fraction α in both directions.

An adversary that controls a fraction α of a node’s refer-
ences can at most lower the confidence score of the node by α,
by making α ·R measurements that would otherwise be within
bounds to be out of bounds. Considering the results shown in
Figure 9 for benign nodes, more than half the references of
a node fail the bounds test in the absence of attack, meaning
that the adversary in practice will be only able to lower an
honest node’s score by less than α. Considering a threshold
υ = 0.2 for the confidence scores, an adversary has to control
at least a fraction α = 0.2 to start bringing down below υ the
confidence score of a non-negligible fraction of benign nodes.

Note that, because measurements are symmetric, a bounds
violation in a pairwise measurement affects both nodes in-
volved, and thus the scores of the adversarial nodes them-
selves become lower as they attack more targets, meaning
that the adversary has to trade scalability with detectability of
the attack.

5.6.2 Strategic Locations for Adversarial Nodes

An adversary can improve the attack success by strategically
positioning its nodes. For this strategic placement, two key
characteristics can be exploited. First, zone verification errors
where a node is believed to be in a different zone are more
likely to occur in small zones, such that an error of less than a
hundred kilometres is enough to shift the node to a different
zone. Thus, an adversary placing the nodes in small zones can
more plausibly claim that the observed discrepancies are due
to natural network effects and noise rather than malicious ma-
nipulation. Within the localization constraints the adversary
is subject to, placing the malicious nodes as close as possible
to the border of the claimed zone increases the chances of
adversarial success. Note that regardless of zone boundaries,
it is always easier for an adversary to plausibly claim being at
a nearby location rather than a faraway location.

Second, we investigate how the directional diversity of a
reference set influences the accuracy of localization. In the
best case, a node’s references are situated in all directions
to provide the highest possible measurement diversity. To
illustrate why directional diversity is important, consider a
case where multiple measurements have a lot of noise (extra
latency). If the noisy measurements come from opposite di-
rections, the discrepancies are leveled out and VerLoc arrives
at a good estimation. In contrast, noisy measurements from a
single direction push the estimated target node further away
from its actual location. In our experiments, 95 % of failed
verification for nodes in Spain, which is located in the SW
corner of Europe, are associated with a unidirectional distri-
bution of references, whereas this issue appears related to just

(malicious) objects. The variance of such distribution is low for a large R,
making it unlikely that the adversary controls much more than a fraction α

of references in a randomly chosen subset.

2648 31st USENIX Security Symposium USENIX Association

20 % of nodes in Romania, which has a more central location
in the continent. Therefore, an adversary can more plausibly
claim that a failed verification is due to natural causes when
claiming locations with less directional diversity. Note also
that the adversary has more influence on VerLoc’s results for
a node when it is the only reference providing measurements
for that node from a certain direction.

The study of adversarial node positioning strategies to
achieve concrete objectives under specific constraints is left
for future work. Such further research may, for example, eval-
uate strategies for successfully convincing the network that
a number of adversarial nodes are located within a specific
country (that, e.g., has a strong rule of law and favorable legis-
lation, which increases trust in those adversarial nodes), when
they are actually located somewhere else that is at a certain
distance; or strategies for downgrading the confidence score
of specific targets among the honest nodes.

5.6.3 Adversaries in the underlying network

Network adversaries placed in between two nodes may inter-
cept probes and respond to them, causing nodes to measure
RTTs that are impossibly small given the actual distance be-
tween them. Security can be strengthened towards such adver-
saries if the two nodes, who can authenticate each other using
the public keys in the node descriptors, establish a shared
secret s before exchanging probes, e. g., with an authenticated
Diffie-Hellmann key exchange. Instead of simply copying
the nonce in their response, nodes respond to probes with a
hash of s concatenated with the nonce. A man-in-the-middle
adversary who is physically between the two nodes cannot
fake a shorter distance without access to s. Note that the time
required to compute this hash adds to the measured RTT
and thus needs to be factored in when building the propaga-
tion model. If the hash computation time is highly variable
from one node to another, this adds noise that may decrease
localization accuracy; if on the other hand the hash compu-
tation time is rather constant across servers, it can be easily
accounted for in the propagation model without an impact on
localization accuracy.

Alternatively, a network adversary can always slow down
probes it intercepts. Note that this gives no additional advan-
tage to an adversary that controls one of the nodes involved in
the probe, who already has the ability to slow down the probe
at will; but it does enable the adversary to delay probes sent
between honest nodes. The effect of such an attack is to lower
the confidence score of honest nodes, who now appear to be
far away from many other nodes, or even all other nodes if the
adversary fully controls the network connection of the victim.
Note that distinguishing such delays from natural transmis-
sion delays due to poor network conditions is non-trivial, as
both effects cause a lower confidence score. We argue that
this is an acceptable effect, as the confidence scores not only
represent adversarial manipulations, but also take into account

bad network conditions. In both cases the score represents a
lower confidence in the localization result.

5.6.4 Compromised Broadcast Channel

VerLoc relies on two types of node information to produce
results: node descriptors (containing IP addresses, claimed
locations and public keys) and recorded measurements. We as-
sume that node descriptors are always securely broadcast even
in the absence of VerLoc, as otherwise it is easy to completely
disrupt the network and any functionality it could offer, be-
yond VerLoc’s node localization features. Note that in Tor this
information is included in a consensus document signed by
all directory authorities, while in Nym it is collectively signed
by validators and published in the blockchain. The recorded
measurements are however specific to VerLoc and not broad-
cast already as part of basic network orchestration. Therefore,
we can expect VerLoc implementations such as the one de-
scribed in the next section, where recorded measurements are
made publicly available in ways that are more susceptible to
adversarial attacks. An adversary could, for example, show
different measurement results to different participants by serv-
ing a different result files depending on the IP address of the
requester. In this case participants may arrive to different con-
clusions regarding the localization of some nodes. We note
that public web pages with node information such as those
maintained by Nodes Guru5 make such attacks detectable,
as participants may realize that their locally obtained VerLoc
results do not coincide with results shared by others in public
places. Thus, while such attacks are difficult to prevent in the
absence of secure broadcast for measurements, they can be
relatively easy to detect (and react to) given active community
engagement, discussion and scrutiny of the system.

6 Experiments in the Wild

As final step we validate VerLoc with a real-world experiment
where deployed nodes run a simplified prototype implemen-
tation.

6.1 Experimental setup

The simplified VerLoc prototype implementation was bun-
dled with the Nym network’s mixnode code version 0.10.1,
released on May 25th. Thousands of nodes are actively partic-
ipating in VerLoc measurements and publishing new results
every 12 hours. More precisely, a list of mixnodes with IP
addresses of all nodes involved in the network is publicly
available.6 Using these IP addresses, we can load the mea-
surement results from a specific port directly at the node

5https://nodes.guru/nym/nymworld
6https://testnet-finney-explorer.nymtech.net/data/

mixnodes.json

USENIX Association 31st USENIX Security Symposium 2649

https://nodes.guru/nym/nymworld
https://testnet-finney-explorer.nymtech.net/data/mixnodes.json
https://testnet-finney-explorer.nymtech.net/data/mixnodes.json

http://[IP]:8000/verloc. We have made publicly avail-
able the prototype implementation7 used to obtain the results
shown in this paper. The prototype includes the main imple-
mentation of VerLoc and a fetch and parsing script to obtain
the node measurements. Our results are therefore fully re-
producible and the prototype is available to conduct further
studies.

The implementation functions as follows. As part of Nym’s
normal features (independently of VerLoc), mix nodes peri-
odically download the full list of active nodes in the network,
with their public keys and IP addresses. Nodes self-report
location as part of their information, typically at the level
of nearest town. In Appendix B we provide details on the
quality of self-reported locations. A node that runs the Ver-
Loc-enabled version of the software sends 200 ICMP echo
requests to each of the other nodes in the network and records
the measured RTT values. The minimum RTT per reference is
made available at a defined port accessible through the node’s
IP address. We crawl and parse these files to retrieve the mea-
surements. We then locally run our Python scripts on that
data to compute localization results. The main differences
between the prototype version that is currently deployed and
the full proposed VerLoc system are:

• The prototype does not publish the measured RTTs in a
blockchain but instead makes them publicly available as
json files.

• In the prototype nodes measure all (thousands) other
nodes in the network rather than a subset of 40 to 80 ref-
erences. This is to allow us to collect a larger dataset and
perform a more thorough evaluation. A complete Ver-
Loc implementation conducts fewer measurements (two
orders of magnitude less) and thus generates much less
data so that it is feasible to publish RTT measurements
in a blockchain.

6.2 Results
At the time of submission (June 2021) there are 7469 individ-
ual nodes in the Nym network. After crawling, parsing, and
filtering for nodes running the VerLoc-enabled version 0.10.1,
we were left with 3460 nodes for our evaluation. The main
‘loss’ of nodes running the right software version is caused by
problems parsing or mapping the self-reported locations. In
the current prototype implementation, node operators provide
location as a string that should be the name of a city. We then
look up the name in a publicly available list of 26569 world
cities. We use the coordinates of the center point of the city as
an approximation of the node’s self-reported location. Unfor-
tunately, the free text leads to parsing errors due to spelling
mistakes and formatting issues. Furthermore, if nodes pro-
vide the name of a small place not in the list of world cities,

7https://github.com/katharinakohls/VerLoc

0 200 400 600 800 1000
Location Error [km]

0

500

1000

1500

2000

2500

3000

C
ou

nt

med
60km

avg
178km

Figure 11: KDE Localization Error: Distribution of distances
between the estimated and the true location of nodes.

our current prototype cannot assign a reported location to the
node. In a more advanced version of VerLoc, the self-reported
location should be standardized, e. g., by providing numerical
fields for reporting latitude and longitude instead of a free
text field for the location name—or substituted altogether by
GeoIP locations.

For comparison to the simulation results (§4) we select
nodes in Europe that have a sufficient number of measure-
ments, which results in a subset of 943 out of the 3460 nodes.
The filtered dataset with 943 nodes contains 852870 indi-
vidual measurements, with an average of 902 references per
node. For each selected node, we randomly choose R of its
references, discarding and re-sampling if we get a duplicate
location already in the reference set. We then retrieve the
corresponding measurements from the dataset.

We tested R = 80 and R = 40 and the median localization
error differed by less than 0.5 km. The results show a me-
dian localization error of 60 km and an average of 178 km,
which are better results than those obtained in the simula-
tions (§4). The distribution of error is shown in Figure 11.
Compared to Figure 7, it is more skewed, with a larger num-
ber of rather accurate localizations and a long tail of error.
This performance improves when applying confidence scores
(§5.4). Although we do not expect an active manipulation of
measurements in the collected data set, self-reported locations
may be grossly inaccurate in some cases. Confidence scores
help filter out nodes with abnormally high rates of bad mea-
surements. When adjusting the tolerance parameter τ = 0.2
and keeping the threshold υ = 0.2, two thirds of the nodes
have confidence above the threshold. The median localization
error for nodes with a confidence score ci > υ is 55 km, while
the median error for nodes with a confidence score ci < υ is
256 km.

7 Overhead of VerLoc

VerLoc is intended for networks that already have a system for
broadcasting node descriptors, so that this requirement does

2650 31st USENIX Security Symposium USENIX Association

https://github.com/katharinakohls/VerLoc

not impose additional overhead as it piggy-backs on existing
infrastructure. The network may also collaboratively generate
a periodic random beacon for other purposes, or rely on an
external source of randomness.

In terms of data broadcast, the overhead caused by Ver-
Loc is given by the inclusion of RTT measurements in a
blockchain. Each measurement contains an RTT and an iden-
tifier of the node being measured, which together can be en-
coded in 5 B: 20 bit for the node id of the reference being
measured (for networks of up to 1 million nodes) and 20 bit
for encoding the RTT with a granularity of 1 µs. Consider-
ing R = 40 references per node (shown to be sufficient in
real-world experiments) this amounts to 200 B per node. The
overhead scales linearly with the size of the network, e. g. for
a network of ten thousand nodes, the broadcast data needed to
run VerLoc amounts to 2 MB for the full network. If VerLoc
runs once or twice a day this is a rather small overhead. A
resource-efficient version of VerLoc can be limited to updating
information and measurements only for nodes that have newly
joined or that have updated their public key, self-reported lo-
cation or IP address.

In terms of VerLoc’s pairwise communication overhead,
each node must send 200 ICMP echo requests to 40 refer-
ences, meaning it executes 8000 pings, once or twice a day.
This overhead remains constant as the network grows and it is
in practice negligible for the nodes. Using the measurement
data made publicly available, the evaluation scripts can be
run locally by everyone to obtain location verification results.
Our current (non-optimized) Python scripts take less than
120 ms to compute the localization result for a node with 40
references.

8 Related Work

Delay-Based Geolocation. Different delay-based geolocation
techniques [4, 15, 31, 33] exist for use cases like cloud stor-
age [20] or the identification of hidden servers [10]. Such tech-
niques overcome inaccuracies in existing databases [16, 37],
and outperform WiFi positioning systems [53] or GPS-
based approaches [22]. While prior studies emphasize the
resilience of delay-based geolocation against simple manipu-
lations [1,2,9,19,36,50], VerLoc is the first to protect against
adversaries in a decentralized setting. Furthermore, prior ap-
proaches often rely on central authorities [21, 52]. In contrast
to VerLoc, they depend on trusted information and do not
consider targeted adversarial manipulations. Other network
geolocation techniques include proxies [51], focus on achiev-
ing street-level granularity [50], or analyze the quality of the
information in commercial geolocation databases [18].
Adversarial Localization in Other Contexts. Adversarial
interference with location information is also relevant in other
contexts. For example, prior work demonstrates privacy at-
tacks that allow an adversary to localize and track mobile
users based on public information [17, 28, 43]. In the con-

text of GPS, spoofing attacks are a persisting problem due to
the unencrypted and unauthorized transmission of informa-
tion [23, 45, 47]. Several real-world incidents demonstrate the
threat of such attacks [6, 38, 41, 42].
Distance Bounding. Distance bounding protocols are two-
party cryptographic protocols that enable a verifier V to es-
tablish an upper bound on the physical distance to a (possibly
adversarial) prover P [7]. Such protocols are typically de-
signed for bounding distances in the order of metres (or even
centimetres [39]) and are mainly concerned with dishonest
provers and man-in-the-middle adversaries that try to fake a
shorter distance between P and V [35]. In contrast, VerLoc is
a decentralized multi-party protocol that relies on redundancy
across dozens of measurements with randomly selected par-
ties to infer geolocation on a map (rather than just focusing
on establishing an upper bound on the distance between two
parties), such that results are accurate enough even if some
measurements are fabricated by the adversary. An accuracy in
the order of tens of kilometres is in most cases good enough
for verifying location at country-level granularity in a global
or continental network.

9 Conclusion

We have introduced VerLoc, a decentralized protocol that uses
timing probes between randomly assigned pairs of nodes to
verify the geolocation of nodes in a network. VerLoc outputs
an estimated most likely location, a verification decision on
whether the node is in the claimed geographical area (e. g.,
country), and a score of the confidence of VerLoc on a node’s
localization results. Low scores are indicative of poor network
conditions or of active attack.

To configure VerLoc, we first conducted an empirical study
where we measured real-world propagation timings. We used
this information to create a propagation model that summa-
rizes realistic transmission times and speeds as a function
of the distance between the nodes. In a series of simulation
experiments, we analyzed the performance of VerLoc in a non-
adversarial setup and further tested its defensive capabilities
in increasingly adversarial conditions. Our results show that
VerLoc protects against false claimed locations even when
up to 20 % of nodes are malicious while providing correct
location estimates for the remaining benign nodes in 90 % of
cases. Finally, we validated VerLoc with an experiment in the
wild, where several thousand nodes run a VerLoc prototype.
The real-world results show that VerLoc localizes nodes with
a median error of 60 km and is thus suitable for verifying
locations at country-level granularity.

Acknowledgments

We would like to thank the Nym team for enabling the VerLoc
prototype. Being given the opportunity to conduct real-world
measurements at this scale and in such a diverse infrastructure

USENIX Association 31st USENIX Security Symposium 2651

is unique and substantially contributed to the quality of this
work. In particular, we would like to thank Dave Hrycyszyn
and Jedrzej (a.k.a. “Andrew”) Stuczynski for their implemen-
tation of the measurements. Additionally, we would like to
thank Evgeny Garanin and Sergei Korolev from Nodes Guru
for integrating our prototype in their system, and making the
localization results of the Nym network publicly available.

This work was in part supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC-2092
CASA – 390781972, by the Research Council KU Leuven
under the grant C24/18/049, by CyberSecurity Research Flan-
ders with reference number VR20192203, and by DARPA
FA8750-19-C-0502. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of any of
the funders.

A Propagation Model

VerLoc requires a speed function to convert measured times
to distances, since a simple speed constant does not accu-
rately describe the relationship between the physical distance
between two computers and the time it takes for data to be
transmitted from one to the other via the Internet. The Inter-
net speed function is in fact distance-dependent, with speeds
being higher (and noise lower) for longer distances than for
shorter ones.

We generate a propagation model with a rather simple
method that we introduced in Section 2.2 and that we de-
scribe here in more detail. We note that a better propagation
model can be generated with a larger and more diverse set of
samples. A more sophisticated application of the propagation
model can also take into account not just the distance between
two nodes, but be finer-grained and account for their actual
locations since similar distances can have different speeds
depending on the underlying Internet connectivity between
locations. While a better propagation model can further im-
prove VerLoc’s performance, we have shown in this paper that
the VerLoc concept works even with a simple model.

We note that building an accurate propagation model ben-
efits from the use of trusted landmarks at known locations.
Since this only needs to be done once before deploying Ver-
Loc and then the model is a publicly known function (that can
be used not just by VerLoc but by any system that wants to
convert internet timings to distances), we argue that this does
not introduce trusted parties in VerLoc’s operations.

Setup

In order to build the propagation model, we measure the
round-trip timings (RTTs) of transmissions between servers
in 16 known different worldwide locations and 6042 relays
of the Tor network. Between each pair of nodes we send 200

ICMP echo requests to derive the minimum RTT, the mean,
and the standard deviation over all pings sent between the
two servers. Along with these measured timings, we docu-
ment the relays’ GeoIP locations. Note that while the GeoIP
location cannot serve as reliable ground truth, it provides an
approximate location for the majority of nodes [18, 51].

Of the 200 timing probes exchanged between a pair of
nodes, we take the minimum measured RTT as that corre-
sponds to the least noisy measurement sample for a connec-
tion. The same procedure is followed in VerLoc whenever two
nodes measure each other: they exchange 200 probes and re-
port the minimum measured RTT as best representative of the
channel. This is because noise strictly adds (never subtracts)
latency.

Dataset

Within this setup, we conducted a set of 1.8 million measure-
ments within two days, and collected two smaller sets (60k
and 30k) weeks later to verify that the RTT distributions were
stable. Fig. 1 documents the measurements and the fitting
function, which we later use in the simulation and prototype
experiments. We sanitized our dataset by removing nodes
for which the measurements indicate they announced a false
GeoIP entry. In particular, we flag measurements that would
imply a propagation speed faster than light. We keep measure-
ments that are (significantly) slower than expected, as this can
be caused by network delays. The speed of light is however
a hard upper bound for transmissions, and thus nodes with
excessively fast measurements can be safely removed.

B Quality of Self-Reported Data

The current prototype implementation of VerLoc deployed in
Nym uses self-reported locations on a city level. This can only
be an approximation of the exact node location, as we refer to
the city center for the latitude and longitude of a node. Further-
more, we have no access to ground truth information to check
the correctness of the self-reported location. To compensate
for this, we compare the city-level information provided by
the node operators with the GeoIP information related to the
IP addresses of the nodes. Although this does not provide us
with a trusted set of locations, it provides a sanity check and
a general idea of the quality of the self-reported data.

In total, we test 1395 nodes of our real-world data set. This
set represents the number of European nodes for which we
successfully fetched GeoIP8 information. In this comparison,
the median location error for all nodes, i. e., the distance be-
tween the GeoIP and the self-reported location is 7.11 km
with a mean of 364.47 km. To account for the outliers, we
then identify all nodes where the self-reported country and
the GeoIP country contradict each other. In total we find 126

8We use the Maxmind GeoLite 2 City data base, last updated on Sep 09
2021

2652 31st USENIX Security Symposium USENIX Association

(9.03 %) with conflicting countries. The median location error
here is 1238 km with a mean of 3270 km.

Finally, we revisit the results of the prototype evaluation
to identify possible sources of noise leading to verification
failures. To this end, we focus on two main characteristics.
First, we check for inconsistencies in the self-reported and
GeoIP locations. Second, we look for VerLoc decisions in
which a majority of slow timing measurements influenced the
confidence score. We do so for both accepted and rejected
nodes. Out of 32768 nodes in total (tested in 64 random
repetitions), 26993 (82.38 %) nodes were accepted and 5775
(17.62 %) were rejected. Out of the rejected, 1664 (28.81 %)
had a conflicting GeoIP location, and 3448 (59.71 %) used
measurements of which a majority (more than 80 %) was
unexpectedly slow. At the same time, only 832 (3.08 %) of all
accepted nodes had a conflicting GeoIP location. Please note
that these results can only represent a snapshot. Repeated runs
of VerLoc allow to monitor node localization and verification
over time in order to better assess whether a node is truthfully
reporting its location. A node that consistently fails location
verification should therefore appear as more suspicious than
one that occasionally fails due to slow measurements. Such
longitudinal analysis approach is however out of scope for
the current version of VerLoc.

References
[1] AbdelRahman Abdou, Ashraf Matrawy, and Paul C Van Oorschot.

Taxing the Queue: Hindering Middleboxes from Unauthorized Large-
Scale Traffic Relaying. IEEE Communications Letters, 19(1):42–45,
2014.

[2] AbdelRahman Abdou, Ashraf Matrawy, and Paul C Van Oorschot. Ac-
curate Manipulation of Delay-Based Internet Geolocation. In ACM Asia
Conference on Computer and Communications Security, AsiaCCS ’17,
pages 887–898, Abu Dhabi, UAE, April 2017. ACM.

[3] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LASTor: A
Low-Latency AS-Aware Tor Client. In IEEE Symposium on Security
and Privacy, SP ’12, pages 476–490, San Francisco, CA, USA, May
2012. IEEE.

[4] Mohammed Jubaer Arif, Shanika Karunasekera, Santosh Kulkarni, Ajit
Gunatilaka, and Branko Ristic. Internet Host Geolocation using Maxi-
mum Likelihood Estimation Technique. In International Conference
on Advanced Information Networking and Applications, AINA ’10,
pages 422–429, Perth, Australia, April 2010. IEEE.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. Keccak. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, pages 313–314, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[6] Jahshan A. Bhatti and Todd E. Humphreys. Hostile Control of Ships
via False GPS Signals: Demonstration and Detection. Technical report,
The University of Texas at Austin, 2014.

[7] Stefan Brands and David Chaum. Distance-bounding protocols. In Tor
Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, pages
344–359, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[8] David Canellis. Research: China has the power to destroy Bitcoin,
October 2018.

[9] Martin Casado and Michael J Freedman. Peering through the shroud:
The effect of edge opacity on ip-based client identification. In

USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI ’07, Cambridge, MA, USA, April 2007.

[10] Claude Castelluccia, Mohamed Ali Kaafar, Pere Manils, and Daniele
Perito. Geolocalization of Proxied Services and its Application to
Fast-Flux Hidden Servers. In ACM SIGCOMM Conference on Internet
Measurement, IMC ’09, pages 184–189, Budapest, Hungary, July 2009.

[11] Balakrishnan Chandrasekaran, Mingru Bai, Michael Schoenfield,
Arthur Berger, Nicole Caruso, George Economou, Stephen Gilliss,
Bruce Maggs, Kyle Moses, David Duff, et al. Alidade: IP Geoloca-
tion Without Active Probing. Department of Computer Science, Duke
University, Tech. Rep. CS-TR-2015.001, 2015.

[12] Jingning Chen, Fenlin Liu, Xiangyang Luo, Fan Zhao, and Guang Zhu.
A Landmark Calibration-Based IP Geolocation Approach. EURASIP
Journal on Information Security, 2016(1):1–11, 2016.

[13] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A Decentralized Network Coordinate System. ACM SIGCOMM Com-
puter Communication Review, 34(4):15–26, 2004.

[14] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym Network.
https://nymtech.net/nym-whitepaper.pdf, February 2021.

[15] Brian Eriksson, Paul Barford, Joel Sommers, and Robert Nowak. A
Learning-Based Approach for IP Geolocation. In International Con-
ference on Passive and Active Network Measurement, PAM ’10, pages
171–180, Zurich, Switzerland, 2010. Springer.

[16] Brian Eriksson and Mark Crovella. Understanding Geolocation Ac-
curacy Using Network Geometry. In IEEE Conference on Computer
Communications, INFOCOM ’13, pages 75–79, Turin, Italy, April 2013.
IEEE.

[17] Dan Forsberg, Huang Leping, Kashima Tsuyoshi, and Seppo Alanärä.
Enhancing Security and Privacy in 3GPP E-UTRAN Radio Interface.
In IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC). IEEE, 2007.

[18] Manaf Gharaibeh, Anant Shah, Bradley Huffaker, Han Zhang, Roya
Ensafi, and Christos Papadopoulos. A Look at Router Geolocation
in Public and Commercial Databases. In ACM SIGCOMM Confer-
ence on Internet Measurement, IMC ’17, pages 463–469, London, UK,
November 2017. ACM.

[19] Phillipa Gill, Yashar Ganjali, Bernard Wong, and David Lie. Dude,
where’s that IP?: Circumventing Measurement-Based IP Geolocation.
In USENIX Security Symposium, USENIX ’10, pages 16–16, Washing-
ton, DS, USA, August 2010. USENIX.

[20] Mark Gondree and Zachary NJ Peterson. Geolocation of Data in the
Cloud. In Conference on Data and Application Security and Privacy,
CODASPY ’13, pages 25–36, San Antonio, TX, USA, 2013. ACM.

[21] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida.
Constraint-Based Geolocation of Internet Hosts. IEEE/ACM Transac-
tions on Networking (TON), 14(6):1219–1232, 2006.

[22] Dexter H Hu and Cho-Li Wang. GPS-Based Location Extraction and
Presence Management for Mobile Instant Messenger. In International
Conference on Embedded and Ubiquitous Computing, pages 309–320.
Springer, 2007.

[23] Todd E. Humphreys, Brent M. Ledvina, Mark L. Psiaki, Brady W.
O’Hanlon, and Paul M. Kintner Jr. Assessing the Spoofing Threat: De-
velopment of a Portable GPS Civilian Spoofer. In International Tech-
nical Meeting of the Satellite Division of The Institute of Navigation,
ION GNSS ’08, pages 2314–2325, Savannah, GA, USA, September
2008.

[24] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent Lenders, Christina
Pöpper, and Jens Schmitt. Crowd-GPS-Sec: Leveraging Crowdsourcing
to Detect and Localize GPS Spoofing Attacks. In IEEE Symposium on
Security and Privacy, SP ’18, pages 1018–1031, San Francisco, CA,
USA, May 2018. IEEE.

USENIX Association 31st USENIX Security Symposium 2653

https://nymtech.net/nym-whitepaper.pdf

[25] Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wether-
all, Thomas Anderson, and Yatin Chawathe. Towards IP Geolocation
Using Delay and Topology Measurements. In ACM SIGCOMM Confer-
ence on Internet Measurement, IMC ’06, pages 71–84, Rio de Janeiro,
Brazil, October 2006. ACM.

[26] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 357–388, Cham, 2017. Springer
International Publishing.

[27] Katharina Kohls, Kai Jansen, David Rupprecht, Thorsten Holz, and
Christina Pöpper. On the Challenges of Geographical Avoidance for Tor.
In Network and Distributed System Security Symposium, NDSS ’19,
San Diego, CA, USA, February 2019. The Internet Society.

[28] Katharina Kohls, David Rupprecht, Thorsten Holz, and Christina Pöp-
per. Lost Traffic Encryption: Fingerprinting LTE/4G Traffic on Layer
Two. In Proceedings of the 12th Conference on Security and Privacy
in Wireless and Mobile Networks, pages 249–260, 2019.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In IEEE Symposium on Security
and Privacy, SP ’18, pages 583–598, San Jose, CA, USA, 2018. IEEE.

[30] Dan Komosny, Milan Simek, and Ganeshan Kathiravelu. Can Vivaldi
Help in IP Geolocation? 2013.

[31] Sándor Laki, Péter Mátray, Péter Hága, Tamás Sebők, István Csabai,
and Gábor Vattay. Spotter: A Model Based Active Geolocation Service.
In International Conference on Computer Communications, INFO-
COM ’11, pages 3173–3181, Shanghai, China, April 2011. IEEE.

[32] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
July 1982.

[33] Dan Li, Jiong Chen, Chuanxiong Guo, Yunxin Liu, Jinyu Zhang, Zhili
Zhang, and Yongguang Zhang. IP-Geolocation Mapping for Mod-
erately Connected Internet Regions. Transactions on Parallel and
Distributed Systems, 24(2):381–391, 2012.

[34] Zhihao Li, Stephen Herwig, and Dave Levin. DeTor: Provably Avoid-
ing Geographic Regions in Tor. In USENIX Security Symposium,
USENIX ’17, pages 343–359, Vancouver, BC, Canada, August 2017.
USENIX Association.

[35] Aikaterini Mitrokotsa, Cristina Onete, and Serge Vaudenay. Mafia fraud
attack against the rČ distance-bounding protocol. In 2012 IEEE Interna-
tional Conference on RFID-Technologies and Applications (RFID-TA),
pages 74–79, 2012.

[36] James A Muir and Paul C Van Oorschot. Internet Geolocation: Evasion
and Counterevasion. Acm computing surveys (csur), 42(1):1–23, 2009.

[37] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and
Bamba Gueye. IP Geolocation Databases: Unreliable? ACM SIG-
COMM Computer Communication Review, 41(2):53–56, 2011.

[38] Mark L. Psiaki and Todd E. Humphreys. Attackers can spoof navigation
signals without our knowledge. Here’s how to fight back GPS lies. IEEE
Spectrum, 53(8):26–53, August 2016.

[39] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of rf dis-
tance bounding. In Proceedings of the 19th USENIX Security Sympo-
sium, pages 389 – 401, Washington, DC, 2010. USENIX Association.
19th USENIX Security Symposium 2010; Conference Location: Wash-
ington, DC, USA; Conference Date: August 11-13, 2010.

[40] Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and
Olivier Pereira. Claps: Client-location-aware path selection in tor. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 17–34, New York, NY, USA,
2020. Association for Computing Machinery.

[41] Mary-Ann Russon. Wondering how to hack a military drone? It’s all
on Google, May 2015.

[42] Clare Sebastian. Getting lost near the Kremlin? Russia could be ’GPS
spoofing’, December 2016.

[43] Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi, and
Jean-Pierre Seifert. Practical Attacks Against Privacy and Availability
in 4G/LTE Mobile Communication Systems. In Network and Dis-
tributed System Security Symposium. The Internet Society, 2016.

[44] Yuval Shavitt and Noa Zilberman. A Geolocation Databases Study.
IEEE Journal on Selected Areas in Communications, 29(10):2044–
2056, 2011.

[45] Peter F. Swaszek and Richard J. Hartnett. Spoof Detection Using
Multiple COTS Receivers in Safety Critical Applications. In Interna-
tional Technical Meeting of The Satellite Division of the Institute of
Navigation, ION GNSS+ ’13, pages 2921–2930, Nashville, TN, USA,
September 2013.

[46] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford. Scalable Bias-Resistant Distributed Randomness.
In IEEE Symposium on Security and Privacy, SP ’17, pages 444–460,
San Jose, CA, USA, 2017. IEEE.

[47] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and
Srdjan Čapkun. On the Requirements for Successful GPS Spoofing At-
tacks. In ACM Conference on Computer and Communications Security,
CCS ’11, pages 75–86, Chicago, IL, USA, October 2011. ACM.

[48] Carmela Troncoso, George Danezis, Marios Isaakidis, and Harry
Halpin. Systematizing decentralization and privacy: Lessons from
15 years of research and deployments. CoRR, abs/1704.08065, 2017.

[49] S. Čapkun and J. P. Hubaux. Secure Positioning of Wireless Devices
with Application to Sensor Networks. In IEEE Conference on Com-
puter Communications, INFOCOM ’05, pages 1917–1928, Miami, FL,
USA, March 2005. IEEE.

[50] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic,
and Cheng Huang. Towards Street-Level Client-Independent IP Ge-
olocation. In USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’11, pages 27–27, Boston, MA, USA, March
2011. USENIX Association.

[51] Zachary Weinberg, Shinyoung Cho, Vyas Sekar, and Phillipa Gill. How
to Catch when Proxies Lie: Verifying the Physical Locations of Net-
work Proxies with Active Geolocation. In ACM SIGCOMM Conference
on Internet Measurement, IMC ’18, Boston, MA, USA, October 2018.
ACM.

[52] Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer. Octant: A Com-
prehensive Framework for the Geolocalization of Internet Hosts. In
USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI ’07, pages 23–23, Santa Clara, CA, USA, June 2007.
USENIX Association.

[53] Paul A. Zandbergen. Accuracy of iPhone Locations: A Comparison
of Assisted GPS, WiFi and Cellular Positioning. Transactions in GIS,
13:5–25, 2009.

[54] Wolfie Zhao. Top Bitcoin Mining Pools See 15% Hashrate Drop Amid
Continuous Rainstorms in China, August 2020.

2654 31st USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	Problem Statement
	Information Propagation Model

	System Concept
	System Components
	Measurement component
	Schedule Measurements
	Conduct Measurements
	Upload Measurements

	Localization and Verification
	Estimate Location Coordinates
	Verify Zone
	Confidence Scores

	Performance Baseline
	Experimental Setup
	Metrics
	Experiments

	Security Analysis
	Adversarial Timing Manipulations
	Experimental Setup
	Attack Success
	Confidence Scores
	Breaking Point of VerLoc
	Additional Threats
	Framing Benign Nodes
	Strategic Locations for Adversarial Nodes
	Adversaries in the underlying network
	Compromised Broadcast Channel

	Experiments in the Wild
	Experimental setup
	Results

	Overhead of VerLoc
	Related Work
	Conclusion
	Propagation Model
	Quality of Self-Reported Data

