
Towards Generic Database
Management System Fuzzing
Yupeng Yang*, Yongheng Chen*, Rui Zhong^, Jizhou Chen*, and Wenke Lee*

* ^

• Database Management Systems (DBMSs) are widely used for data storage,
retrieval, and management.

• Both relational (SQL) DBMSs and non-relational (NoSQL) DBMSs have wide
adoption in real world for the diverse requirements of various applications.

Background and Motivation

......

The security and robustness of these prevalent and critical systems are vital!

• Fuzzing can be used to test software systems by injecting random inputs to them.
• Fuzzers targeting SQL DBMSs have proven useful and effective over the years.

• SQLSmith, Squirrel, SQLancer...

• NoSQL DBMSs lack an effective fuzzing solution
• Existing SQL DBMS fuzzers have challenges migrating to NoSQL DBMSs.
• Generic fuzzers (e.g., AFL) struggle to generate valid inputs to DBMSs.

Background and Motivation

......

• We discover three major challenges when designing a fuzzer that extends to
NoSQL DBMSs.

• C1: It is hard to generalize.
• C2: Semantics can change based on the context.
• C3: Loose data dependencies.

Challenges and Limitations

• Semantic correctness is vital for exploring deep DBMS logic.
• NoSQL DBMSs have diverse interfaces, and their semantics vary drastically.

C1: It is hard to generalize

key-value commands HSET key field value [field value ...]

ASCII-art (Cypher) MATCH (p:person {name: 'Tom'})-[r:knows*1..2]->(f:person)
RETURN f.name, r[1].fromdate;

JSON documents db.products.insertOne({ item: "card", qty: 15 });

DBMS Input Format Examples

C2: Semantics can change based on the context

• Existing works bind "static semantics" to the
syntax structures.

• This works well for modeling common SQL
semantics.Grammar

Parsing

Static
Constraint

However, for NoSQL, semantics often change based on the context.

C2: Semantics can change based on the context

• One syntax structure can have different semantics in
different syntactic contexts.

• Data types can depend on other values in the context.

MATCH (n:L) WHERE (n)-[]->() RETURN n.x;

define use
identifier

A cypher query

However, for NoSQL, semantics often change based on the context.

C2: Semantics can change based on the context

• One syntax structure can have different semantics in
different syntactic contexts.

• Data types can depend on other values in the context.

> HSET k1 k1_field1 "Hello"

> HSET k2 k2_field1 "123"

> HINCRBY k1 k1_field1 1
(error) value not an integer

ASCII string

Numeric string

redis commands

Only a numeric string is valid.

context

context

HMSET k1 k1_field1 1

HMSET k1 k1_field1 1
APPEND x 413413

HMSET k1 k1_field1 1
XGROUP CREAT s g 0

HMSET k1 k1_field1 1
HRANDFIELD key1 1

...

...
(>2.6k possibilities)

...

...

Level n Mutations

(showing only 1 out of
many possibilities)

HMSET k1 k1_field1 1
HRANDFIELD k1
-9223372036854770000
withvalues

crash!

Level 1 Mutations

mutate
multiple
levels

...

...

Random mutations tend to generate loose data dependencies.

C3: Loose Data Dependencies

Random Mutation Running Examples (for)

no new data dependency (94.14%)
• thinner DBMS logic

• less effective

new data dependency (5.86%)
• deeper DBMS logic

• more effective

We propose three approaches to tackle the three challenges.
• Semantics Abstraction

• C1: Non-generic

• Context-sensitive Constraint Resolution
• C2: Context-based Semantics

• Dependency-guided Mutation
• C3: Loose Data Dependency

We implemented our approaches into a generic fuzzing framework, BuzzBee, that
can fuzz both SQL and NoSQL DBMSs effectively.

Our Solution

To generalize, we model common DBMS operations at a highly abstract level using
three basic data operations: Define, Use, and Invalidate.

Semantics Abstraction -> C1

Next, we constrain the abstract semantics
• When to Define, Use, or Invalidate (scope constraints)
• What type to Define, Use, or Invalidate (type constraints)

We design an Annotation System to let users annotate the abstract semantics and
constraints on the input grammar.

Constraints:
The semantic rules to avoid
a DBMS execution error.

scope constraint
type constraint

Input Grammar Annotation

• We design an IR to carry the syntactic and semantic information specified by the user.
• We maintain scope trees and symbol tables to track the data.

Semantics Abstraction - Internals

scope1
scope2

scope2
scope3

symtbl1

symtbl2

scope3 symtbl3

scope0 symtbl0

Test Case

Grammar Annotation

An IR Program Scope Trees and Symbol Tables

To achieve context sensitivity, we design two features for the Annotation System
so that users can specify constraints based on the context.
• Context Query Language (CQL) for simplicity – targeting common semantics
• Custom Resolvers for expressiveness – targeting complex semantics

Context-sensitive Constraint Resolution -> C2

Context Query Language (CQL)
• CQL is a lightweight language to fetch information from the context.
• To fetch certain information, we need to know:

• where to fetch (which part of the context do we care about?)
• what to fetch (what property of that part are we interested in?)

Grammar of CQL

.lsib(1)@text

.parent.rsib(1)@id

.parent.rsib(1).child(0)@id

CQL Examples

CQL in the Annotation

where

what

Context Query Language (CQL)

CQL in the Annotation

> HSET k1 k1_field1 "Hello"
> HSET k2 k2_field1 "123"
> ...
> HINCRBY k1 k1_field1 1

Redis Test Case

cmds

hincrbyhset

testcase

HINCRBY key field increment

k1 k1_field1 1

...

.lsib(1)

...

navigatorNon-terminal IR Terminal IR

@text

property

...

Redis Grammar

CQL Querying Process

> HSET k1 k1_field1 "Hello"
> HSET k2 k2_field1 "123"
> ...
> HINCRBY k1 k1_field1 1

Resolved Constraint

Custom Resolvers
Custom Resolvers are plugins to the Annotation System.
• Can be written in high-level languages like C++.
• Have access to all the context information visible to BuzzBee.
• Can express arbitrarily complex semantics to complement CQL.

Custom Resolvers

> HSET k1 k1_field1 "Hello"
> HSET k2 k2_field1 "123"

> ...
> HINCRBY k1 k1_field1 1

Redis Test Case

Redis Grammar Custom Resolver in Annotation

Custom Resolver

hset_field_type_resolver
> ... (custom code)

type: HSET field of k1

type: HSET numeric field of k2
Symbols IR Program

Dependency-guided Mutation -> C3
We add guidance to the replacement and insertion mutations.

> HSET k1 k1_field1 "Hello"
> HSET k2 k2_field1 "123"
> ...
> HINCRBY k1 k1_field1 1

1. Get all symbols available at A.
• k1, k1_field1, k2, k2_field1

2. Favor B from the IR Pool, which can use
the available symbols.

Mutation point A

B

IR Pool

HMSET, APPEND,
XGROUP, SET,
GEOSEARCH, XINFO,
XRANGE, ZCOUNT,
...

HINCRBY,
DEL, ...

IR Pool stores the mutation candidate IRs.

Dependency-guided Mutation -> C3
We also introduce a finer-grained prioritization to cover more behaviors.

> HSET k1 k1_field1 "Hello"
> HSET k2 k2_field1 "123"
> ...
> HINCRBY k1 k1_field1 1

3. Prioritizes IRs in B that do not exist in the
test case.
• DEL will be chosen over HINCRBY.

Mutation point A

B

IR Pool

HMSET, APPEND,
XGROUP, SET,
GEOSEARCH, XINFO,
XRANGE, ZCOUNT,
...

HINCRBY,
DEL, ...

Implementation & Evaluation
• Implemented BuzzBee mainly in C++ and Python (9,130 LoC)

• Applied to 8 real-world DBMSs covering 4 major data models.
• redis, KeyDB, RedisGraph, AgensGraph, MongoDB, ArangoDB, PostgreSQL, MySQL

• Discovered 40 bugs in the latest versions (with 4 CVEs).
• Outperformed generic fuzzers in NoSQL DBMSs

• Up to 76.9% cov increase in NoSQL DBMSs
• Discovered >30 bugs that generic fuzzers could not discover

• Achieved comparable results with SQL fuzzers
• Achieved 92.7% cov of Squirrel
• Found a similar # of bugs

Thanks / Q&A
Towards Generic Database Management System Fuzzing
Yupeng Yang*, Yongheng Chen*, Rui Zhong^, Jizhou Chen*, and Wenke Lee*

* ^

