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ABSTRACT
Machine programming is an emerging research area that improves
the software development life cycle from design through deploy-
ment. We present a tutorial on machine programming research
highlighting aspects relevant to the data systems community. We
divide this tutorial into three parts: We begin with an introduction
to machine programming introducing its three pillars: intention,
invention, and adaptation. Then, we provide an overview of the
data ecosystem central to all machine programming systems, high-
lighting challenges and novel opportunities relevant to the data
systems community. Finally, we describe recent advances in ma-
chine programming research and how these directions use various
data sets to improve the ease of creating and maintaining perfor-
mant software systems.
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1 INTRODUCTION

Machine Programming. Programming (i.e., producing software
systems) is a cognitively demanding task that requires extensive
knowledge, experience, and a significant degree of creativity. This
complexity is evident by the fact that technology companies spend a
substantial portion of their operating cost to produce, maintain, and
deploy software systems [18].Machine programming is an emerging
area of research that develops automated tools and techniques to re-
duce this cost – cognitive, computational, andmonetary – of producing
and maintaining correct and efficient software systems while harness-
ing the full power of modern computing platforms [14]. Due to its
potential, machine programming is a fast-growing area of research
with participation by several research groups across industrial and
academic institutions [1, 6, 12, 14, 17, 19, 26, 30, 31, 33].
Tutorial Overview and Relevance.While machine programming
research spans several communities, including software engineer-
ing, programming languages, machine learning, and user interface
design, data is central to all machine programming systems. We
present a 90-minute tutorial on machine programming research for
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a data systems audience, emphasizing avenues for cross-pollination
between machine programming and data systems research.
(1) Machine Programming and its Three Pillars (20 min). We
begin with an introduction to machine programming, positioning
it with respect to other related areas such as program synthesis
and automated programming. We also introduce the three pillars
of machine programming – Intention, Invention, and Adaptation –
to provide a frame of reference for the rest of the discussion.
(2) Data in Machine Programming Systems (35 min). Next,
we provide an overview of the data ecosystem all machine pro-
gramming research heavily relies on, such as code and telemetry
data. First, we highlight the diversity and scale of data sources
and formats within this ecosystem. Then, we emphasize how some
of the core challenges in machine programming research directly
connect to how machine programming systems collect, store, rep-
resent, and analyze diverse, multi-dimensional data sources. We
then discuss open research challenges – data cleaning, integration,
and representation – amenable to novel data systems research.
(3) Advances in Machine Programming Systems (35 min).
Here, we examine emerging research directions in machine pro-
gramming systems that facilitate the design, development, and
deployment of various applications. While machine programming
systems span a diverse array of applications, we pick the most rele-
vant ones to a data systems audience. We first describe advances
in code intelligence and automated debugging tools aimed at in-
creasing the productivity of all programmers. Then, we describe
advances in machine programming systems that support the life
cycle of specific data-intensive applications, including cloud mi-
croservices, data science pipelines, and data flow applications.
Table 1 provides a representative (but not exhaustive) list of ma-
chine programming systems classified based on various dimensions
relevant to this tutorial, including data sources, machine program-
ming pillars, and application domains.
Audience. We design this tutorial for an audience with a data
management background (students, academics, researchers, and
industry practitioners). We will provide background knowledge on
relevant topics from machine learning and programming languages.
Related Tutorials. Several related tutorials have focused on ap-
plication of machine learning to automate various components of
database systems [22, 24, 25, 39]. We, however, explore research
aimed at improving programmer productivity in designing, develop-
ing, and deploying correct and performant computer systems. We
consolidate research from various communities under this umbrella
(i.e., machine programming) and highlight novel opportunities for
data systems researchers.
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Table 1: We classify machine programming systems across several dimensions including data sources and learning mechanisms.

MP System Data Source(s) Learning Type MP Pillar(s) Stage Application Domain
CoPilot [5] Code + documentation Self-supervised Intention + Invention Development General
ControlFlag [17] Code repository Self-supervised Intention Development General
Ithemal [27] Code + perf. profile Supervised Intention + Invention Development General
AutoPerf [1] Telemetry data Self-supervised Adaptation Development General
Optdebug [16] Provenance Unsupervised Intention + Adaptation Debugging DataFlow Systems
Dagger [33] Provenance Unsupervised Adaptation Debugging DataFlow Systems
𝜇qsim [40] Telemetry data Supervised Adaptation Debugging Cloud Microservices
Sage [11] Telemetry data Unsupervised Adaptation Debugging Cloud Microservices
Snorkel [31] Knowledge Bases Semi-supervised Invention Design Data Science Pipelines
Holoclean [32] Training data Self-supervised Invention Debugging Data Science Pipelines

2 MACHINE PROGRAMMING AND ITS THREE
PILLARS

Machine Programming: What and Why. The pipeline that pro-
duces correct and efficient software has several stages, including
design, development, debugging, optimization, deployment, and
redesign. Machine programming research designs automated tools
and techniques to improve the ease across all these stages of the
software development pipeline. The eventual aim is to enable ev-
eryone to create correct and performant software systems [14].
Machine programming borrows techniques from machine learn-
ing, programming languages, and formal methods. Compared to
other research directions such as program synthesis or automated
programming that focus on a single stage, machine programming
takes a holistic view of the software life cycle. This view enables us
to explore a rich set of research directions in this tutorial.
Three Pillars. We introduce the three pillars of machine program-
ming – Intention, Invention, and Adaptation – as a framework to
think about existing and emerging systems.
(i) Intention. Those systems that make it easy for users to express
what they want a software system to do without substantial pro-
gramming effort fall under the Intention pillar. These include sys-
tems with visual and natural language interfaces, those that enable
programming through examples, and ones with modular interfaces.
(ii) Invention. After a user specifies their intent, the pillar of In-
vention is concerned with systems that reduce the overhead of
producing software systems that execute that intention correctly
and as efficiently as possible. These include code generation and
synthesis systems, auto-complete systems, and systems that catch
correctness and performance bugs.
(iii) Adaptation. Finally, software systems do not operate in a vac-
uum and need to interact with various contexts such as application
workloads, hardware configurations, and data sets. These context
variables keep evolving, and software systems need to keep up to
maintain correctness and efficiency. We classify systems that enable
this flexibility under the Adaptation pillar. These include systems
that help with performance regression testing, automated scaling,
and management of deployed software.

3 DATA IN MACHINE PROGRAMMING
All machine programming systems heavily rely on data to uncover
patterns, train models, and build formal logic. This data comes
from various sources (e.g., code repositories, documentation, and
telemetry data) and can have multiple formats (e.g., unstructured,
textual, and time series).
Code Repositories. Public code repositories, such as Github, pro-
vide access to several billions of lines of code in hundreds of pro-
gramming languages along with metadata such as documentation
and revision history [38]. While these repositories contain a wealth
of information to power machine programming systems, they suffer
from two significant challenges: (i) They have a high proportion
of duplicate projects, and (ii) it is increasingly hard to gauge the
quality of code [2]. Recent research addresses these challenges by
curating and cleaning data. For instance, CodeNet by IBM provides
access to code snippets in 50 programming languages and vari-
ous quality metrics [30]. Other similar sanitized data sets include
POJ-104 and Google Code Jam [4, 37].
Benchmarks. Another active area of research is to establish bench-
marks for the emerging use cases of machine programming. One
popular benchmark is CodeXGLUE, which comes with data sets
and machine learning models corresponding to several tasks such
as code search, auto-complete, and translation. CodeXGLUE also
hosts a leaderboard to rank various models for every task. Death-
StarBench is another benchmark suite geared at cloud applications.
It provides five microservices configurations that range from social
media to drone coordination [12].
Incomplete and Synthetic Code + Natural Language. Online
programming forums such as Stack Overflow and LeetCode are
another rich source of data containing not just code but also other
features like natural language explanation and peer ranking in-
formation. Recent evidence shows how data in various formats
can help to improve the accuracy and scope of various machine
programming tasks [28, 29].
Telemetry Data. Software and hardware telemetry data is becom-
ing increasingly important for various machine learning systems.
For instance, automatic performance regression systems (such as
AutoPerf and OptDebug [1, 16]) or automatic cloud management
systems (such as Sage and Sinan [11, 13]) make extensive use of
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telemetry data for anomaly detection as well as root cause localiza-
tion in deployed software systems.
Open Research Directions. These various sources of data intro-
duce specific challenges, e.g., (i) how to clean and integrate multi-
dimensional data from heterogeneous sources and formats while
ensuring high data quality in an open-source and decentralized data
ecosystem, (ii) what code representations to use for a given task
and how to efficiently store and manage those representations, and
(iii) there is the question of standardizing benchmarks for various
machine programming tasks.

4 ADVANCES IN MACHINE PROGRAMMING
SYSTEMS

General-PurposeMPSystems. First, we describe general-purpose
machine programming research aimed at improving the life cycle
of any software system.
(i) Easy Programmatic Interfaces. Research in this direction makes it
easy for a user to specify their intention through intuitive interfaces
without requiring substantial programming effort: Programming-
by-example approaches can synthesize functions based on a few
samples of their input-output behavior [8]. Plotcodder is a recent
research system that automatically generates visualization code
based on the data set to be visualized [7]. Additionally, various
systems enable program synthesis and data exploration through
touch-based, visual, and even augmented reality interfaces [20, 35].
(ii) Code Intelligence. This category of systems leverages artificial
intelligence to make it easy to produce code by automating vari-
ous tasks such as code search, code completion, and code-to-code
translation [26]. In the code search domain, various systems map
between natural language utterances and either domain-specific
or general-purpose computer languages: Concode is a system that
maps natural language to code within an existing program [21].
Code2Seq goes in the opposite direction generating natural lan-
guage names for functions based on their code [3]. Similarly, there
is work on predicting documentation from structured code [19].
In the code completion regime, Pythia is a state-of-the-art system
that learns how to complete python code by learning directly from
open-source repositories [36]. On the other hand, ControlFlag uses
self-supervision to extract patterns within a code repository. Con-
trolFlag can then use these patterns to flag incorrect patterns and
suggest corrections [17]. Research in code search and code com-
pletion regime come together in Co-Pilot, a widely-used industrial
system designed by Github [5]. Finally, recent advances in deep
learning have enabled highly accurate code-to-code translation that
in the past relied on hand-coded pattern matching [34].
(ii) Debugging. Complimentary to code intelligence research is the
direction to automate the process of debugging an existing software
system for both correctness and performance. ControlFlag and
Hoppity are recent systems that employ deep learning approaches
to debug correctness bugs through anomaly detection [10, 17]. In
the performance debugging regime, Ithemal is a system that predicts
the performance (in the form of CPU clock cycles) of code snippets
without running them [27]. AutoPerf is another system in this area
that helps localize performance bugs that may surface between any
two versions of a deployed software system [1].

MP Systems for Data-intensive Applications. In this part, we fo-
cus on machine programming systems designed for data-intensive
application areas, where data, in addition to code, determines cor-
rectness and performance.
(i) Data Flow Systems. Data Flow applications (such as those that
use Hadoop, Map Reduce, or Spark) are a complex mix of both
code and data. In data flow applications, a bug can be attributed to
errors in data processing or program logic [16]. There is research
to make it memory- and compute-efficient to track provenance in
such applications [23]. Systems like Dagger, BigDebug, and TagSniff
enable interactive debugging of this data provenance to localize
bugs [9, 15, 23, 33]. Finally, Optdebug is a recent system that allows
for an efficient combined data flow and logic debugging [16].
(ii) Cloud Microservices. The microservices model, where applica-
tions are deployed as loosely-coupled services, is increasingly being
adopted by various applications, including social networks, web
search, and drone coordination [12]. Different systems help to de-
sign and debug these complex applications. 𝜇qsim is one such sys-
tem that uses statistics gathered from telemetry data to simulate
the performance of a deployed microservice [40]. These models are
used for testing and debugging purposes. Recent research combines
profiling data sets with deep learning models to enable various
tasks to improve debugging and deployment. For instance, Seer
helps localize services or a set of services likely to result in a quality-
of-service violation and suggests ways to remedy it [13]. Sage is
another system that allows designers to generate alternative designs
for a given microservice deployment and evaluate them [11].
(iii) Data Science Pipelines. Various research directions make it easy
to create and repair data sets for data science and machine learning
pipelines. For instance, Snorkel is one such system that automates
the process of labeling data by allowing data scientists to specify
labeling rules and then apply them to unlabeled data [31]. Holo-
cleans is a system that builds probabilistic models of the data set,
then uses these models to discover and correct errors (duplication
or missing data) [32].
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