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ABSTRACT
Uncertainty arises naturally in many application domains due to,

e.g., data entry errors and ambiguity in data cleaning. Prior work

in incomplete and probabilistic databases has investigated the se-

mantics and efficient evaluation of ranking and top-k queries over

uncertain data. However, most approaches deal with top-k and

ranking in isolation and do represent uncertain input data and

query results using separate, incompatible data models. We present

an efficient approach for under- and over-approximating results

of ranking, top-k, and window queries over uncertain data. Our

approach integrates well with existing techniques for querying un-

certain data, is efficient, and is to the best of our knowledge the first

to support windowed aggregation. We design algorithms for physi-

cal operators for uncertain sorting and windowed aggregation, and

implement them in PostgreSQL. We evaluated our approach on syn-

thetic and real world datasets, demonstrating that it outperforms

all competitors, and often produces more accurate results.
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1 INTRODUCTION
Many application domains need to deal with uncertainty arising

from data entry/extraction errors [36, 51], data lost because of

node failures [39], ambiguous data integration [7, 31, 46], heuristic

data wrangling [13, 21, 58], and bias in machine learning training

data [26, 50]. Incomplete and probabilistic databases [18, 55] model

uncertainty as a set of so-called possible worlds. Each world is a

deterministic database representing one possible state of the real

world. The commonly used possible world semantics [55] returns for
each world the (deterministic) query answer in this world. Instead

of this set of possible answer relations, most systems produce either

certain answers [33] (result tuples that are returned in every world),

or possible answers [33] (result tuples that are returned in at least one
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world). Unfortunately, incomplete databases lack the expressiveness

of deterministic databases and have high computational complexity.

Notably, uncertain versions of order-based operators like SORT
/ LIMIT (i.e., Top-K) have been studied extensively in the past [19,

41, 48, 54]. However, the resulting semantics often lacks closure.
That is, composing such operators with other operators typically

requires a complete rethinking of the entire system [52], because

the model that the operator expects its inputs to be encoded with

differs from the model encoding the operator’s outputs.
In [23, 24], we started addressing the linked challenges of com-

putational complexity, closure, and expressiveness in incomplete

database systems, by proposing AU-DBs, an approach to uncer-

tainty management that can be competitive with deterministic

query processing. Rather than trying to encode a set of possible

worlds losslessly, each AU-DB tuple is defined by one range of possi-

ble values for each of its attributes and a range of (bag) multiplicities.

Each tuple of an AU-DB is a hypercube that bounds a region of the

attribute space, and together, the tuples bound the set of possible

worlds between an under-approximation of certain answers and an

over-approximation of possible answers. This model is closed under

relational algebra [23] with aggregation [24] (RA𝑎𝑔𝑔
). That is, if an

AU-DB 𝐷 bounds a set of possible worlds, the result of any RA𝑎𝑔𝑔

query over 𝐷 bounds the set of possible query results. We refer to

this correctness criteria as bound preservation. In this paper, we

add support for bounds-preserving order-based operators to the

AU-DB model, along with a set of (nontrivial) operator implementa-

tions that make this extension efficient. The closure of the AU-DB

model under RA𝑎𝑔𝑔
, its efficiency, its property of bounding certain

and possible answers, and its capability to compactly represent

large sets of possible tuples using attribute-level uncertainty are

the main factors for our choice to extend this model.

When sorting uncertain attribute values, the possible order-by

attribute values of two tuples 𝑡1 and 𝑡2 may overlap, which leads to

multiple possible sort orders. Thus, supporting order-based opera-

tors over AU-DBs requires encoding multiple sort orders. Unfortu-

nately, a dataset can only have one physical ordering. We address

this limitation by introducing a position attribute, decoupling the

physical order in which the tuples are stored from the set of possible

logical orderings. With a tuple’s position in a sort order encoded as

a numerical attribute, operations that act on this order (i.e., LIMIT)

can be redefined in terms of standard relational operators, which, al-

ready have well-defined semantics in the AU-DBmodel. In short, by

virtualizing sort order into a position attribute, the existing AU-DB

model is sufficient to express the output of SQL’s order-dependent

operations in the presence of uncertainty.

We start by (i) formalizing uncertain orders within the AU-DB

model and present a semantics of sorting and windowed aggrega-

tion operations that can be implemented as query rewrites. When
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combined with existing AU-DB rewrites [23, 24], any RA𝑎𝑔𝑔
query

with order-based operations can be executed using a deterministic

DBMS. Unfortunately, these rewrites introduce SQL constructs that

necessitate computationally expensive operations, driving a central

contribution of this paper: (iii) new algorithms for sort, top-k, and

windowed aggregation operators for AU-DBs.

To understand the intuition behind these operators, consider

the logical sort operator, which extends each input row with a

new attribute storing the row’s position wrt. to ordering the input

relation on a list𝑂 of order-by attributes. If the order-by attributes’

values are uncertain, we have to reason about each tuple 𝑡 ’s lowest

possible position (the number of tuples that certainly precede it in

all possible worlds), and highest possible position (the number of

tuples that possibly precede it in at least one possible world). We can

naively compute a lower (resp., upper) bound by joining every tuple

𝑡 with every other tuple, counting pairs where 𝑡 is certainly (resp.,

possibly) preceded by the tuple it is paired with. We refer to this

approach as the rewrite method, as it can be implemented in SQL.

However, the rewrite approach has quadratic runtime. Inspired by

techniques for aggregation over interval-temporal databases such

as [47], we propose a one-pass algorithm to compute the bounds

on a tuple’s position that also supports top-k queries.

Example 1 (Uncertain Sorting and Top-k). Fig. 1a shows a
sales DB, extracted from 3 press releases. Uncertainty arises for a
variety of reasons, including extraction errors (e.g., 𝐷3 includes term
5) or missing information (e.g., only preliminary data is available
for the 4th term in 𝐷1). The task of finding the two terms with the
most sales is semantically ambiguous for uncertain data. Consider
the following semantics for uncertain ranking: (i) U-top [54] (Fig. 1c)
returns the most likely ranked order; (ii) U-rank [54] (Fig. 1c) returns
the most likely tuple at each position (term 4 is more likely than any
other value for both the 1st and 2nd position); and (iii) Probabilistic
threshold queries (PT-k) [32, 59] return tuples that appear in the top-
k with a probability exceeding a threshold (PT), generalizing both
possible (PT > 0; Fig. 1d) and certain (PT ≥ 1; Fig. 1e) answers.

With the exception of U-Top, none of these semantics return both

information about certain and possible results, making it difficult

for users to gauge the (i) trustworthiness or (ii) completeness of an

answer. Risk assessment on the results produced by these semantics

is difficult, preventing their use for critical applications in, e.g., the

medical or financial domains. Furthermore, the outputs of uncertain

ranking operators like U-Top are not valid as inputs to further

uncertainty-aware queries, because they lose information about

uncertainty in the source data. These disadvantages motivate our

choice of the AU-DB data model. First, AU-DBs naturally encode

query result reliability. By providing each attribute value (and tuple

multiplicity) as a range, users can quickly assess the precision of

an answer. Second, the model is complete: the full set of possible

answers is represented. Finally, themodel admits a closed, efficiently

computable, and bounds-preserving semantics for RA𝑎𝑔𝑔
.

Example 2 (AU-DB top-2 qery). Fig. 1f (left) shows an AU-DB,
which uses triples, consisting of a lower bound, a selected-guess value
(defined shortly), and an upper bound to bound the value range of
an attribute (Term, Sales) and the multiplicity of a tuple (N3). The
AU-DB bounds all of the possible worlds of our running example.

𝐷1 Term Sales
1 2

2 3

3 7

4 4

𝐷2 Term Sales
1 3

2 2

3 4

4 6

𝐷3 Term Sales
1 2

2 2

5 4

4 7

Term Sales Sum
1 2 5

2 3 10

3 7 11

4 4 4

Term Sales Sum
1 3 5

2 2 6

3 4 10

4 6 6

Term Sales Sum
1 2 4

2 2 9

5 4 4

4 7 11

(a) An uncertain sales database with three possible worlds (with probability
.4, .3 and .3 respectively) with top-2 highest selling terms high-lighted and
the result of the rolling sum of sales for the current and next term.

Term
4

3

(b) U-Top

Term
4

4

(c) U-Rank

Term
3

4

5

(d) PT(0)

Term
4

(e) PT(1)

Term Sales N3

1 [2/2/3] (1,1,1)

2 [2/3/3] (1,1,1)

[3/3/5] [4/7/7] (1,1,1)

4 [4/4/7] (1,1,1)

Term Sales Position N3

1 [2/2/3] [2/3/3] (0,0,0)

2 [2/3/3] [2/2/3] (0,0,0)

[3/3/5] [4/7/7] [0/0/1] (1,1,1)

4 [4/4/7] [0/1/1] (1,1,1)

(f) AU-DB bounding the worlds and top-2 result produced by our approach
Term Sales Sum N3

1 [2/2/3] [4/5/6] (1,1,1)

2 [2/3/3] [6/10/10] (1,1,1)

[3/3/5] [4/7/7] [4/11/14] (1,1,1)

4 [4/4/7] [4/4/14] (1,1,1)

(g) AU-DB windowed aggregation result returned by our approach

Figure 1: Ranking, top-k, and windowed aggregation queries over
an incomplete (probabilistic) database and a bounding AU-DBs.

Intuitively, each world’s tuples fit into the ranges defined by the AU-
DB. The selected-guess values encode one distinguished world (here,
𝐷1) — supplementing the bounds with an educated guess about which
possible world correctly reflects the real world 1, providing backwards
compatibility with existing heuristic data cleaning systems that return
one repair (possible world) from the space of all repairs [14, 38]. Fig. 1f
(right) shows the result of computing the top-2 answers sorted on
term. The rows marked in grey encode all tuples that could exist
in the top-2 result in some possible world. For example, the tuples
(3, 4) (𝐷1), (3, 7) (𝐷2), and (5, 7) (𝐷3) are all encoded by the AU-DB
tuple ( [3/3/5], [4/7/7]) → (1, 1, 1). Results with a row multiplicity
range of (0,0,0) are certainly not in the result. The AU-DB compactly
represents an under-approximation of certain answers and an over-

approximation of all the possible answers, e.g., for our example, the
AU-DB admits additional worlds with 5 sales in term 4.

Implementing windowed aggregation requires determining the

(uncertain) membership of tuples in windows, which may be af-

fected both by uncertainty in sort position and in group-by at-

tributes. Furthermore, we have to reason about which of the tuples

possibly belonging to a window minimize / maximize the aggrega-

tion function result. It is possible to implement this reasoning in

SQL, albeit at the cost of range self-joins (this is the rewrite method
we will discuss in detail in [22] and evaluate in Sec. 8). We propose a

one-pass algorithm for windowed aggregation over AU-DBs, which

we will refer to as the native method.
The intuition behind our algorithm is to share state between mul-

tiple windows. For example, consider the window ROWS BETWEEN 3

PRECEDING AND CURRENT ROW. In the deterministic case, with each

1
The process of obtaining a selected-guess world is domain-specific, but [23, 24]

suggest the most likely world, if it can be feasibly obtained.
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new window one row enters the window and one row leaves. Sum-

based aggregates (sum, count, avg) can leverage commutativity and

associativity of addition, i.e., updating the window requires only

constant time. Similar techniques [8] can maintain min/max aggre-

gates in time logarithmic in the window size.

Non-determinism in the row position makes such resource shar-

ing problematic. First, tuples with non-deterministic positions do

not necessarily leave the window in FIFO order. We need to iterate

over tuples sorted on both the upper- and lower-bounds of their

possible sort positions. Second, the number of tuples that could

possibly belong to the window may be significantly larger than

the window size. Considering all possible rows for a 𝑘 row win-

dow (using the AU-DB aggregation semantics from [24]) results

in a looser bound than if only subsets of size 𝑘 are considered. For

that, we need access to rows possibly in a window sorted on the

bounds of the aggregation attribute values in decreasing (increas-

ing) order of their upper (lower) bound to find the 𝑘-subset with the

minimal/maximal aggregation result. Furthermore, we have to sep-

arately maintain tuples that certainly belong to a window (which

contribute to both bounds). To maintain sets of tuples such that

they can be accessed in several sort orders efficiently, we develop a

data structure which we refer to as a connected heap. A connected

heap is a set of heaps where an element popped from one heap

can be efficiently (𝑂 (log𝑛)) removed from the other heaps even

if their sort orders differ from the heap we popped the element

from. This data structure allows us to efficiently maintain sufficient

state for computing AU-DB results for windowed aggregation. In

preliminary experiments, we demonstrated that, connected heaps

significantly outperform a solution based on classical heaps.

Example 3 (Windowed Aggregation). Consider the following
windowed aggregation query:

SELECT *, sum(Sales) OVER (ORDER BY term ASC

BETWEEN CURRENT ROW AND 1 FOLLOWING) as sum FROM R;

Fig. 1g shows the result of this query over our running example AU-DB.
The column Sum bounds all possible windowed aggregation results for
each AU-DB tuple and the entire AU-DB relation bounds the windowed
aggregation result for all possible worlds. Notice that AU-DBs ignore
correlations which causes an over-approximation of ranges in the
result. For example, term 1 has a maximum aggregation result value
of 6 according to the AU-DB representation but the maximum possible
aggregation value across all possible world is 5.

2 RELATEDWORK
Webuild on prior research in incomplete and probabilistic databases,

uncertain aggregation, uncertain top-k and uncertain sorting.

Probabilistic/Incomplete databases.Certain answer semantics [6,

28, 29, 33, 43, 44] only returns answers that are guaranteed to

be correct. Computing certain answers is coNP-complete in data-

complexity [6, 33]. However, under-approximations [17, 23, 28,

29, 43, 49] can be computed in PTIME. AU-DBs [24] build on the

selected-guess and lower bounds-based approach of [23], adding an

upper bound on possible answers and attribute-level uncertainty

with ranges to support aggregation. MCDB [34] and Pip [37] sample

from the set of possible worlds to generate expectations of possi-

ble outcomes, but can only obtain probabilistic bounds on their

estimates. Queries over symbolic models for incomplete data like

C-tables [33] and m-tables [56] often have PTIME data complexity,

but obtaining certain answers from query results is intractable.

Aggregation in Incomplete/Probabilistic Databases. General
solutions for non-windowed aggregation over uncertain data re-

main an open problem [18]. Due to the complexity of uncertain

aggregation, most approaches focus on identifying tractable cases

and producing lossy representations [5, 15, 16, 35, 37, 42, 45, 52, 57].

These result encodings are not closed (i.e., not useful for subsequent

queries), and are also expensive to compute (often NP-hard). Sym-

bolic models [12, 25, 40] that are closed under aggregation permit

PTIME data complexity, but extracting certain / possible answers is

still intractable. We proposed AU-DBs [24] which are closed under

RA𝑎𝑔𝑔
and achieve efficiency through approximation.

Uncertain Top-k. A key challenge in uncertain top-k ranking is

defining a meaningful semantics. The set of tuples certainly (resp.,

possibly) in the top-k may have fewer (more) than k tuples. U-

Top [54] picks the top-k set with the highest probability. U-Rank [54]

assigns to each rank the tuple which is most-likely to have this

rank. Global-Topk [59] first ranks tuples by their probability of

being in the top-k and returns the k most likely tuples. Probabilistic

threshold top-k (PT-k) [32] returns all tuples that have a probability

of being in the top-k that exceeds a pre-defined threshold. Expected

rank [19] calculates the expected rank for each tuple across all

possible worlds and picks the k tuples with the highest expected

rank. Ré et al. [48] proposed a multi-simulation algorithm that stops

when a guaranteed top-k probability can be guaranteed. Soliman

et al. [53] proposed a framework that integrates tuple retrieval,

grouping, aggregation, uncertainty management, and ranking in a

pipelined fashion. Each of these generalizations necessarily breaks

some intuitions about top-k, producing more (or fewer) than k

tuples, or producing results that are not the top-k in any world.

Uncertain Order. Amarilli et. al. extends the relational model

with a partial order to encode uncertainty in the sort order of a

relation [10, 11]. For more general use cases where posets can not

represent all possible worlds, Amarilli et. al. also develop a symbolic

model of provenance [9] whose expressions encode possible orders.

Both approaches are limited to set semantics.

3 NOTATION AND BACKGROUND
A database schema Sch(𝐷) = {Sch(𝑅1), . . . , Sch(𝑅𝑛)} is a set of re-
lation schemas Sch(𝑅𝑖 ) = (𝐴1, . . . , 𝐴𝑛). Use 𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅)) to de-

note the number of attributes in Sch(𝑅). An instance 𝐷 for schema

Sch(𝐷) is a set of relation instances with one relation per schema

in Sch(𝐷): 𝐷 = {𝑅1, . . . , 𝑅𝑛}. Assuming a universal value domain

D, a tuple with schema Sch(𝑅) is an element from D𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅) ) .
A K-relation [27] annotates each tuple with an element of a

(commutative) semiring. In this paper, we focus on N-relations. An
N-relation of arity 𝑛 is a function that maps each tuple (D𝑛) in the

relation to an annotation in N representing the tuple’s multiplicity.

Tuples not in the relation are mapped to multiplicity 0. N-relations
are required to have finite support (tuples not mapped to 0). Since

K-relations are functions from tuples to annotations, it is customary

to denote the annotation of a tuple 𝑡 in relation 𝑅 as 𝑅(𝑡). A K-
database is a set ofK-relations. Green et al. [27] did use the semiring

operations to express positive relational algebra (RA+) operations
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J𝜋𝐴 (𝑅)K (𝑡) =
∑︁

𝑡 ′ : 𝑡=𝜋𝐴𝑡 ′
𝑅(𝑡 ′)

J𝑅 ∪ 𝑆K (𝑡) = 𝑅(𝑡) + 𝑆 (𝑡)

J𝜎𝜃 (𝑅)K (𝑡) =
{
𝑅(𝑡) if 𝜃 (𝑡)
0 otherwise

J𝑅 × 𝑆K (𝑡) = 𝑅(𝑡) × 𝑆 (𝑡)
Figure 2: Evaluation semantics J·K that lift the operations of a semir-
ing K to RA+ operations over K-relations.

over K-relations as shown in Fig. 2. Notably for us, positive bag-

relational algebra is equivalent to K-relational semantics for the

natural numbers semiring N = (N, +,×, 0, 1).

3.1 Incomplete N-Relations
An incomplete N-database D = {𝐷1, . . . , 𝐷𝑛} (resp., incomplete

N-relation R = {𝑅1, . . . , 𝑅𝑛}) is a set of N-databases 𝐷𝑖 (resp., N-
relations 𝑅𝑖 ) called possible worlds. Queries over incomplete N-
databases use possible world semantics: The result of a query 𝑄

over an incomplete N-databaseD is the set of relations R (possible

worlds) derived by evaluating 𝑄 over every world in D using the

semantics of Fig. 2. In addition to enumerating all possible query

results, past work has introduced the concept of certain and pos-
sible answers for set semantics, which are respectively the set of

tuples present in all worlds or in at least one world. Certain and

possible answers have been generalized [23, 30] to bag semantics

as the extrema of the tuple’s annotations across all possible worlds.

Formally, the certain and possible annotations of a tuple 𝑡 in R are:

certN (R, 𝑡) B min({𝑅(𝑡) | 𝑅 ∈ R})
possN (R, 𝑡) B max({𝑅(𝑡) | 𝑅 ∈ R})

3.2 AU-Databases (AU-DBs)
UsingK-relations , we introduced AU-DBs [23] (attribute-annotated
uncertain databases), a special type of K-relation that summarizes

an incompleteK-relation by bounding its set of possible worlds. An

AU-DB differs from the classical relational model in two key ways:

First, a tuple is not defined as a point inD𝑛 , but rather as a bounding
hypercube specified as upper and lower bounds (and a selected-

guess) for each attribute value. Every such hypercube represents

zero or more tuples contained inside it. Second, the annotation of

each hypercube tuple is also a range of possible annotations (e.g.,

multiplicities for range-annotated N-relations). Intuitively, an AU-

DB bounds a possible world if the hypercubes of its tuples contain

all of the possible world’s tuples, and the total multiplicity of tuples

in the possible world fall into the range annotating the hypercubes.

An AU-DB bounds an incomplete K-database D if it bounds all

of D’s possible worlds. To be able to model, e.g., the choice of

repair made by a heuristic data repair algorithm, the value and

annotation domains of an AU-DB also contain a third component:

a selected-guess (SGW) that encodes one distinguished world.

Formally, in an AU-DB, attribute values are range-annotated
values 𝑐 = [𝑐↓/𝑐𝑠𝑔/𝑐↑] from a range-annotated domain D𝐼 that en-
codes the selected-guess value 𝑐𝑠𝑔 ∈ D and two values (𝑐↓, 𝑐↑ ∈ D)
that bound 𝑐𝑠𝑔 from below and above. For any 𝑐 ∈ D𝐼 we have

𝑐↓ ≤ 𝑐𝑠𝑔 ≤ 𝑐↑. We call a value 𝑐 ∈ D𝐼 certain if 𝑐↓ = 𝑐𝑠𝑔 = 𝑐↑.
AU-DBs encode bounds on the multiplicities of tuples by using

N3 =
(
N3, +N3 , ·N3 , 0N3 , 1N3

)
annotations on tuples in D𝐼

𝑛
. The

annotation (𝑘↓, 𝑘𝑠𝑔, 𝑘↑) encodes a lower bound on the certain mul-

tiplicity of the tuple, the multiplicity of the tuple in the SGW, and

an over-approximation of the tuple’s possible multiplicity. Con-

sider the AU-DB relation R(𝐴, 𝐵) with a tuple ( [1/3/5], [𝑎/𝑎/𝑎])
annotated with (1, 1, 2). This tuple represents the fact that each

world consists of either 1 and 2 tuples with 𝐵 = 𝑎 and 𝐴 between 1

and 5. The SGW contains a tuple (3, 𝑎) with multiplicity 1.

Bounding Databases. As noted above, an AU-DB summarizes an

incomplete N-relation by defining bounds over the possible worlds

that comprise it. To formalize bounds over N-relations, we first

define what it means for a range-annotated tuple to bound a set of

deterministic tuples. Let t be a range-annotated tuple with schema

(𝑎1, . . . , 𝑎𝑛) and 𝑡 be a tuple with the same schema as t. t bounds 𝑡
(denoted 𝑡 ⊑ t) iff ∀𝑖 ∈ {1, . . . , 𝑛} : t.𝑎𝑖↓ ≤ 𝑡 .𝑎𝑖 ≤ t.𝑎𝑖↑

Note that a single AU-DB tuplemay boundmultiple deterministic

tuples, and conversely that a single deterministic tuple may be

bound bymultiple AU-DB tuples. Informally, anAU-relation bounds

a possible world if we can distribute the multiplicity of each tuple

in the possible world over the AU-relation’s tuples. This idea is

formalized through tuple matchings. A tuple matching TM from

an 𝑛-ary AU-relation R to an 𝑛-ary relation 𝑅 is a function (D𝐼 )𝑛 ×
D𝑛 → N that fully allocates the multiplicity of every tuple of 𝑅:

∀t ∈ D𝐼 𝑛 : ∀𝑡 @ t : TM(t, 𝑡) = 0 ∀𝑡 ∈ D𝑛 :

∑︁
t∈D𝐼 𝑛

TM(t, 𝑡) = 𝑅(𝑡)

R bounds 𝑅 (denoted 𝑅 ⊏ R) iff there exists a tuple matching TM
where the total multiplicity allocated to each t ∈ R falls within the

bounds annotating t:

∀t ∈ D𝐼 𝑛 :

∑︁
𝑡 ∈D𝑛

TM(t, 𝑡) ≥ R(t)↓ and
∑︁
𝑡 ∈D𝑛

TM(t, 𝑡) ≤ R(t)↑

An AU-DB relation R bounds an incomplete N-relation R (de-

noted R ⊏ R) iff it bounds every possible world (i.e., ∀𝑅 ∈ R : 𝑅 ⊏
R), and if projecting down to the selected guess attribute of R results

in a possible world of R. As shown in [23, 24], (i) AU-DB query se-

mantics is closed under RA+, set difference and aggregations, and

(ii) queries preserve bounds. That is, if every relation R𝑖 ∈ D bounds

the corresponding relation of an incomplete database R𝑖 ∈ D (i.e.,

∀𝑖 : R𝑖 ⊏ R𝑖 ), then for any query 𝑄 , the results over D bound the

results over D (i.e., 𝑄 (D) ⊏ 𝑄 (D)).

Expression Evaluation. In [24], we defined a semantics J𝑒Kt for
evaluating primitive-valued expressions 𝑒 over the attributes of

a range tuple t. These semantics preserves bounds: given any ex-

pression 𝑒 and any deterministic tuple 𝑡 bounded by t (i.e., 𝑡 ⊑ t),
the result of deterministically evaluating the expression (J𝑒K𝑡 ) is
guaranteed to be bounded by the ranged evaluation J𝑒Kt.

∀𝑡 ⊑ t : 𝑐 = J𝑒K𝑡 , (𝑐↓, 𝑐𝑠𝑔, 𝑐↑) = J𝑒Kt → 𝑐↓ ≤ 𝑐 ≤ 𝑐↑

[24] proved this property for any 𝑒 composed of attributes, con-

stants, arithmetic and boolean operators, and comparisons. For

example, [𝑎↓/𝑎𝑠𝑔/𝑎↑] + [𝑏↓/𝑏𝑠𝑔/𝑏↑] = [𝑎↓ + 𝑏↓/𝑎𝑠𝑔 + 𝑏𝑠𝑔/𝑎↑ + 𝑏↑]

4 DETERMINISTIC SEMANTICS
Before introducing the AU-DB semantics for ranking andwindowed

aggregation, we first formalize the corresponding deterministic

algebra operators that materialize sort positions of rows as data.
Sort order. Assume a total order < for the domains of all at-

tributes. For simplicity, we only consider sorting in ascending order.
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The extension for supporting both ascending and descending or-

der is straightforward. For any two tuples 𝑡 and 𝑡 ′ with schema

(𝐴1, . . . , 𝐴𝑛) and sort attributes 𝑂 = (𝐴𝑖1 , . . . , 𝐴𝑖𝑚 ) we define:
𝑡 <𝑂 𝑡 ′ ⇔ ∃ 𝑗 ∈ {1, . . . ,𝑚} :

∀𝑘 ∈ {1, . . . , 𝑗 − 1} : 𝑡 .𝐴𝑖𝑘 = 𝑡 ′ .𝐴𝑖𝑘 ∧ 𝑡 ′ .𝐴𝑖 𝑗 < 𝑡 .𝐴𝑖 𝑗

The less-than or equals comparison operator ≤𝑂 generalizes this

definition in the usual way. Note that SQL sorting (ORDER BY) and

some window bounds (ROW BETWEEN ...) may be non-deterministic.

For instance, consider a relation 𝑅 with schema (𝐴, 𝐵) with two

rows 𝑡1 = (1, 1) and 𝑡2 = (1, 2) each with multiplicity 1; Sorting

this relation on attribute 𝐴 (the tuples are indistinguishable on this

attribute), can return the tuples in either order. Without loss of

generality, we ensure a fully deterministic semantics (up to tuple

equality) by extending the ordering on attributes 𝑂 , using the re-

maining attributes of the relation as a tiebreaker: The total order

𝑡 <𝑡𝑜𝑡𝑎𝑙
𝑂

𝑡 ′ for tuples from a relation𝑅 is defined as 𝑡 <𝑂,Sch(𝑅)−𝑂 𝑡 ′

(assuming some arbitrary order of the attributes in Sch(𝑅)). We first

introduce operators for windowed aggregation, because sorting

can be defined as a special case of windowed aggregation.

4.1 Windowed Aggregation
A windowed aggregate is defined by an aggregate function, a sort

order (ORDER BY), and a window bound specification. A window

boundary is relative to the defining tuple, by the order-by attribute

value (RANGE BETWEEN...), or by position (ROWS BETWEEN). In the in-

terest of space, we will limit our discussion to row-based windows,

as range-based windows are strictly simpler. A window includes

every tuple within a specified interval of the defining tuple. Win-

dowed aggregation extends each input tuple with the aggregate

value computed over the tuple’s window. If a PARTITION BY clause

is present, then window boundaries are evaluated within a tuple’s

partition. In SQL, a single query may define a separate window for

each aggregate function (SQL’s OVER clause). This can be modeled

by applying multiple window operators in sequence.

Example 4 (Row-Based Windows). Consider the bag relation
below and consider the windowed aggregation 𝑠𝑢𝑚(𝐵) sorting on 𝐴
with bounds [−2, 0] (including the two preceding tuples and the tuple
itself). The window for the first duplicate of 𝑡1 = (𝑎, 5, 3) contains
tuple 𝑡1 with multiplicity 1, the window for the second duplicate of 𝑡1
contains 𝑡1 with multiplicity 2 and so on. Because each duplicate of 𝑡1
ends up in a different window, there are three result tuples produced
for 𝑡1, each with a different 𝑠𝑢𝑚(𝐵) value. Furthermore, tuples 𝑡2 =
(𝑏, 3, 1) and 𝑡3 = (𝑏, 3, 4) have the same position in the sort order,
demonstrating the need to use <𝑡𝑜𝑡𝑎𝑙

𝑂
to avoid non-determinism in

what their windows are. We have 𝑡2 <𝑡𝑜𝑡𝑎𝑙
𝑂

𝑡3 and, thus, the window
for 𝑡2 contains 𝑡2 with multiplicity 1 and 𝑡1 with multiplicity 2 while
the window for 𝑡3 contains 𝑡1, 𝑡2 and 𝑡3 each with multiplicity 1.

A B C N

a 5 3 3
b 3 1 1
b 3 4 1

A B C sum(B) N

a 5 3 5 1
a 5 3 10 1
a 5 3 15 1
b 3 1 13 1
b 3 4 11 1

The semantics of the row-based window aggregate operator

𝜔 is shown in Fig. 3. The parameters of 𝜔 are partition-by at-

tributes 𝐺 , order-by attributes 𝑂 , an aggregate function 𝑓 (𝐴) with

𝜔
[𝑙,𝑢 ]
𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂

(𝑅) (𝑡) = 𝜋
Sch(𝑅),𝑋 (ROW(𝑅))

ROW(𝑅) (𝑡) =


1 if 𝑡 = 𝑡 ′ ◦ 𝑓 (𝜋𝐴 (W𝑅,𝑡 ′,𝑖 )) ◦ 𝑖

∧𝑖 ∈ [0, 𝑅(𝑡 ′) − 1]
0 otherwise

P𝑅,𝑡 (𝑡 ′) =
{
𝑅(𝑡 ′) if 𝑡 ′ .𝐺 = 𝑡 .𝐺

0 otherwise

W𝑅,𝑡,𝑖 (𝑡 ′) = | 𝑐𝑜𝑣𝑒𝑟 (P𝑅,𝑡 , 𝑡 ′) ∩ 𝑏𝑜𝑢𝑛𝑑𝑠 (P𝑅,𝑡 , 𝑡, 𝑖) |

pos(𝑅, 𝑡, 𝑖) = 𝑖 +
∑︁

𝑡 ′<𝑡𝑜𝑡𝑎𝑙
𝑂

𝑡

𝑅(𝑡 ′)

𝑐𝑜𝑣𝑒𝑟 (𝑅, 𝑡) = [pos(𝑅, 𝑡, 0), pos(𝑅, 𝑡, 𝑅(𝑡) − 1)]
𝑏𝑜𝑢𝑛𝑑𝑠 (𝑅, 𝑡, 𝑖) = [pos(𝑅, 𝑡, 𝑖) + 𝑙, pos(𝑅, 𝑡, 𝑖) + 𝑢]

Figure 3: Windowed Aggregation
𝐴 ⊆ Sch(𝑅), and an interval [𝑙, 𝑢]. For simplicity, we hide some

arguments (𝐺 ,𝑂 ,𝑙 ,𝑢) in the definitions and assume they passed to

intermediate definitions where needed. The operator outputs a

relation with schema Sch(𝑅) ◦ 𝑋 .

The heavy lifting occurs in the definition of relation ROW(𝑅),
which “explodes” relation 𝑅, adding an attribute 𝑖 to replace each

tuple of multiplicity 𝑛 with 𝑛 distinct tuples. ROW(𝑅) computes

the windowed aggregate over the window defined for the pair (𝑡, 𝑖),
denoted asW𝑅,𝑡,𝑖 (𝑡 ′). To construct this window, we define the mul-

tiplicity of tuple 𝑡 ′ in the partition for tuple 𝑡 (denoted as P𝑅,𝑡 (𝑡 ′)),
the range of sort positions the tuple 𝑡 covers ( 𝑐𝑜𝑣𝑒𝑟 (𝑅, 𝑡)), and the

range of positions in its window (𝑏𝑜𝑢𝑛𝑑𝑠 (𝑅, 𝑡, 𝑖)). The multiplicity

of tuple 𝑡 ′ in the window for the 𝑖𝑡ℎ duplicate of 𝑡 is the size of the

overlap between the bounds 𝑏𝑜𝑢𝑛𝑑𝑠 (𝑅, 𝑡, 𝑖), and the cover of 𝑡 ′.

4.2 Sort Operator
We now define a sort operator sort𝑂→𝜏 (𝑅) which extends each

row of 𝑅 with an attribute 𝜏 that stores the position of this row in

𝑅 according to <𝑡𝑜𝑡𝑎𝑙
𝑂

. This operator is just “syntactic sugar” as it

can be expressed using windowed aggregation.

Definition 1 (SortOperator). Consider a relation𝑅 with schema
(𝐴1, . . . , 𝐴𝑛), list of attributes 𝑂 = (𝐵1, . . . , 𝐵𝑚) where each 𝐵𝑖 is
in Sch(𝑅). The sort operator sort𝑂→𝜏 (𝑅) returns a relation with
schema (𝐴1, . . . , 𝐴𝑛, 𝜏) as defined below.

sort𝑂→𝜏 (𝑅) = 𝜋
Sch(𝑅),𝜏−1→𝜏 (𝜔

[−∞,0]
𝑐𝑜𝑢𝑛𝑡 (1)→𝜏 ; ∅; 𝑂 (𝑅))

Top-k queries can be expressed using the sort operator followed

by a selection. For instance, the SQL query shown below can be

written as 𝜋𝐴,𝐵 (𝜎𝑟≤3 (sort𝐴→𝑟 (𝑅))).
SELECT A,B FROM R ORDER BY A LIMIT 3;

5 AU-DB SORTING AND TOP-K SEMANTICS
We now develop a bound-preserving semantics for sorting and

top-k queries over AU-DBs. Recall that each tuple in an AU-DB

is annotated with a triple of multiplicities and that each (range-

annotated) value is likewise a triple. Elements of a range-annotated

value c = [𝑐1/𝑐2/𝑐3] or multiplicity triple (𝑛1, 𝑛2, 𝑛3) are accessed
as: c↓ = 𝑐1, c𝑠𝑔 = 𝑐2, and c↑ = 𝑐3. We use bold face to denote

range-annotated tuples, relations, values, and databases. Both the
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uncertainty of a tuple’s multiplicity and the uncertainty of the

values of order-by attributes create uncertainty in a tuple’s position

in the sort order. The former, because it determines how many

duplicates of a tuple appear in the sort order which affects the

position of tuples which may be larger wrt. the sort order and the

latter because it affects which tuples are smaller than a tuple wrt.

the sort order. As mentioned before, a top-k query is a selection over

the result of a sort operator which checks that the sort position of

a tuple is less than or equal to 𝑘 . A bound-preserving semantics for

selection was already presented in [24]. Thus, we focus on sorting

and use the existing selection semantics for top-k queries.

Comparison of Uncertain Values. Before introducing sorting

over AU-DBs, we first discuss the evaluation of <𝑂 over tuples with

uncertain values (recall that <𝑡𝑜𝑡𝑎𝑙
𝑂

is defined in terms of <𝑂 ). Per

[24], a Boolean expression over range-annotated values evaluates

to a bounding triple (using the order ⊥ < ⊤ where ⊥ denotes false

and ⊤ denotes true). The result of an evaluation of an expression

𝑒 is denoted as J𝑒K. For instance, J[1/1/3] < [2/2/2]K= [⊥/⊤/⊤],
because the expression may evaluate to false (e.g., if the first value

is 3 and the second values is 2), evaluates to true in the selected-

guess world, and may evaluate to true (if the 1
𝑠𝑡

value is 1 and

the 2
𝑛𝑑

value is 2). The extension of < to comparison of tuples

on attributes 𝑂 using <𝑂 is shown below. For example, consider

tuples t1 = ( [1/1/3], [𝑎/𝑎/𝑎]) and t2 = ( [2/2/2], [𝑏/𝑏/𝑏]) over
schema 𝑅(𝐴, 𝐵). We have t1 <𝐴,𝐵 t2 = [⊥/⊤/⊤], because t1 could
be ordered before t2 (if t1 .𝐴 is 1), is ordered before t2 in the selected-
guess world (1 < 2), and may be ordered after t2 (if t1 .𝐴 is 3).

Jt <𝑂 t′K↓ = ∃𝑖 ∈ {1, . . . , 𝑛} : ∀𝑗 ∈ {1, . . . , 𝑖 − 1} :

Jt.𝐴 𝑗 = t′ .𝐴 𝑗 K↓ ∧ Jt.𝐴𝑖 < t′ .𝐴𝑖K↓

Jt <𝑂 t′K𝑠𝑔 = ∃𝑖 ∈ {1, . . . , 𝑛} : ∀𝑗 ∈ {1, . . . , 𝑖 − 1} :
Jt.𝐴 𝑗 = t′ .𝐴 𝑗 K𝑠𝑔 ∧ Jt.𝐴𝑖 < t′ .𝐴𝑖K𝑠𝑔

Jt <𝑂 t′K↑ = ∃𝑖 ∈ {1, . . . , 𝑛} : ∀𝑗 ∈ {1, . . . , 𝑖 − 1} :

Jt.𝐴 𝑗 = t′ .𝐴 𝑗 K↑ ∧ Jt.𝐴𝑖 < t′ .𝐴𝑖K↑

To simplify notation, we will use t <𝑂 t′ instead of Jt <𝑂 t′K.
Tuple Rank and Position. To define windowed aggregation and

sorting over AU-DBs, we generalize pos using the uncertain ver-

sion of <𝑂 . The lowest possible position of the first duplicate of

a tuple t in an AU-DB relation R is the total multiplicity of tuples

t′ that certainly exist (R(t′)↓ > 0) and are certainly smaller than t
(i.e., Jt′ <𝑂 tK↓ = ⊤). The selected-guess position of a tuple is the

position of the tuple in the selected-guess world, and the greatest

possible position of t is the total multiplicity of tuples that possibly

exist (R(t′)↑ > 0) and possibly precede t (i.e., Jt′ <𝑂 tK↑ = ⊤). The
sort position of the 𝑖𝑡ℎ duplicate (with the first duplicate being 0) is

computed by adding 𝑖 to the position bounds of the first duplicate.

pos(R,𝑂, t, 𝑖)↓ = 𝑖 +∑(t′<𝑂 t)↓ R(t′)↓ (1)

pos(R,𝑂, t, 𝑖)𝑠𝑔 = 𝑖 +∑(t′<𝑂 t)𝑠𝑔 R(t′)𝑠𝑔 (2)

pos(R,𝑂, t, 𝑖)↑ = 𝑖 +∑(t′<𝑂 t)↑ R(t′)↑ (3)

sort𝑂→𝜏 (R) (t) =

(1, 1, 1) if t = t′ ◦ pos(R,𝑂, t′, 𝑖) ∧ 𝑖 ∈
[
0,R(t′)↓

)
(0, 1, 1) if t = t′ ◦ pos(R,𝑂, t′, 𝑖) ∧ 𝑖 ∈

[
R(t′)↓,R(t′)𝑠𝑔

)
(0, 0, 1) if t = t′ ◦ pos(R,𝑂, t′, 𝑖) ∧ 𝑖 ∈

[
R(t′)𝑠𝑔,R(t′)↑

)
(0, 0, 0) otherwise
Figure 4: Range-annotated sort operator semantics.

5.1 AU-DB Sorting Semantics
To define AU-DB sorting, we split the possible duplicates of a tuple

and extend the resulting tuples with a range-annotated value de-

noting the tuple’s (possible) positions in the sort order. The certain

multiplicity of the 𝑖𝑡ℎ duplicate of a tuple t in the result is either

1 for duplicates that are guaranteed to exist (𝑖 < R(t)↓) and 0 oth-

erwise. The selected-guess multiplicity is 1 for duplicates that do

not certainly exist (in some possible world there may be less than

𝑖 duplicates of the tuple), but are in the selected-guess world (the

selected-guess world has 𝑖 or more duplicates of the tuple). Finally,

the possible multiplicity is always 1.

Definition 2 (AU-DB Sorting Operator). Let R be an AU-DB
relation and 𝑂 ⊆ Sch(R). The result of applying the sort operator
sort𝑂→𝜏 to R is defined in Fig. 4

Every tuple in the result of sorting is constructed by extending

an input tuple t′ with the range of positions pos(R,𝑂, t′, 𝑖) it may

occupy wrt. the sort order. The definition decomposes t into a

base tuple t′, and a position triple for each duplicate of t in R.
We annotate all certain duplicates as certain (1, 1, 1), remaining

selected-guess (but uncertain) duplicates as uncertain (0, 1, 1) and
non-selected guess duplicates as possible (0, 0, 1).

Example 5 (AU-DB Sorting). Consider the AU-DB relation R
shown on the left below with certain, selected guess and possible
multiplicities from N3 assigned to each tuple. For values or multi-
plicities that are certain, we write only the certain value instead of
the triple. The result of sorting the relation on attributes 𝐴, 𝐵 using
AU-DB sorting semantics and storing the sort positions in column
pos (sort𝐴,𝐵→𝑝𝑜𝑠 (R)) is shown below on the right. Observe how the
1
𝑡ℎ input tuple t1 = (1, [1/1/3]) was split into two result tuples occu-
pying adjacent sort positions. The 3𝑟𝑑 input tuple t3 = ( [1/1/2], 2)
could be the 1𝑡ℎ in sort order (if its 𝐴 value is 1 and the 𝐵 values of
the duplicates of t1 are equal to 3) or be at the 3𝑟𝑑 position if two
duplicates of t1 exist and either𝐴 is 2 or the 𝐵 values of t1 are all < 3.

A B N3

1 [1/1/3] (1,1,2)
[2/3/3] 15 (0,1,1)
[1/1/2] 2 (1,1,1)

A B pos N3

1 [1/1/3] [0/0/1] (1,1,1)
1 [1/1/3] [1/1/2] (0,0,1)

[1/1/2] 2 [0/1/2] (1,1,1)
[2/3/3] 15 [2/2/3] (0,1,1)

5.2 Bound Preservation
Wenow prove that our semantics for the sorting operator on AU-DB

relations is bound preserving, i.e., given an AU-DB R that bounds an

incomplete bag database R, the result of a sort operator sort𝑂→𝜏

applied to R bounds the result of sort𝑂→𝜏 evaluated over R.

Theorem 1 (Bound Preservation of Sorting). Given an AU-
DB relation R and incomplete bag relation R such that R ⊏ R, and
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𝑂 ⊆ Sch(R). We have:
sort𝑂→𝜏 (R) ⊏ sort𝑂→𝜏 (R)

Proof Sketch: We prove the theorem by taking a tuple matching

TM for each possible world 𝑅 in the input (that is guaranteed to

exist, because R ⊏ R) and construct a tuple matching TM′ for the
output of sorting based on which sort𝑂→𝜏 (R) ⊏ sort𝑂→𝜏 (R)
holds. In the proof we make use of the fact that the sort operator

distributes the multiplicity of an input tuple 𝑡 to multiple output

tuples which each are extensions of 𝑡 with a sort position, keeping

all other attributes the same as in the input. ■

6 AU-DBWINDOWED AGGREGATION
We now introduce a bound preserving semantics for windowed

aggregation over AU-DBs. We have to account for three types of

uncertainty: (i) uncertain partition membership if a tuple may not

exist (R(t)↓ = 0) or has uncertain partition attributes; (ii) uncertain

window membership if a tuple’s partition membership, position, or

multiplicity are uncertain; and (iii) uncertain aggregation results

from either preceding type of uncertainty, or if we are aggregating

over uncertain values. We compute the windowed aggregation

result for each input tuple in multiple steps: (i) we first use AU-DB

sorting to split each input tuple into tuples whose multiplicities are

at most one. This is necessary, because the aggregation function

result may differ among the duplicates of a tuple (as is already the

case for deterministic windowed aggregation); (ii) we then compute

for each tuple t an AU-DB relation Pt (R) storing the tuples that

certainly and possibly belong to the partition for that tuple; (iii)

we then compute an AU-DB relationWR,t encoding which tuples

certainly and possibly belong to the tuple’s window; (iv) since row-

based windows contain a fixed number of tuples, we then determine

from the tuples that possibly belong to the window, the subset that

together with the tuples that certainly belong to the window (these

tuples will be in the window in every possible world) minimizes /

maximizes the aggregation function result. This then enables us to

bound the aggregation result for each input tuple from below and

above. For instance, for a row-based window [−2, 0], we know that

the window for a tuple t will never contain more than 3 tuples. If

we know that two tuples certainly belong to the window, then at

most one additional possible tuple can belong to the window.

6.1 Windowed Aggregation Semantics
As before, we omit windowed aggregation parameters (𝐺 ,𝑂 ,𝑙 ,𝑢,𝑓 ,𝐴)

from the arguments of intermediate constructs and assume they

are passed along where needed.

Partitions We start by defining AU-DB relation Pt (R) which
encodes the multiplicity of tuple t′ in the partition for t based on

partition-by attributes 𝐺 . This is achieved using selection, compar-

ing a tuple’s values in 𝐺 with the values of t.𝐺 on equality. AU-DB

selection sets the certain (selected-guess, or possible multiplicity)

of a tuple to 0 if the tuple possibly (in the selected-guess world, or

certainly) does not fulfill the selection condition.

Pt (R) = J𝜎𝐺=t.𝐺 (R)K

Certain and Possible Windows.We need to be able to reason

about which tuples (and with which multiplicity) belong certainly

0 1 2 3 4 5 6 7 8 9 10 11 12

t

possible window

certain window

not in window

t1

certainly in

t2
possibly in

t3

Figure 5: Possible and certain window membership of tuples in the
window [-1,4] for t based on their possible sort positions.

to the window for a tuple and which tuples (with which multiplic-

ity) could possibly belong to a window. For a tuple t, we model the

window’s tuples as an AU-DB relationWR,t where a tuple’s lower
bound multiplicity encodes the number of duplicates of the tuple

that are certainty in the window, the selected-guess multiplicity

encodes the multiplicity of the tuple in the selected-guess world,

and the upper bound encodes the largest possible multiplicity with

which the tuple may occur in the window minus the certain multi-

plicity. In the remainder of this paper we omit the definition of the

select-guess, because it can be computed using the deterministic

semantics for windowed aggregation. For completeness, we include

it in the extended version of this paper [22]. We formally define

WR,t in Fig. 6. Recall that in the first step we used sort to split the

duplicates of each tuple into tuples with multiplicity upper bound

of 1. Thus, the windows we are constructing here are for tuples

instead of for individual duplicates of a tuple. A tuple t′ is guaran-
teed to belong to the window for of a tuple t with a multiplicity

of 𝑛 = R(t′)↓ (the number of duplicates of the tuple that certainly

exist) if the tuple certainly belongs to the partition for t and all

possible positions that these 𝑛 duplicates of the tuple occupy in the

sort order are guaranteed to be contained in the smallest possible

interval of sort positions contained in the bounds of the window

for t. Tuple t′ possibly belongs to the window of t if any of its

possible positions falls within the interval of all possible positions

of t. As an example consider Fig. 5 which shows the sort positions

that certainly (red) and possibly (green) belong to tuple t’s window
(window bounds [-1,4]). For any window [𝑙, 𝑢], sort positions cer-
tainly covered by the window start from latest possible starting

position for t’s window which is t.𝜏↑ + 𝑙 (6 + (−1) = 5 in our exam-

ple) and end at the earliest possible upper bound for the window

which is t.𝜏↓ + 𝑢 (4 + 4 = 8 in our example). Furthermore, Fig. 5

shows the membership of three tuples in the window. Tuple t1 does
certainly not belong to the window, because none of its possible

sort positions are in the window’s set of possible sort positions,

t2 does certainly belong to the window, because all of its possible

sort positions are in the set of positions certainly in the window.

Finally, t3 possibly belongs to the window, because some of its sort

positions are in the set of positions possibly covered by the window.

Combining and Filtering Certain and Possible Windows. As
mentioned above, row-based windows contain a fixed maximal

number of tuples based on their bounds. We use size( [𝑙, 𝑢]) to
denote the size of a window with bounds [𝑙, 𝑢], i.e., size( [𝑙, 𝑢]) =
(𝑢 − 𝑙) + 1. This limit on the number of tuples in a window should

be taken into account when computing bounds on the result of an

aggregation function. For that, we combine the tuples certainly in

the window (say there are𝑚 such tuples) with a selected bag of up

to size( [𝑙, 𝑢]) −𝑚 rows possibly in the window that minimizes (for

the lower aggregation result bound) or maximizes (for the upper
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WR,t (t′)↓ =
{
Pt (R) (t′)↓ if [pos(Pt (R),𝑂, t′, 0)↓, pos(Pt (R),𝑂, t′, 0)↑] ⊆ [pos(Pt (R),𝑂, t, 0)↑ + 𝑙, pos(Pt (R),𝑂, t, 0)↓ + 𝑢]
0 otherwise

WR,t (t′)↑ =
{
Pt (R) (t′)↑ −WR,t,𝑖 (t′)↓ if ( [pos(Pt (R),𝑂, t′, 0)↓, pos(Pt (R),𝑂, t′, 0)↑] ∩ [pos(Pt (R),𝑂, t, 0)↓ + 𝑙, pos(Pt (R),𝑂, t, 0)↑ + 𝑢]) ≠ ∅
0 otherwise

Figure 6: Certain and possible window membership for row-based windowed aggregation over AU-DBs

aggregation result bound) the aggregation function result for an

input tuple. Let us use possn(R, t) to denote size( [𝑙, 𝑢]) −𝑚:

possn(R, t) = size( [𝑙, 𝑢]) −
∑︁
t′
WR,t (t′)↓

Which bag of up to possn(R, t) tuples minimizes / maximizes the

aggregation result depends on what aggregation function is applied.

For sum, the up to possn(R, t) rows with the smallest negative

values are included in the lower bound and the up to possn(R, t)
rows with the greatest positive values for the upper bound. For

count no additional row are included for the lower bound and up

to possn(R) rows for the upper bound.
For each tuple t, we define AU-DB relation RWR,t where each

tuple’s lower/upper bound multiplicities encode the multiplicity of

this tuple contributing to the lower and upper bound aggregation

result, respectively. We only show the definition for sum, the defi-

nitions for other aggregation functions are similar. In the definition,

we make use R↓ and R↑:

R↓ (t) = R(t)↓ R↑ (t) = R(t)↑

Note that R↓ and R↑ are bags (N-relations) over range-annotated
tuples. Furthermore, we define min-k(R, t, 𝐴) (and max-k(R, t, 𝐴))
that are computed by restrictingWR,t to the tuples with the smallest

negative values (largest positive values) as lower (upper) bounds on

attribute 𝐴 that could contribute to the aggregation, keeping tuples

with a total multiplicity of up to possn(R, t). Note that the determin-

istic conditions / expressions in the definition ofmin-k(R, t, 𝐴) (and
max-k(R, t, 𝐴)) are well-defined, because single values are extracted
from all range-annotated values. For max (resp., min) and similar

idempotent aggregates, it suffices to know the greatest (resp., least)

value possibly in the window.

RWR,t (t′)↓ =WR,t (t′)↓ +min-k(R, t, 𝐴) (t′)

RWR,t (t′)↑ =WR,t (t′)↓ +max-k(R, t, 𝐴) (t′)

min-k(R, t, 𝐴) = 𝜎𝜏<possn(R,t) (sort𝐴↓→𝜏 (𝜎𝐴↓<0 (WR,t
↓)))

max-k(R, t, 𝐴) = 𝜎𝜏<possn(R,t) (sort−𝐴↑→𝜏 (𝜎𝐴↑>0 (WR,t
↑)))

Windowed Aggregation. Using the filtered combined windows

we are ready to define row-based windowed aggregation over AU-

DBs. To compute aggregation results, we utilize the operation ⊛𝑓
defined in [24] for aggregation function 𝑓 that combines the range-

annotated aggregation attribute value of a tuple with the tuple’s

multiplicity bounds. For instance, for sum, ⊛sum is multiplication,

e.g., if a tuple with 𝐴 value [10/20/30] has multiplicity (1, 2, 3) it
contributes [10/40/90] to the sum. Here,

⊕
denotes the application

of the aggregation function over a set of elements (e.g.,

∑
for sum).

Note that, as explained above, the purpose of expand(R) is to split

a tuple with 𝑛 possible duplicates into 𝑛 tuples with a multiplicity

of 1. Furthermore, note that the bounds on the aggregation result

may be the same for the 𝑖𝑡ℎ and 𝑗𝑡ℎ duplicate of a tuple. To deal

with that we apply a final projection to merge such duplicate result

tuples.

Definition 3 (Row-based Windowed Aggregation). Let R be
an AU-DB relation. We define window operator 𝜔 [𝑙,𝑢 ]

𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂
as:

𝜔
[𝑙,𝑢 ]
𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂

(R) (t) = 𝜋
Sch(R),𝑋 (ROW(R))

ROW(R) (t ◦ aggres(t)) = expand(R) (t)

aggres(t) =
⊕
t′

t′ .𝐴 ⊛𝑓 RWexpand(R),t (t′)

expand(R) = 𝜋
Sch(R),𝜏𝑖𝑑 (sortSch(R)→𝜏𝑖𝑑

(R))

Example 6 (AU-DB Windowed Aggregation). Consider the
AU-DB relation R shown below and query 𝜔 [−1,0]

𝑠𝑢𝑚 (𝐶 )→𝑆𝑢𝑚𝐴; 𝐴; 𝐵
(R),

i.e., windowed aggregation partitioning by𝐴, ordering on 𝐵, and com-
puting 𝑠𝑢𝑚(𝐶) over windows including 1 preceding and the current
row. For convenience we show an identifier for each tuple on the left.
As mentioned above, we first expand each tuple with a possible multi-
plicity larger then one using sorting. Consider tuple t3. Both t1 and
t2 may belong to the same partition as t3 as their 𝐴 value ranges
overlap. There is no tuple that certainly belongs to the same partition
as t3. Thus, only tuple t3 itself will certainly belong to the window.
To compute the bounds on the aggregation result we first determine
which tuples (in the expansion created through sorting) may belong to
the window for t3. These are the two tuples corresponding to the dupli-
cates of t1, because these tuples may belong to the partition for t3 and
their possible sort positions ([0/0/1] and [1/1/2]) overlap with the
sort positions possibly covered by the window for t3 ([0/1/2]). Since
the size of the window is 2 tuples, the bounds on the sum are computed
using the lower / upper bound on the 𝐶 value of t3 ([2/4/5]) and no
additional tuple from the possible window (because the 𝐶 value of t1
is positive) for the lower bound and the largest possible𝐶 value of one
copy (we can only fit one additional tuple into the window) of t1 (7)
for the upper bound. Thus, we get the aggregation result [2/11/12]
as shown below. A B C N3

t1 1 [1/1/3] 7 (1,1,2)
t2 [2/3/3] 15 4 (0,1,1)
t3 [1/1/2] 2 [2/4/5] 1
A B C SumC N3

r1 1 [1/1/3] 7 [7/7/14] 1
r2 1 [1/1/3] 7 [7/7/14] (0,0,1)
r3 [1/1/2] 2 [2/4/5] [2/11/12] 1
r4 [2/3/3] 15 4 [4/4/9] (0,1,1)

6.2 Bound Preservation
We now prove this semantics for group-based and row-based win-

dowed aggregation over AU-DBs to be bound preserving.

Theorem 2 (Bound Preservation for Windowed Aggrega-

tion). Consider an AU-DB relation R and incomplete bag relation
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R such that R ⊏ R, and 𝑂 ⊆ Sch(R). For any row-based windowed
aggregation 𝜔 [𝑙,𝑢 ]

𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂
, we have:

𝜔
[𝑙,𝑢 ]
𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂

(R) ⊏ 𝜔
[𝑙,𝑢 ]
𝑓 (𝐴)→𝑋 ; 𝐺 ; 𝑂

(R)

Proof Sketch: As in the proof for sorting over AU-DBs, we consider

WLOG one of the possible worlds 𝑅 ∈ R and a tuple matching TM
based onwhichR is bounding𝑅. We then construct a tuplematching

TM′ for the output of windowed aggregation. In the proof, we

utilize the fact that windowed aggregation produces one output

tuple 𝑡 for each input tuple 𝑡 ′ such that 𝑡 extends the input tuple

𝑡 ′ with the aggregation result for 𝑡 ′’s window and has the same

multiplicity as the input tuple 𝑡 ′. Thus, we only need to show that

the bounds on the aggregation function result bound the values in

the result for the possible world 𝑅 and that tuples with multiplicity

𝑛 are split into 𝑛 output tuples with multiplicity 1. ■

7 NATIVE ALGORITHMS
We now introduce optimized algorithms for ranking and windowed

aggregation over AU-DBs that are more efficient than their SQL

counterparts presented in [22]. Through a connected heap data

structure, these algorithms leverage the fact that the lower and

upper position bounds are typically close approximations of one

another to avoid performing multiple passes over the data. We

assume a physical encoding of an AU-DB relation R as a classical

relation [24] where each range-annotated value of an attribute

𝐴 is stored as three attributes 𝐴↓, 𝐴𝑠𝑔
, and 𝐴↑. In this encoding,

attributes t.#↓, t.#𝑠𝑔 , and t.#↑ store the tuple’s multiplicity bounds.

7.1 Non-deterministic Sort, Top-k
Algorithm 1 sorts an input AU-DB R. The algorithm assigns to each

tuple its position 𝜏 given as lower and upper bounds: t.𝜏↓, t.𝜏↑,
respectively. Given a parameter k, the algorithm can also be used

to find the top-k elements; otherwise we set k = | R | (the maximal

possible size of the input relation). Algorithm 1 takes as input the

relational encoding of an AU-DB relation R sorted on𝑂↓, the lower-
bound of the sort order attributes. Recall from Equation (1) that to

determine a lower bound on the sort position of a tuple twe have to
sum up the smallest multiplicity of tuples s that are certainly sorted
before t, i.e., where s.𝑂↑ <𝑡𝑜𝑡𝑎𝑙

𝑂
t.𝑂↓. Since s.𝑂↓ <𝑡𝑜𝑡𝑎𝑙

𝑂
s.𝑂↑ holds

for any tuple, we know that these tuples are visited by Algorithm 1

before t. We store tuples in a min-heap todo sorted on 𝑂↑ and
maintain a variable rank↓ to store the current lower bound. For

every incoming tuple t, we first determine all tuples s from todo

certainly preceding t (s.𝑂↑ < t.𝑂↓) and update rank↓ with their

multiplicity. Since t is the first tuple certainly ranked after any such
tuple s and all tuples following t will also certainly ranked after s,
we can now determine the upper bound on s’s position. Based on

Equation (3) this is the sum of the maximal multiplicity of all tuples

that may precede s. These are all tuples u such that s.𝑂↑ ≥ u.𝑂↓, i.e.,
all tuples we have processed so far. We store the sum of the maximal

multiplicity of these tuples in a variable rank↑ which is updated for

every incoming tuple. We use a function emit to compute s’s upper
bound sort position, adapt s.#↓ (for a top-k query, s may not exist

in the result if its position may be larger than 𝑘), add s to the result,
and adapt rank↓ (all tuples processed in the following are certainly

Input: R (sorted on𝑂↓), k ∈ N (or k = |R↑ |)
1 todo← minheap(𝑂↑ ) ; rank↓ ← 0 ; rank↑ ← 0 ; res← ∅
2 for t ∈ R do
3 while todo.peek( ) .𝑂↑ < t.𝑂↓ do // emit tuples

4 emit(todo.pop( ) )
5 if rank↓ > k then // tuples certainly out of top-k?

6 return res

7 t.𝜏↓ ← rank↓ // set position lower bound

8 todo.insert(t) // insert into todo heap

9 rank↑ += t.#↑ // update position upper bound

10 while not todo.isEmpty( ) do // flush remaining tuples

11 emit(todo.pop( ) )
12 return res

13 def emit(s)
14 s.𝜏↑ ← min(k, rank↑ ) // position upper bound capped at 𝑘

15 if rank↑ > k then // s may not be in result if s.𝜏↑ > 𝑘

16 s.#↓ ← 0

17 res← res ∪ split({s})
18 rank↓ += s.#↓ // update position lower bound

Algorithm 1: Non-deterministic sort (top-k) on attributes 𝑂

ranked higher than s). Function split splits a tuple with t.# > 1

into multiple tuples as required by Def. 2. If we are only interested

in the top-k results, then we can stop processing the input once

rank↓ is larger than 𝑘 , because all following tuples will be certainly
not in the top-k. Once all inputs have been processed, the heap may

still contain tuples whose relative sort position wrt. to each other is

uncertain. We flush these tuples at the end. Algorithm 1’s worst-

case runtime is𝑂 (𝑛 · log𝑛) and worst-case memory requirement is

𝑂 (𝑛) for 𝑛 = | R | (see [22]).

7.2 Connected Heaps
In our algorithm for windowed aggregation that we will present

in Sec. 7.3, we need to maintain the tuples possibly in a window

ordered increasingly on 𝜏↑ (for fast eviction), sorted on 𝐴↓ to com-

pute min-k(R, t, 𝐴), and sorted decreasingly on 𝐴↑ to compute

max-k(R, t, 𝐴). We could use separate heaps to access the smallest

element(s) wrt. to any of these orders efficiently. However, if a tuple

needs to be deleted, the tuple will likely not be the root element in

all heaps which means we have to remove non-root elements from

some heaps which is inefficient (linear in the heap size). Of course

it would be possible to utilize other data structures that maintain or-

der such as balanced binary trees. However, such data structures do

not achieve the 𝑂 (1) lookup performance for the smallest element

that heaps provide. Instead, we introduce a simple, yet effective,

data structure we refer to as a connected heap.
A connected heap is comprised of 𝐻 heaps which store pointers

to a shared set of records. Each heap has its own sort order. A record

stored in a connected heap consists of a tuple (the payload) and

𝐻 backwards pointers that point to the nodes of the individual

heaps storing this tuple. These backward pointers enable efficient

deletion (𝑂 (𝐻 · log𝑛)) of a tuple from all heaps when it is popped

as the root of one of the component heaps. In [22] we explain how

the standard sift-up and sift-down heap operations are used to

restore the heap property in 𝑂 (log𝑛) when removing a non-root

element from a component heap. When a tuple is inserted into a

connected heap, it is inserted into each component heap in𝑂 (log𝑛)
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t3
cert[3] t4c-rank↓

Figure 7: Example state for Algorithm 2, N=5, c-rank↓=2.

in the usual way with the exception that the backwards pointers are

populated. In [22], we experimentally compare the performance of

heaps with connected heaps. Even for small databases (10k tuples)

and a small fraction of uncertain order-by values (1%), connected

heaps outperform heaps by a factor of ∼ 2. Larger databases / more

uncertain data result in larger heaps and, thus, better performance.

Example 7 (Connected heap). Consider the connected heap
shown below on the left storing tuples 𝑡1 = (1, 3), 𝑡2 = (2, 6), 𝑡3 =

(3, 2), and 𝑡4 = (4, 1). Heap ℎ1 (ℎ2) is sorted on the first (second) at-
tribute. Calling pop() on ℎ1 removes 𝑡1 from ℎ1. Using the backwards
pointer from 𝑡1 to the corresponding node in ℎ2 (shown in red), we
also remove 𝑡1 from ℎ2. The node pointing to 𝑡1 from ℎ2 is replaced
with the right most leaf node of ℎ2 (pointing to 𝑡2). In this case the
heap property is not violated and, thus, no sift-down / up is required.

1h1

2

4

3

1 3t1

2 6t2

3 2t3

4 1t4

1h2

2

6

3

Result of h1.pop()

2h1

4 3

2 6t2

3 2t3

4 1t4

1h2

2 6

7.3 Ranged Windowed Aggregation
Without loss of generality, we focus on window specifications with

only a ROWS PRECEDING clause; a FOLLOWING clause can be simulated

by offsetting the window, i.e., a window bound of [−𝑁, 0]. Algo-
rithm 2 uses a function compBounds to compute the bounds on

the aggregation function result based on the certain and possible

content of a window. We present the definition of this function

for several aggregation functions in [22]. Algorithm 2 follows a

sweeping pattern similar to Algorithm 1 to compute the windowed

aggregate in a single pass over the data which has been prepro-

cessed by applying sort𝑂→𝜏 (R) and then has been sorted on 𝜏↓.
The algorithm uses a minheap openw which is sorted on 𝜏↑ to store
tuples for which have not seen yet all tuples that could belong to

their window. Additionally, the algorithm maintains the following

data structures: cert is a map from a sort position 𝑖 to a tree storing

tuples t that certainly exist and for which t.𝜏↓ = 𝑖 sorted on 𝜏↑.
This data structure is used to determine which tuples certainly be-

long to the window of a tuple; (poss, pagg↓, pagg↑) is a connected
minheap where poss, pagg↓, and pagg↑ are sorted on 𝜏↑, 𝐴↓, −𝐴↑,
respectively. This connected heap stores tuples possibly in a win-

dow. The different sort orders are needed to compute bounds on

the aggregation function result for a window efficiently (we will

expand on this later). Finally, we maintain a watermark c-rank↓

for the lower bound position of the certain part of windows.

Algorithm 2 first inserts each incoming tuple into openw (Line 7).
If the tuple certainly exists, it is inserted into the tree of certain

tuples whose lower bound position is t.𝜏↓. Note that each of these

trees is sorted on 𝜏↑ which will be relevant later. Next the algorithm

Input: 𝑓 , 𝑋 ,𝑂 , 𝑁 , 𝐴, sort𝑂→𝜏 (R) sorted on 𝜏↓

1 openw← minheap(𝜏↑ ) // tuples with open windows

2 cert← Map(int, Tree(𝜏↑ ) ) // certain window members by pos.

3 (poss, pagg↓, pagg↑ ) ← connected-minheap(𝜏↑, 𝐴↓, 𝐴↑ )
4 c-rank↓ ← 0 // watermark for certain window

5 res← ∅
6 for t ∈ R do
7 openw .insert(t)
8 if t.#↓ > 0 then // insert into potential certain window

9 cert[t.𝜏↓ ] .insert(t)
10 while openw .peek( ) .𝜏↑ < t.𝜏↓ do // close windows

11 s← openw .pop( )
12 while c-rank↓ < s.𝜏↑ − 𝑁 do // evict certain win.

13 cert[c-rank↓ ] = null
14 c-rank↓ + +
15 s.X← compBounds (𝑓 , s, cert , poss ) // compute agg.

16 while poss .peek.𝜏↑ < s.𝜏↓ − 𝑁 do // evict poss. win.

17 poss .pop( )
18 res← res ∪ {s}
19 poss .insert(t) // insert into poss. win.

Algorithm 2: Aggregate 𝑓 (𝐴) → 𝑋 , sort on 𝑂 , 𝑁 preceding

determines for which tuples from openw, their windows have been
fully observed. These are all tuples s which are certainly ordered

before the tuple t we are processing in this iteration (s.𝜏↑ < t.𝜏↓).
To see why this is the case, first observe that (i) we are processing

input tuples in increasing order of 𝜏↓ and (ii) tuples are “finalized”

by computing the aggregation bounds in monotonically increasing

order of 𝜏↑. Given that we are using a window bound [−𝑁, 0],
all tuples s that could possibly belong to the window of a tuple t
have to have s.𝜏↓ ≤ t.𝜏↑. Based on these observations, once we

processed a tuple t with t.𝜏↓ > s.𝜏↑ for a tuple s in openw, we
know that no tuples that we will process in the future can belong

to the window for s. In Line 11 we iteratively pop such tuples

from openw. For each such tuple s we evict tuples from cert and

update the high watermark c-rank↓ (Line 12). Recall that for a

tuple u to certainly belong to the window for s we have to have

s.𝜏↑−𝑁 ≥ t.𝜏↓. Thus, we update c-rank↓ to s.𝜏↑−𝑁 and evict from

cert all trees storing tuples for sort positions smaller than s.𝜏↑ −𝑁 .

Afterwards, we compute the bounds on the aggregation result for s
using cert and poss (we will describe this step in more detail in the

following). Finally, we evict tuples from poss (and, thus, also pagg↓

and pagg↑) which cannot belong to any windows we will close

in the future. These are tuples which are certainly ordered before

the lowest possible position in the window of s, i.e., tuples u with

u.𝜏↑ < s.𝑠↓ −𝑁 (see Fig. 5). Evicting tuples from poss based on the

tuple for which we are currently computing the aggregation result

bounds is safe because we are emitting tuples in increasing order

of 𝜏↑, i.e., for all tuples u emitted after s we have u.𝜏↑ > s.𝜏↑. Fig. 7
shows an example state for the algorithm when tuple s is about to
be emitted. Tuples fully included in the red region (t2 and t3) are
currently in cert[𝑖] for sort positions certainly in the window for s.
Tuples with sort position ranges overlapping with the green region

are in the possible window (these tuples are stored in poss). Tuples
like t4 with upper-bound position higher than s will be popped and
processed after s. Once all input tuples have been processed, we

have to close the windows for all tuples remaining in openw. This
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process is the same as emitting tuples before we have processed all

inputs and, thus, is omitted from Algorithm 2.

Algorithm 2 uses function compBounds to compute the bounds

on the aggregation function result for a tuple t using cert, pagg↓

and pagg↑ following the definition from Sec. 6.1. First, we fetch

all tuples that are certainly in the window from cert based on

the sort positions that certainly belong to the window for t ([t.𝜏↑ -
N, t.𝜏↓]) and aggregate their 𝐴 bounds. Afterwards, we use pagg↓

and pagg↑ to efficiently fetch up possn(R, t) tuples possibly in the

window for t to calculate the final bounds based onmax-k andmin-
k.The worst-case runtime of the algorithm is 𝑂 (𝑁 · 𝑛 · log𝑛). As
mentioned before, the detailed algorithm and further explanations

are presented in [22].

8 EXPERIMENTS
We evaluate the efficiency of our rewrite-based approach and the

native implementation of the algorithms from Sec. 7 in Postgres

and also evaluate the accuracy of the approximations they produce.

Compared Algorithms. We compare against several baselines:

Det evaluates queries deterministically ignoring uncertainty in the

data. We present these results to show the overhead of the different

incomplete query evaluation semantics wrt. deterministic query

evaluation; MCDB [34] evaluates queries over a given number of

possible worlds sampled from the input incomplete database using

deterministic query evaluation. MCDB10 and MCDB20 are MCDB

with 10 and 20 sampled worlds, respectively. For MCDB, we treat

the highest and lowest possible value across all samples as the

upper and lower bounds and compare against the tight bounds

produced by the other algorithms (since computing optimal bounds

is often intractable). Given a exact bound [𝑐, 𝑑], we define the recall
of a bound [𝑎, 𝑏] as 𝑚𝑖𝑛 (𝑏,𝑑 )−𝑚𝑎𝑥 (𝑎,𝑐 )

𝑑−𝑐 and the accuracy of [𝑎, 𝑏]
as

𝑚𝑎𝑥 (𝑏,𝑑 )−𝑚𝑖𝑛 (𝑎,𝑐 )
𝑚𝑖𝑛 (𝑏,𝑑 )−𝑚𝑎𝑥 (𝑎,𝑐 ) . The recall/accuracy for a relation is then the

average recall/accuracy of all tuples. For PT-k [32], we set its

threshold to 1 (0) to compute all certain (possible) answers. Symb
represents ranking and aggregation results as symbolic expressions

similar to [9, 12]. We use an SMT solver (Z3 [20]) to compute

tight bounds on the possible sort positions / aggregation results

for tuples. Rewr is our rewrite-based approach [22] that has to

process the input relation twice for sorting and uses range self-

joins to determine the content of windows. Imp is implemented as

a native extension for Postgres 13.3. All experiments are run on a

2×6 core 3300MHz 8MB cache AMD Opteron 4238 CPUs, 128GB

RAM, 4×1TB 7.2K HDs (RAID 5) with the exception of PT-k which

was provided by the authors as a Windows binary. We run PT-k
on a separate Windows machine with an 8-core 3800MHz 32MB

cache AMD Ryzen 5800x CPU, 64G RAM, and 2TB HD. PT-k is

single-threaded and in-memory. Since we deactivated intra-query

parallelism in Postgres, but still have to go to disk, the comparison

is in favor of PT-k. We report the average of 10 runs.

8.1 Microbenchmarks on Synthetic Data
To evaluate how specific characteristics of the data affect our sys-

tem’s performance and accuracy, we generated synthetic data con-

sisting of a single table with 2 attributes for sorting and 3 attributes

for windowed aggregation. Attribute values are uniform randomly

distributed. Except where noted, we default to 50k rows and 5% un-

certainty with a maximum 1k attribute range on uncertain values.

8.1.1 Sorting and Top-k Queries. Scaling Data Size. Fig. 11 shows
the runtime of sorting, varying the dataset size. Since Symb and PT-
k perform significantly worse, we only include these methods for

smaller datasets (Fig. 11a). MCDB and our techniques significantly

outperform Symb and PT-k (∼2+ OOM). Rewr is roughly on par

with MCDB20 while Imp outperforms MCDB10. Given their poor

performance and their lack of support for windowed aggregation,

we exclude Symb and PT-k from the remaining microbenchmarks.

Varying k, Ranges, and Rate. Fig. 8 shows runtime of top-k (k

is specified) and sorting queries (k is not specified) when varying

(i) the number of tuples returned (𝑘), (ii) the size of the ranges of

uncertain order-by attributes (range), and (iii) the fraction of tuples

with uncertain order-by attributes. Imp is the fastest method, with

an overhead of deterministic query processing between 3.5 (top-

k) and 10 (full sorting). Rewr has higher overhead over Det than
MCDB. Notably, the performance ofMCDB and Rewr is independent
of all three varied parameters. Uncertainty and range have small

impact on the performance of Imp while computing top-k results is

significantly faster than full sorting when 𝑘 is small.

Configurations Det Imp Rewr MCDB10 MCDB20
r=1k,u=5% 31.5ms 233.1ms 786.7ms 310.1ms 639.3ms

r=10k,u=5% 30.9ms 286.1ms 792.6ms 314.3ms 621.2ms

r=1k,u=20% 31.8ms 266.3ms 794.9ms 325.8ms 651.2ms

r=1k,u=5%,k=2 13.4ms 48.3ms 750.4ms 149.1ms 295.2ms

r=1k,u=5%,k=10 13.4ms 48.2ms 751.1ms 150.4ms 296.1ms

Range(r),Uncertainty(u),k or full sorting
Figure 8: Sorting and Top-K Microbenchmarks - Performance
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Figure 9: Sorting microbenchmarks - approximation quality

Accuracy. Fig. 9 shows the error of the bounds generated by Imp
(Rewr produces identical outputs) and MCDB. Recall that Imp is

guaranteed to over-approximate the correct bounds, while MCDB
is guaranteed to under-approximate the bounds, because it does

not compute all possible results. We measure the size of the bounds

relative to the size of the correct bound (as computed by Symb and
PT-k), and then take the average over all normalized bound sizes.

In all cases our approach produces bounds that are closer to the

exact bounds than MCDB (∼30% over-approximation versus ∼70%
under-approximation in the worst case). We further note that an

over-approximation of possible answers is often preferable to an

under-approximation because no possible results will be missed.

8.1.2 Windowed Aggregation. Scaling Data Size. Fig. 12 shows
the runtime of windowed aggregation when varying dataset size.

We compare two variants of our rewrite-based approach which

uses a range overlap join to determine which tuples could possibly

belong to a window. Rewr(Index) uses a range index supported by

Postgres. We show index creation time and query time separately.

We exclude Symb, because for more than 1k tuples, Z3 exceeds the

maximal allowable call stack depth and crashes. The performance
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Figure 10: Window microbenchmarks - approximation quality
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Figure 12: Windowed aggregation performance varying dataset size

Configurations Det Imp MCDB10 MCDB20

Order-by

+ Window size

w=3,r=1k,u=5% 85.3ms 895.3ms 948.6ms 1850.4ms

w=3,r=10k,u=5% 87.1ms 899.7ms 931.3ms 1877.5ms

w=3,r=1k,u=20% 88.7ms 903.2ms 944.7ms 1869.7ms

w=6,r=1k,u=5% 86.2ms 1008.3ms 953.1ms 1885.1ms

(a) Order-by, Window size (w), Range (r), Uncertainty (u)
Configurations Det Rewr MCDB10 MCDB20

Order-by

+ Partiton-by

+ Window size

w=3,r=1k,u=5% 105.1ms 73.5s 1209.4ms 2127.1ms

w=3,r=10k,u=5% 101.7ms 75.2s 1231.3ms 2142.9ms

w=3,r=1k,u=20% 104.2ms 81.1s 1201.1ms 2102.3ms

(b) Order-by + partition-by, Window size (w), Range (r), Uncertainty (u)
Figure 13: Windowed aggregation microbenchmarks - Performance

of Imp is roughly on par with MCDB10. Rewr(Index) is almost as

fast as MCDB20, but is 5 × slower than Imp.

Varying window spec, Ranges, and Rate. Fig. 13 shows the run-
time of windowed aggregation varying the value ranges of uncer-

tain attribute (on all columns), percentage of uncertain tuples, and

window size. For Imp (Fig. 13a) we use a query without partition-by.
We also compare runtime of our rewriting based approach (Fig. 13b)

using both partition-by and order-by on 8k rows. Imp exhibits sim-

ilar runtime to MCDB10 and outperforms MCDB20. Rewr is slower
than MCDB by several magnitudes due to the range-overlap join.

8.2 Real World Datasets
We evaluate our approach on real datasets (Iceberg [3], Chicago

crime data [4], and Medicare provider data [1]) using realistic sort-

ing and windowed aggregation queries [2]. To prepare the datasets,

we perform data cleaning methods (entity resolution and missing

value imputation) that output a AU-DB encoding of the space of

possible repairs. Fig. 14 shows the performance of real queries on

these datasets reporting basic statistics (uncertainty and #rows).

For sorting and top-k queries that contain aggregation which

is common in real use-cases, we only measure the performance

Datasets Imp Det MCDB20 Rewr Symb PT-k
& Queries (time) (time) (time) (time) (time) (time)

Iceberg [3]

(1.1%, 167K)

Rank 0.816ms 0.123ms 2.337ms 1.269ms 278ms 1s

Window 2.964ms 0.363ms 7.582ms 1.046ms 589ms N.A.

Crimes [4]
(0.1%, 1.45M)

Rank 1043.505ms 94.306ms 2001.12ms 14787.723ms >10min >10min

Window 3.050ms 0.416ms 8.337ms 2.226ms >10min N.A.

Healthcare [1]
(1.0%, 171K)

Rank 287.515ms 72.289ms 1451.232ms 4226.260ms 15s 8s

Window 130.496ms 15.212ms 323.911ms 13713.218ms >10min N.A.

Figure 14: Real world data - performance
Datasets & Measures Imp/Rewr MCDB20 PT-k/Symb

Iceberg
[3]

bound accuracy 0.891 1 1

bound recall 1 0.765 1

Crimes
[4]

bound accuracy 0.996 1 1

bound recall 1 0.919 1

Healthcare
[1]

bound accuracy 0.990 1 1

bound recall 1 0.767 1

Figure 15: Real world data - sort position accuracy and recall
Datasets Grouping/Order Grouping/Order Aggregation Aggregation

& Methods accuracy recall accuracy recall

Iceberg
[3]

Imp/Rewr 0.977 1 0.925 1

MCDB20 1 0.745 1 0.604

Symb 1 1 1 1

Crimes
[4]

Imp/Rewr 0.995 1 0.989 1

MCDB20 1 0.916 1 0.825

Symb 1 1 1 1

Healthcare
[1]

Imp/Rewr 0.998 1 0.998 1

MCDB20 1 0.967 1 0.967

Symb 1 1 1 1

Figure 16: Real world data - windowed aggregation accuracy and recall

of the sorting/top-k part over pre-aggregated data (see [24] for an

evaluation of the performance of aggregation over AU-DBs). In

general, our approach (Imp) is faster than MCDB20. Symb and PT-k
are significantly more expensive. Fig. 15 shows the approximation

quality for our approach and MCDB. Our approach has precision

close to 100% except for sorting on the Iceberg dataset which has

a larger fraction of uncertain tuples and wider ranges of uncer-

tain attribute values due to the pre-aggregation. MCDB has lower

recall on Iceberg and Healthcare sorting queries since these two

datasets have more uncertain tuples (10 times more than the Crimes

dataset). Fig. 16 shows the approximation quality of our approach

and MCDB for windowed aggregation queries. We measured both

the approximation quality of grouping of tuples to windows and for

the aggregation result values. For Crimes and Iceberg, the aggre-

gation accuracy is affected by the partition-by/order-by attribute

accuracy and the uncertainty of the aggregation attribute itself. The

healthcare query computes a count, i.e., there is no uncertainty in

the aggregation attribute and approximation quality is similar to

the one for sorting. Overall, we provide good approximation quality

at a significantly lower cost than the two exact competitors.

9 CONCLUSIONS AND FUTUREWORK
In this work, we present an efficient approach for under-approxi-

mating certain answers and over-approximating possible answers

for top-k, sorting, and windowed aggregation queries over incom-

plete databases. Our approach based on AU-DBs [24] is unique in

that it supports windowed aggregation, is also closed under under

full relational algebra with aggregation, and is implemented as effi-

cient one-pass algorithms in Postgres. We significantly outperform

existing algorithms for ranking uncertain data and our approach is

applicable to more expressive queries and bounds all certain and

possible answers. In future work, we plan to extend our approach to

deal more expressive classes of queries, e.g., recursive and fix-point

computations as used in ML model training, and will investigate

index structures for AU-DBs to further improve performance.
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