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ABSTRACT
Research on new queries for finding dense subgraphs and groups

has been actively pursued due to their many applications, especially

in social network analysis and graph mining. However, existing

work faces two major weaknesses: i) incapability of supporting

personalized neighborhood density, and ii) inability to find sparse

groups. To tackle the above issues, we propose a new query, called

Density-Customized Social Group Query (DCSGQ), that accom-

modates the need for personalized density by allowing individual

users to flexibly configure their social tightness (and sparseness)

for the target group. The proposed DCSGQ is general due to flexi-

ble in configuration of neighboring social density in queries. We

prove the NP-hardness and inapproximability of DCSGQ, formu-

late an Integer Program (IP) as a baseline, and propose an effi-

cient algorithm, FSGSel-RR, by relaxing the IP. We then propose

a fixed-parameter tractable algorithm with a performance guar-

antee, named FSGSel-TD, and further combine it with FSGSel-RR
into a hybrid approach, named FSGSel-Hybrid, in order to strike

a good balance between solution quality and efficiency. Extensive

experiments on multiple large real datasets demonstrate the supe-

rior solution quality and efficiency of our approaches over existing

subgraph and group queries.
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1 INTRODUCTION
Dense subgraph queries (e.g., [22, 27, 59]) and group queries (e.g.,

[7, 21, 54, 74]) are important for addressing application needs in

social network analysis and graph mining. These queries aim to

extract a set of users or entities which are modeled as vertices in

a graph by considering different relationships among them, such

as social tightness, spatial proximity, and diversity. However, we

observe two major weaknesses in the existing work:

i) Incapability of supporting personalized neighborhood density.
Existing subgraph and group queries usually consider the unified
lower bound of the density (or sparseness for a sparse group query),

e.g., 𝑘-core requires each selected individual to have a degree at least
𝑘 , and a 𝑘-plex of size 𝑝 asks each individual to have at least 𝑝−𝑘−1

friends within the subgraph. This implicitly encourages us to find

groups that are denser (or sparser for a sparse group query) than the

specified lower bound. However, in many cases, individuals usually

need the personalized and appropriate neighborhood density, rather
than the densest (sparsest) neighborhood. For example, in a social

event, Alice may require at least 3 and at most 5 friends in the group,

in order to make new friends while meeting some old ones; while

at the same event, Bob may need at least 2 and at most 7 friends.

Please note that setting such a range on neighborhood density is a

more general form and can cover dense/sparse queries by setting

the lower bound to 0 or upper bound to ∞. Therefore, it is more

desirable to allow each individual to specify the upper and lower

bounds of her neighborhood density.

While personalized recommendation systems [20, 37] have been

studied extensively to address each user’s personal preference,

very little effort on personalization is made in subgraph and group

queries. By considering this personalization factor, users may freely

configure the desired density of their social neighborhoods in the

target group. For example, in a social event, introverts may re-

quire more friends than other attendees to provide sufficient social

support.
1

ii) Inability to find sparse groups. Most subgraph and group

queries focus on extracting dense (i.e., socially tight) groups, with

1
Please note that such preference on neighborhood density can be learned from

people’s interaction history or manually configured. We revised previous work [15]

and build a machine learning model that is able to accurately infer users’ preferences

on neighborhood density (detailed in [56]).
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little effort spent on finding sparse groups that require only a small

number of social interactions within the group. Indeed, sparse

groups find many applications, e.g., forming psychoeducational

groups and reviewer selection [19, 51, 53]. Studies also show the

strengths of sparse groups. For example, the members of a sparse

group are less emotionally attached, leading to more interpersonal

comfort with less social complications [65]. Also, the loose ac-

quaintances of sparse group members can help generate creative

ideas [13], and facilitate the exchange of novel information with

diverse others [28]. In addition, in some friending events, some

participants may prefer to have few acquaintances in the activity

to increase interactions with new friends (social sparseness require-

ment). However, existing dense subgraph and group queries do not

meet this need.

Addressing these two weaknesses of the existing subgraph and

group queries all together is very challenging. To tackle these issues,

we propose a novel notion of personalized (local) density require-
ment, which allows individual users to configure the desired lower

and upper bounds of their neighboring social densities in terms

of certain social tightness metrics. With this personalized density

requirement, we are able to extract a group in which eachmember’s

social density requirement is satisfied, e.g., an extrovert member

requires at most 4 friends in the group (social sparseness), another

introvert member requires at least 6 friends (social tightness), and
other members require 3 to 8 friends in the group. Facilitating den-

sity personalization in a group may boost a satisfactory atmosphere

in the group. Moreover, the idea of personalized density has not
been pursued in research on group queries before.

In this paper, we formulate a new research problem, named

Density-Customized Social Group Query (DCSGQ), which facilitates

personalized (local) density requirements for each vertex as well as

the social tightness and sparseness requirements, such that the total

vertex weight of the selected group is maximized.
2
Here, DCSGQ

maximizes the total vertex weight because this objective function is

widely adopted in subgraph queries, such as [26, 52, 69].
3
Answer-

ing DCSGQ is very challenging because all the selected vertices’

local density requirements (either tightness or sparseness) need to

be satisfied simultaneously. Please note that by considering merely
the social tightness, many subgraph and group queries are already

NP-hard and inapproximable problems [27, 38, 60].

We show that DCSGQ is NP-hard and inapproximable within

any factor. We first formulate an integer program (IP), solvable

by any commercial solver (e.g., Gurobi
4
), to serve as a baseline in

this study. Moreover, we propose an efficient algorithm, Flexible

Subgroup Selection with Randomized Rounding (FSGSel-RR), that

relaxes the above IP to solve DCSGQ in large-scale general graphs

very efficiently. We then propose a fixed-parameter tractable (FPT)

algorithm
5
that achieves a guaranteed performance bound, named

Flexible Subgroup Selection on Tree Decompositions (FSGSel-TD),

2
Vertex weights can represent willingness, preference, spatial distance, etc.

3
We can employ a simple approach to transform a problem that minimizes total vertex

weight to one that maximizes total vertex weight.

4
http://www.gurobi.com.

5
FPT algorithms can solve the problems efficiently for small values of the fixed param-

eter appearing in the exponent of the time complexity.

based on the idea of tree decomposition6 [6, 49] that efficiently ob-

tains the solutions with guaranteed performance (the concept of

tree decomposition is to be introduced in Section 5.1). Furthermore,

we exploit the strengths of FSGSel-RR and FSGSel-TD to propose

a hybrid approach, named FSGSel-Hybrid, that strikes a good bal-

ance between solution quality and efficiency. The contributions of

this paper are summarized as follows.

• We propose a new query, named Density-Customized Social

Group Query (DCSGQ), with the new notion of personal-
ized density that allows individual users to configure the

desired lower and upper bounds of their neighboring social

densities (to address both social tightness and sparseness).

To our best knowledge, this is the first work that addresses

the personalized density on group queries.

• We formally formulate the DCSGQ problem with IP and

prove its NP-hardness and inapproximability. We design

algorithm FSGSel-RR for efficiently solving DCSGQ and

then devise algorithm FSGSel-TD with a guaranteed per-

formance bound. We also integrate the ideas of FSGSel-TD
and FSGSel-RR into FSGSel-Hybrid, which strikes an ex-

cellent balance between solution quality and efficiency.

• We evaluate the performance of the proposed approaches

on multiple large-scale networks. The results show that,

in addition to the guaranteed performance proved in this

paper, our proposed approaches obtain good solutions very

efficiently and outperform the other baselines.

In the following, Section 2 introduces the DCSGQ problem. Sec-

tion 3 reviews the related work. Sections 4-6 detail the proposed

three algorithms and theoretical results. Section 7 reports the ex-

perimental results, and Section 8 concludes this paper.

2 PROBLEM FORMULATION AND ANALYSIS
The notation table is presented in the online full version [56]. Let

𝐺 = (𝑉 , 𝐸) be a social graph with a vertex set𝑉 of 𝑛 users and a set

𝐸 of𝑚 edges denoting their social relationships, where each user

𝑣 ∈ 𝑉 is associated with a nonnegative vertex weight w(𝑣) ≥ 0 of

𝑣 ,7 and each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with a nonnegative

weight f(𝑢, 𝑣) ≥ 0, indicating the strength of friendship. To plan a

social event, following [18, 70], an initiator 𝑣0 ∈ 𝑉 is specified in

order to select a group of users from her ℎ-neighborhood, i.e., the

ℎ-hop friends of 𝑣0 in the network, which is formally defined as

follows.

Definition 1 (ℎ-neighborhood (N
ℎ
𝐽
(𝑢)) in subgraph 𝐽 ). Given a

positive integer ℎ, a user 𝑢, and a subgraph 𝐽 ⊆ 𝐺 , a vertex 𝑣 ∈ 𝑉 is

said to belong in 𝑢’s ℎ-neighborhood in 𝐽 if and only if there exists a

path of at most ℎ edges from 𝑢 to 𝑣 in 𝐽 . We denote N
ℎ
𝐽
(𝑢) as the

set containing all vertices in 𝑢’s ℎ-neighborhood.8

6
Tree decomposition has been employed to solve various NP-hard graph optimization

problems due to its fixed-parameter tractability and good performance [8, 9, 47].

7
The meaning of w(𝑣) depends on the application scenario, e.g., the user preference of

an activity (inviting users who are interested in an art exhibition), or the importance

of the user to a social event. Such information can be learned with machine learning

approaches, e.g., [63, 73].

8
When the context is clear, e.g., 𝐽 = 𝐺 , we omit the subscript 𝐽 and use the simplified

notation N
ℎ (𝑢 ) . Also, whenℎ = 1, we omit the superscriptℎ and use N𝐽 (𝑢 ) = N

1

𝐽
(𝑢 )
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Aiming to meet users’ personalized preferences on social tight-

ness, a set of personalized local density constraints are imposed on

the targeted subgraph 𝐻 ⊆ 𝐺 .

Definition 2 (Personalized local density constraint). Given a sub-

graph𝐻 ⊆ 𝐺 , a metric of local density d𝐻 (·), and two non-negative
numbers

¯𝑑 (𝑢) and 𝑑 (𝑢) denoting the acceptable range of local den-

sity for each vertex 𝑢 ∈ 𝐻 .
9
We say that 𝐻 satisfies 𝑢’s personalized

local density constraint if and only if
¯𝑑 (𝑢) ≥ d𝐻 (𝑢) ≥ 𝑑 (𝑢). For

example, for core-based groups that target on vertex degree (or

weighted degree), d𝐻 (𝑢) =
∑

𝑣∈N𝐻 (𝑢 ) f(𝑢, 𝑣), where f(𝑢, 𝑣) is the
aforementioned edge weight function, and N𝐻 (𝑢) = N

1

𝐻
(𝑢) is the

direct neighborhood of 𝑢 in 𝐻 .

To address the two weaknesses as stated in Section 1, we pro-

pose a new query, named Density-Customized Social Group Query
(DCSGQ), which considers both the upper and lower bounds of

the local density constraints. Note that the local density constraint

in DCSGQ is very general in that i) the density requirements are

completely personalized for each vertex (individual)’s ego network;

and ii) the local density is regulated by an upper bound and a lower

bound. We formally introduce the DCSGQ problem as follows.

Problem: Density-Customized Social Group Query.
Given: a social network 𝐺 = (𝑉 , 𝐸), an initiator 𝑣0 ∈ 𝑉 , vertex

weight w(𝑢) ≥ 0, edge weight f(𝑢, 𝑣) ≥ 0, hop count ℎ ∈ N , a local

density metric d𝐻 (𝑢) (i.e., 𝑑𝑒𝑔𝐻 (𝑢)), and personalized local density
thresholds

¯𝑑 (𝑢) and 𝑑 (𝑢), for all 𝑢, 𝑣 ∈ 𝑉 .

Find: a subgraph 𝐻∗ ⊆ 𝐺 to maximize the total vertex weight of

vertices in 𝐻∗, i.e., max𝐻 ∗
∑

𝑣∈𝐻 ∗ w(𝑣), such that

• 𝑣0 ∈ 𝐻∗ (initiator constraint).
• 𝐻∗ ⊆ N

ℎ
𝐺
(𝑣0) (distance constraint).

• 𝑑 (𝑢) ≥ d𝐻 ∗ (𝑢) ≥ 𝑑 (𝑢),∀𝑢 ∈ 𝐻∗ (local density con-

straint).
10

Here, the initiator 𝑣0 could be viewed as the activity organizer,
which commonly appears in activity organization services, such

as Meetup and Facebook Event and is included in many previous

research works [24, 29, 30, 40, 44]. In some applications such as

social event matching, it might not be necessary to include the

initiator in the resulted query. In such cases, one can lift the initiator

constraint to create a no-initiator variation of DCSGQ. This variant

can be easily reduced to the original problem. As many existing

subgraph and group queries do not specify an initiator, we do not

explicitly distinguish between these two variants in the following

discussions. The personalized local density requirements that cover

both the lower and upper bounds significantly raise the algorithmic

challenges of handling DCSGQ. We first analyze the hardness and

inapproximability of the proposed DCSGQ below.

Theorem 1. DCSGQ is NP-hard to approximate within any ratio.

to refer to 𝑢’s direct neighborhood in 𝐽 . Note that 𝑢 ∈ N
ℎ
𝐽
(𝑢 ) for any ℎ ≥ 0; also,

N(𝑢 ) = N
1

𝐺
(𝑢 ) is 𝑢’s ego network.

9
We can leverage the data log of users’ past social activities to implicitly learn the

suitable personalized local density constraints for each user, e.g., [15, 42, 75], with

graph neural networks or collaborative filtering.

10
We can leverage the data log of users’ past social activities to implicitly learn the

suitable personalized local density constraints for each user, e.g., [15, 42, 75].

Proof. We prove the theorem via a gap-introducing reduction

from Independent Set. Please see [56] for details. □

3 RELATEDWORK
Dense and sparse subgraph queries. Dense subgraph discov-

ery [22, 27, 59] is a fundamental problem in graph data mining

with numerous applications such as community detection [24, 60],

reachability in databases [34], and subgraph search [32, 35, 58]. An

excellent survey [23] is presented for a complete discussion on com-

munity search. Among various measures for modeling subgraph

cohesiveness, cliques (and their relaxations) attract much research

attention [12, 45, 50, 52, 64, 76], while 𝑘-truss structures [3, 33]

and 𝑘-core structures [21, 61, 74] are also important tightness mea-

surements. In contrast to the dense subgraph discovery, finding

sparse (or tenuous) subgraphs is an emerging research direction. The

sparse 𝑘-connected graph problem aims to find the 𝑘-connected

spanning subgraph with the minimum number of edges [48], the

L2DS problem extracts a 2-spanner of an input graph that min-

imizes the maximum degree [19], while 𝑐>𝑡 -free graph problem

aims at extracting subgraphs without any induced cycle on more

than 𝑡 vertices [25]. In addition, MkTG [53] and others [31, 51]

target on extracting sparse (or tenuous) groups with the minimized

interactions. However, there is no existing work on personalizing

the local density with respect to individual vertices in graphs.

Group queries with multiple dimensions of attributes. Group
queries can be viewed as extensions of dense subgraph queries,

where many research works focus on extracting socially tight

groups while reducing the spatial distances [16, 21, 26, 36, 40, 52,

57, 61, 76]. In addition, the task completion [68], potential friend-

ships [54, 55], dissimilarity [67, 74], or profiles [17] are also consid-

ered. Although these group queries fit their respective application

scenarios well, however, they do not explore the issues of personal-

ization. In recommendation systems, methods and issues for person-

alized recommendation have been extensively studied [20, 37, 43].

However, for dense subgraph and group queries, the idea of allow-

ing users to personalize their local densities in the selected group

is totally new and its research challenges have not been explored.

Summary. The proposed DCSGQ is new and important in the

following aspects: i) personalization of social tightness in users’

social neighborhoods, ii) consideration of both social tightness and

sparseness, and iii) flexibility of specifying neighborhood density.

4 ALGORITHMWITH ROUNDING (FSGSEL-RR)
In this paper, we propose three effective algorithms to tackle

DCSGQ from different perspectives. We first develop a scalable

approach, called Flexible Subgroup Selection with Randomized

Rounding (FSGSel-RR), that retrieves a promising solution very ef-

ficiently. FSGSel-RR first formulates DCSGQ as an integer program

(IP) and relaxes it as a linear program with the same objective and

constraints, where a fractional solution can be retrieved by a fully

optimized solver. Finally, FSGSel-RR constructs a promising final

subgroup from the fractional solutions, based on the ideas of pipage
rounding [2] and randomized rounding regimes.

Although FSGSel-RR tackles DCSGQ efficiently with good solu-

tion quality, it does not have a performance guarantee. Therefore,

in Section 5, we devise a fixed-parameter tractable (FPT) algorithm,
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FSGSel-TD, that achieves a good guaranteed performance bound.
FSGSel-TD is based on our observation that DCSGQ becomes more

tractable in tree-like structures. By leveraging the notion of tree
decomposition, we identify the hidden tree-like structure of general
graphs. The proposed FSGSel-TD aims to operate on the obtained

tree decomposition, to cope with the challenging personalized local

density requirements. Leveraging the tree decomposition for gen-

eral graphs, FSGSel-TD adheres to the social tightness and sparse-

ness constraints to achieve a good performance guarantee in graphs

with low treewidths (to be formally defined later in Section 5).
11

While FSGSel-TD achieves a good theoretical guarantee, its time

complexity depends on the treewidth and thus can be computa-

tionally expensive in some extreme cases. To address this issue, in

Section 6, we propose a hybrid approach, FSGSel-Hybrid, that com-

bines the merits of FSGSel-TD (i.e., good solution guarantee) and

FSGSel-RR (i.e., good scalability), to strike a good balance between

solution quality and efficiency.

By exploring the idea of pipage rounding12 [2], we propose Bi-
criteria Attendee Selection (BAS) in FSGSel-RR to iteratively en-

hance the solution in each iteration, aiming to reduce the number

of fractional decision variables while maximizing the total vertex

weight and minimizing the total violation of the personalized local

density constraints. With BAS tailoring the intermediate solution

towards an integral solution at each iteration, FSGSel-RR success-
fully finds the solution after𝑂 (𝑛) iterations, where 𝑛 is the number

of fractional variables. Experimental results in Section 7 show that

FSGSel-RR obtains good solutions very efficiently.

Integer Program. We formulate DCSGQ with IP such that the op-

timal solution of DCSGQ can be acquired with commercial solvers,

e.g., CPLEX or Gurobi, both as a baseline and as a building block

of FSGSel-RR. Note that solving IP is NP-hard; therefore, this base-
line does not guarantee efficiency. For simplicity, we assume that

N
ℎ
𝐺
(𝑣0), i.e., the ℎ-neighborhood of the initiator 𝑣0, is given as in-

put to the IP.
13

Let 𝑥𝑢 ∈ {0, 1} be a binary variable representing

whether vertex 𝑢 ∈ 𝑉 is selected in 𝐻 . Further, let 𝑀 be a large

constant, i.e., an upper bound of d𝐻 (𝑢) for all 𝑢 ∈ 𝑉 . The objective

function is therefore max

∑
𝑢∈𝑉 𝑤 (𝑢) · 𝑥𝑢 , subject to the following

constraints:

𝑥𝑣
0
= 1, (1)

𝑥𝑢 = 0, ∀𝑢 ∉ N
ℎ
𝐺 (𝑣0 ) (2)

d𝐻 (𝑢 ) ≤ 𝑑 (𝑢 ) +𝑀 (1 − 𝑥𝑢 ), ∀𝑢 ∈ N
ℎ
𝐺 (𝑣0 ) (3)

d𝐻 (𝑢 ) ≥ 𝑑 (𝑢 ) · 𝑥𝑢 , ∀𝑢 ∈ N
ℎ
𝐺 (𝑣0 ) (4)

𝑥𝑢 ∈ {0, 1}, ∀𝑢 ∈ 𝑉 . (5)

Constraint 1 requires the initiator 𝑣0 to be selected in 𝐻 . Con-

straint 2 prohibits the users outside N
ℎ
𝐺
(𝑣0) to be selected in 𝐻 .

Constraint 3 states that the local density of 𝑢 does not exceed 𝑑 (𝑢)
if 𝑢 is selected, i.e., 𝑥𝑢 = 1. It is automatically satisfied if 𝑥𝑢 = 0

due to the additional large term𝑀 (1 − 𝑥𝑢 ). If this term is not im-

posed, the constraint could prohibit the legit assignment to select

a lot of 𝑢’s friends (a large d𝐻 (𝑢)) when 𝑢 is not selected (𝑥𝑢 = 0).

Constraint 4 requires that the local density of 𝑢 is at least 𝑑 (𝑢)
11
Based on our experimental results in Section 7, many real social networks have small

treewidths after partial tree decomposition.

12
Obtaining an integral solution of at least the value of the fractional solution.

13
N
ℎ
𝐺
(𝑣0 ) can be retrieved by a simple graph search in𝑂 ( |𝑉 | + |𝐸 | )-time.

if 𝑢 is selected. Similarly, this is automatically satisfied if 𝑥𝑢 = 0.

Constraint 5 regulates every 𝑥𝑢 to be binary. Let binary variable

𝑦𝑢𝑣 ∈ {0, 1} represent whether vertices 𝑢 and 𝑣 are both selected in

𝐻 , regulated by the following constraint:

𝑥𝑢 + 𝑥𝑣 − 1 ≤ 𝑦𝑢𝑣 ≤
𝑥𝑢 + 𝑥𝑣

2

, ∀𝑢, 𝑣 ∈ 𝑉 . (6)

If 𝑥𝑢 = 𝑥𝑣 = 1, both the lower and upper bounds of 𝑦𝑢𝑣 in

Constraint 6 are 1, leading to 𝑦𝑢𝑣 = 1. On the other hand, if at least

one of 𝑥𝑢 and 𝑥𝑣 is 0, the upper bound is either 0 or
1

2
, eliminating

the possibility of setting 𝑦𝑢𝑣 = 1, whereas the lower bound does

not exceed 0 (i.e., holds trivially). Constraint 6 ensures that 𝑦𝑢𝑣 = 1

if and only if 𝑥𝑢 = 𝑥𝑣 = 1. The local density setting is represented

by a function of the 𝑦 variable as follows.
14

Linear relaxation. Following the standard linear relaxation tech-

nique [2], the LP relaxation of DCSGQ is formulated by replacing

Constraint 5 with a linear constraint 0 ≤ 𝑥𝑢 ≤ 1, and relaxing the

𝑦 variable as 0 ≤ 𝑦𝑢,𝑣 ≤ 1. The optimal fractional solution of the

relaxed problem can thus be acquired in polynomial time with a

commercial solver. As the 𝑥-variables are sufficient to represent the

solution of DCSGQ (i.e., 𝑥𝑢 denotes whether individual𝑢 is selected

in the subgroup), the optimal solution can be fully represented by

𝑋 ∗ (the set of optimal 𝑥 variables).

Significance to Flexibility Indicator (SFI). Given an intermedi-

ate fractional solution 𝑋 , which is the set containing all 𝑥𝑢 ,∀𝑢 ∈ 𝑉 ,

the idea of BAS is to iteratively tailor 𝑋 such that i) the number

of fractional elements in 𝑋 gradually decreases, and ii) the corre-

sponding solution quality gradually improves. To strike a balance

between the goals of improving the vertex weight and comply-

ing with the personalized local density constraints, we introduce

the Significance to Flexibility Indicator (SFI) 𝑄 (𝑋 ) to measure the

solution quality defined as follows.

𝑄 (𝑋 ) :=
∑︁
𝑢∈𝑉

𝑤 (𝑢 )𝑥𝑢 − 𝜆 ·
∑︁
𝑢∈𝑉

𝑔 (𝑢 )𝑥𝑢 =
∑︁
𝑢∈𝑉
(𝑤 (𝑢 ) − 𝜆 · 𝑔 (𝑢 ) )𝑥𝑢 ,

where

∑
𝑢∈𝑉 𝑤 (𝑢) · 𝑥𝑢 is the total vertex weight achieved by the

fractional solution, 𝜆 > 0 is a relative balance parameter between

the above two goals, and𝑔(𝑢) = max{0, d𝐻 (𝑢)−𝑑 (𝑢), 𝑑 (𝑢)−d𝐻 (𝑢)}
is the total amount of violation imposed on the personalized local

density constraint of 𝑢.15 Therefore, a larger 𝜆 in SFI puts more em-

phasis on complying with the personalized local density constraints

in the final solution, where a smaller 𝜆 prioritizes maximizing the

objective. We empirically set 𝜆 in [10, 100] according to the sen-

sitivity tests in the online version of this paper [56]. Note that

the objective value of the solution does not contain the part of 𝜆.

Suppose the 𝜆 value is adjusted (e.g., increased) between different

executions of FSGSel-RR. It does not “improve” the SFI values of

14
Please note that Constraint 7 considers weighted degree, which also supports un-

weighted degree without any modification.

d𝐻 (𝑢 ) =
∑︁

𝑣∈𝑁𝐻 (𝑢)
f(𝑢, 𝑣) =

∑︁
𝑣∈𝑁𝐺 (𝑢)

𝑦𝑢𝑣 · f(𝑢, 𝑣) . (7)

15
Note that the computation of d𝐻 (𝑢 ) here takes into account both the edge weights

and fractional variables, i.e., an edge with weight
1

2
to a neighbor vertex 𝑣 with

fractional variable 𝑥𝑣 = 1

3
will contribute

1

6
to d𝐻 (𝑢 ) .
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all solutions equally; instead, solutions with low violations to the

constraints are favored.

Bicriteria Attendee Selection (BAS). In each iteration, BAS

randomly selects a fractional element 𝑥𝑖 from 𝑋 and examines two

alternative solutions 𝑋+
𝑖
and 𝑋 −

𝑖
, which correspondingly rounds 𝑥𝑖

to 1 (i.e., selecting 𝑣𝑖 into 𝐻 ) and 0 (i.e., not selecting 𝑣𝑖 ).
16

Algorithm 1 FSGSel-RR

Input: 𝑋 ∗
Output: 𝐻 ⊆ 𝐺

1: 𝑋 ← 𝑋 ∗

2: 𝐻 ← ∅
3: while some element in 𝑋 is fractional do
4: for 𝑖 = 1 to 𝜎 do (sample for 𝜎 times)

5: Sample 𝑥𝑖 u.a.r. from all fractional elements

6: if 𝑄 (𝑋 + (1 − 𝑥𝑖 ) · 1𝑖 ) ≥ 𝑄 (𝑋 ) then
7: 𝑋 ← 𝑋 + (1 − 𝑥𝑖 ) · 1𝑖
8: Break
9: else if 𝑄 (𝑋 − 𝑥𝑖 · 1𝑖 ) ≥ 𝑄 (𝑋 ) then
10: 𝑋 ← 𝑋 − 𝑥𝑖 · 1𝑖
11: Break
12: Sample 𝑥𝑖 u.a.r. (first 𝜎 samples failed)

13: 𝑋 ← 𝑋 + (1 − 𝑥𝑖 ) · 1𝑖 with probability 𝑥𝑖

14: for 𝑢 ∈ 𝑉 do
15: if 𝑥𝑢 = 1 then
16: 𝐻 ← 𝐻 ∪ {𝑢}
17: return 𝐻

Time complexity and solution quality. Let 𝑛
frac

denote the

number of fractional variables in 𝑋 ∗, and let 𝑡 (𝑄) denote the com-

plexity of evaluating 𝑄 (𝑋 ). As each round of FSGSel-RR samples

at most 𝜎 elements, and the total time complexity of FSGSel-RR is

𝑂 (𝑛
frac
· 𝜎 · 𝑡 (𝑄)), efficiently finding a promising solution. Please

see [56] for more analysis on the solution quality and efficiency of

FSGSel-RR, as well as a sensitivity test on the parameters.

5 ALGORITHM ON TREE DECOMPOSITION
(FSGSEL-TD)

Although FSGSel-RR tackles DCSGQ efficiently with good solution

quality, it does not have a performance guarantee. Therefore, we

propose a fixed-parameter tractable (FPT) algorithm, FSGSel-TD,
that exploits the notion of tree decomposition to achieve a guaranteed
performance bound. We first introduce the idea of tree decomposi-

tion and then detail FSGSel-TD.

16
Let 1𝑖 denote the vector where only the 𝑖-th element is 1 and all other elements

are 0, then 𝑋 +𝑖 = (𝑋 + (1 − 𝑥𝑖 ) · 1𝑖 ) and 𝑋 −𝑖 = 𝑋 − 𝑥𝑖 · 1𝑖 . Please note that this
process does not violate the local density constraint. This is because if a vertex 𝑢

satisfies the local density constraint, 𝑔 (𝑢 ) = 0 holds; otherwise, 𝑔 (𝑢 ) > 0, which

reduces𝑄 (𝑋 ) . BAS verifies whether this improves SFI, i.e., whether𝑄 (𝑋 +𝑖 ) ≥ 𝑄 (𝑋 )
or 𝑄 (𝑋 −𝑖 ) ≥ 𝑄 (𝑋 ) ; if the former holds, 𝑋 is replaced by 𝑋 +𝑖 , and vice versa. If

none of the above holds, BAS proceeds by re-sampling another fractional element

𝑥𝑖 for at most 𝜎 times. In the rare case when𝑄 (𝑋 ) cannot be improved within the

consecutive 𝜎 samples of fractional elements (i.e., trapped in local optimum), BAS

randomly rounds the (𝜎 + 1)-th sampled element 𝑥𝑖 to 1 with probability 𝑥𝑖 , and

to 0 with probability 1 − 𝑥𝑖 . BAS terminates when 𝑋 becomes a 0-1 vector and thus

corresponds to a subgraph 𝐻 ⊆ 𝐺 , and outputs 𝐻 as the final solution.

Note that BAS with 𝜎 = 0 reduces to a straightforward randomized rounding

scheme where each element is rounded with probability proportional to its fractional

weight. As such, by BAS, FSGSel-RR incorporates pipage rounding (local improvement)

and randomized rounding (to escape from local optimum) to capture the merits of

both approaches. By contrast, without the additional randomized rounding step, BAS

with pipage rounding becomes vulnerable to being trapped at a local optimum, as the

solution space might not be weakly convex with respect to the criteria 𝑄 (𝑋 ) . The
pseudo code of FSGSel-RR is summarized in Algorithm 1.

5.1 Tree Decomposition and Treewidth
Group queries on social network databases, due to complicated

constraints on graph structures, are often provenNP-hard, and thus
computationally intractable. However, many NP-hard problems

become tractable when the underlying input graph belongs to some

special graph classes with good structural properties, e.g., trees.
Take the maximum independent set problem as an example. It is

NP-hard on general graphs, but it admits a simple, polynomial-time

algorithm on trees [9].

Trees are a special kind of graphs. While it is usually unrea-

sonable to limit the input graphs to trees, tree-based algorithms

remain effective on graphs that are tree-like, i.e., similar to trees.

Intuitively, for graphs with only a few additional edges more than

a tree, previous research demonstrated that it is still promising to

solve some hard problems efficiently and find good solutions via the

tree-based algorithms augmented with a few extra steps, to address

the parts in a graph that violate tree properties. Inspired by this

insight, we first leverage the notion of treewidth [6, 49], which mea-

sures how similar an arbitrary graph is to a tree, to characterize the

input graphs and devise suitable algorithms. A smaller treewidth

of a graph represents that the graph is more similar to a tree. For

example, a tree has a treewidth of 1, whereas the densest graphs,

i.e., cliques of size 𝑛, have treewidths 𝑛 − 1.

For graphs with bounded treewidths, many classical NP-hard
problems become tractable, such as Independent Set, Vertex Col-

oring, Vertex Cover, and Steiner Tree [8]. Many social networks

are inclined to have small treewidths (the real datasets in Section

7 also show this tendency) due to the small-world property, i.e.,

each vertex in a social network usually connects to only a small

portion of other vertices. Motivated by the insights above, we lever-

age the notions of tree decomposition and treewidth as important

building blocks to devise an efficient algorithm for DCSGQ, named

FSGSel-TD, that has a guaranteed performance bound. We then

combine FSGSel-TD with the proposed FSGSel-RR, into a hybrid

approach, named FSGSel-Hybrid for general graphs to efficiently

solve the problem in general graphs.

The concept of treewidths is tied to tree decomposition [9]. In the

following, we provide essential background on treewidths and tree

decompositions of graphs.

Definition 3 (Tree decomposition, width, and treewidth). Given a

graph 𝐺 = (𝑉 , 𝐸), a tree decomposition 𝑇 of 𝐺 is a tree structure

consisting of a set of tree nodes (bags), where each bag 𝐵 ⊆ 𝑉

includes a set of graph vertices, satisfying:

• for each graph edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, there exists a tree node
(bag) 𝐵 containing both 𝑢 and 𝑣 .

• for each graph vertex 𝑣 , all tree nodes (bags) containing 𝑣

form a connected subtree in 𝑇 .

To avoid confusion, we use the term node interchangeably with

bags, and use uppercase-𝐵 notations (such as 𝐵𝑟 and 𝐵𝑥 ) only to

refer to them, where 𝐵 stands for a “bag”, which is itself a set of
graph vertices, whereas a lowercase variable (e.g., 𝑢, 𝑣 , or 𝑣0) always

refers to a vertex (element of the original graph 𝐺) instead of a bag.

For example, Figure 1(b) presents a tree decomposition of Figure

1(a). Here, 𝐵1, 𝐵2, 𝐵3, 𝐵4 each is a tree node (bag), where each bag

includes a set of vertices in the graph.
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(b) One tree decomposition of Figure 1(a).

Figure 1: Illustrative examples.

LetB𝑇 denote the set containing all tree nodes (bags) in𝑇 . For an

arbitrary tree node (bag) 𝐵, |𝐵 | denotes the size of 𝐵, i.e., the number

of graph vertices contained in 𝐵. The width of a tree decomposition

𝑇 is max

𝐵∈B𝑇
|𝐵 | − 1, and its size is |𝑇 | = |B𝑇 |. The treewidth of a graph

𝐺 , denoted by 𝜔 (𝐺), is the minimum width among all possible tree

decompositions of 𝐺 .

Treewidthmeasures the similarity of tree decomposition of𝐺 to a

tree. A tree has a treewidth of exactly 1, while an𝑛-vertex clique has

a treewidth of (𝑛 − 1). Treewidth is an important measure for tree

decomposition because a more succinct decomposition (i.e., with a

smaller width to be more tree-like) is usually preferred. In general,

determining the treewidth of 𝐺 is NP-hard [5] because each vertex

can be included in multiple bags. However, if the exact treewidth is

given as a fixed constant, the corresponding decomposition can be

computed in linear time [10] (fixed-parameter tractable).
17

Example 1. Figure 1(b) illustrates a tree decomposition of the

social graph 𝐺 in Figure 1(a). It consists of four bags: 𝐵1 =

{𝑣1, 𝑣2, 𝑣4, 𝑣5}, 𝐵2 = {𝑣2, 𝑣3, 𝑣5}, 𝐵3 = {𝑣4, 𝑣5, 𝑣7}, and 𝐵4 =

{𝑣4, 𝑣6, 𝑣7}. Note that i) 𝐵1 to 𝐵4 form a tree; ii) both criteria in

Definition 3 are satisfied, e.g., edge (𝑣5, 𝑣7) is contained in 𝐵3,

and all tree bags containing 𝑣4 (i.e., 𝐵1, 𝐵3, and 𝐵4) form a con-

nected subtree. The width of this tree decomposition is 4 − 1 = 3.

Please note that another decomposition with only a single bag

𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} is also a valid tree decomposition. In

this case, its width is 7 − 1 = 6. □

Tree decompositions facilitate the systematic design of optimiza-

tion algorithms that examine one tree bag at a time (similar to

examining one vertex at a time when the input graph is a tree).

However, it is still tedious to handle the relations between neigh-

boring bags due to the many possible types of bags involved. To

further simplify the bag types, it necessitates a set of additional

nice properties on the tree decompositions detailed below.

17
Practically, a number of heuristic strategies are often used in practice [1, 46] since

the linear time algorithm is computationally expensive empirically.

Definition 4 (Nice tree decomposition [9]). A tree decomposition

𝑇 is nice if, regarding some bag 𝐵𝑟 as the root, every bag 𝐵𝑥 ∈ B𝑇
belongs to the following four types:

• Leaf : 𝐵𝑥 has no children bags, and |𝐵𝑥 | = 1.

• Introduce: 𝐵𝑥 has exactly one child bag 𝐵𝑦 , |𝐵𝑥 | = |𝐵𝑦 | + 1,

and 𝐵𝑥 = 𝐵𝑦 ∪ {𝑣} for some graph vertex 𝑣 .

• Forget: 𝐵𝑥 has exactly one child bag 𝐵𝑦 , |𝐵𝑥 | = |𝐵𝑦 | − 1,

and 𝐵𝑦 = 𝐵𝑥 ∪ {𝑣} for some graph vertex 𝑣 .

• Join: 𝐵𝑥 has exactly two children bags 𝐵𝑦, 𝐵𝑧 , while 𝐵𝑥 =

𝐵𝑦 = 𝐵𝑧 (i.e., they are exactly the same vertex sets).

5.2 Design of FSGSel-TD
FSGSel-TD is based on a bottom-up approach that starts from a

singleton vertex (as the smallest possible subgraph, i.e., leaf bag)

and gradually builds up the profile (i.e., a function that describes the

local densities of vertices in a group) of appropriate candidate social

groups according to the personalized local density requirements.

Conceptually, FSGSel-TD includes two major components:

i) Generating bags with nice tree decomposition and build-
ing subproblems based on bags in a bottom-up fashion.
FSGSel-TD operates in a reverse topological order on a nice tree

decomposition and carefully examines the subproblems with the

four types of bags, i.e., {Leaf, Introduce, Forget, Join}, of the input

graph. Specifically, for a Leaf bag, since the subgraph contains

only one vertex without any children bags, FSGSel-TD directly de-

cides whether to combine this subgraph with other subgraphs in

its sibling subproblems. For Introduce and Forget bags with exactly

one child bag, since the child bag of a Forget bag has one addi-

tional vertex, FSGSel-TD decides whether to include the additional

vertex when combining the subgraphs in sibling subproblems. In

contrast, since the child bag of an Introduce bag has fewer vertices,

FSGSel-TD examines the subproblem in the child bag with a stricter

density requirement to ensure the feasibility of the final solution.

Finally, Join bags have two identical children bags, and FSGSel-TD
combines the two subgraphs in two subproblems to maximize the

objective value while satisfying the constraints.

ii) Employing the notion of partial local density profile to
systematically solve subproblems while satisfying the con-
straints. FSGSel-TD leverages the notion of partial local density
profiles (detailed below) to derive the optimal objective value of the

subproblems generated above. Since the subproblem considers a

subgraph of the original graph 𝐺 , the local density constraint of

the subproblem needs to be revised to ensure the feasibility of the

candidate solutions after combining other subproblems.
18

In the following, we first introduce partial local density profile to
keep track of the local densities of the vertices in a tree bag.

Definition 5 (Partial local density profile). For a tree bag 𝐵, a

partial local density profile P𝑆 : 𝑆 ↦→ R+ of a vertex subset 𝑆 ⊆ 𝐵 is

18
As an example, conceptually, observe that a (𝑘 + 1)-clique𝐶 is a legitimate 𝑘-core,

but any proper subgraph𝐶 ⊂ 𝐶 of the (𝑘 + 1)-clique is not a 𝑘-core by definition, i.e.,

the degree of every vertex in𝐶 must be smaller than 𝑘 . Therefore, the partial local

density profile is derived for each candidate solution to ensure the feasibility of the

final solution. The partial density profile restricts d𝐻 (𝑢 ) of a subset 𝑆 in a tree bag to

be a fixed value based on the property of the subproblem. For the rest vertices in the

tree bag, we then decide to keep or remove them to satisfy the local density constraint.

FSGSel-TD carefully examines different partial local density profiles and subset 𝑆 of

each subproblem to gradually build the final solution with the backtracking procedure.
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a function of 𝑆 specifying the local density (defined on 𝐺) of every
vertex in 𝑆 .19 Moreover, a subgroup 𝐻 ⊆ 𝐺 is consistent with P𝑆 if

and only if i) 𝑆 ⊆ 𝐻 , i.e., every vertex specified in P𝑆 is contained

in 𝐻 , and ii) for each vertex 𝑣 ∈ 𝑆 , the local density of 𝑣 on 𝐻 is

exactly P𝑆 (𝑣), i.e., d𝐻 (𝑣) = P𝑆 (𝑣),∀𝑣 ∈ 𝑆 .

The partial local density profile also allows FSGSel-TD to ex-

plicitly keep track of the local density d𝐻 (𝑣) when the solution is

gradually constructed. Conceptually, 𝐻 is the solution we aim to

extract, and by deriving the partial local density profile of 𝑆 , we

are able to gradually build the final solution from the candidate

solutions without violating the local density constraint.

Note that DCSGQ does not enforce every vertex in a bag to sat-

isfy its local density requirement; instead, only the vertices selected

by the backtracking procedure (detailed later in this section) are

required to meet the requirement, because it allows us to explore

more candidate solutions to improve the solution. Moreover, to

ensure the final solution to be feasible, i.e., satisfying all the person-

alized local density requirements, we further introduce the feasible
partial local density profiles as follows.

Definition 6 (Feasible partial local density profile). A partial local

density profile P𝑆 is feasible if all local densities specified in P𝑆

satisfy the personalized local density constraints in DCSGQ.

Given a rooted nice tree decomposition𝑇 , for a tree bag 𝐵𝑥 ∈ B𝑇 ,
let 𝑉𝑥 be the union of all bags in the subtree rooted by 𝐵𝑥 .

20
For

a feasible P𝑆 of 𝑆 ⊆ 𝐵𝑥 , let Wmax (𝐵𝑥 , 𝑆, P𝑆 ) denote the maximum

total vertex weight among a subgraph 𝐻𝑥 ⊆ 𝑉𝑥 such that:

• 𝐻𝑥 ⊆ N
ℎ
𝐺
(𝑣0), (distance constraint)

• 𝑑 (𝑣) ≥ d𝐻𝑥
(𝑣) ≥ 𝑑 (𝑣),∀𝑣 ∈ 𝐻𝑥 , (feasibility)

• 𝐻𝑥 is consistent with P𝑆 . (consistency)
Conceptually, when building a solution𝐻 ⊆ 𝐺 , we exploit 𝑆 to iden-

tify the vertices required to be included in 𝐻 (consistent with P𝑆 ).

In other words, (𝐵𝑥 , 𝑆, P𝑆 ) specifies a subproblem in FSGSel-TD
to construct the final solution iteratively. For a vertex 𝑣 ∈ 𝑆 , P𝑆
exerts a stricter constraint d𝐻 (𝑣) than the original local density

constraint [𝑑 (𝑣), 𝑑 (𝑣)], because d𝐻 (𝑣) needs to be a fixed value (i.e.,
P𝑆 (𝑣)).21 Intuitively, Wmax (𝐵𝑥 , 𝑆, P𝑆 ) captures the essential goal
of DCSGQ and thus serves as the key subproblem in FSGSel-TD.
When FSGSel-TD breaks the original problem into subproblems,

FSGSel-TD specifies the partial local density profiles on the sub-

graphs generated to answer the subproblems. Because the inequal-

ity above, i.e., 𝑑 (𝑣) ≥ d𝐻𝑥
(𝑣) ≥ 𝑑 (𝑣),∀𝑣 ∈ 𝐻𝑥 , ensures the feasibil-

ity of 𝐻𝑥 (the solution to a subproblem on 𝑉𝑥 ), and different P𝑆 are

evaluated to ensure the feasibility of the final solution.

By leveraging the structural properties of 𝑇 , and regarding

(𝐵𝑥 , 𝑆, P𝑆 ) as a subproblem, FSGSel-TD recursively constructs can-

didate solutions (also the associated density profiles) according

to the descendent bags in the tree decomposition. That is, when

we specify an 𝑆 ⊆ 𝐵𝑥 and a feasible partial local density profile

P𝑆 , Wmax (𝐵𝑥 , 𝑆, P𝑆 ) is a feasible solution. To achieve the approxi-

mation ratio, it is necessary to carefully examine 𝑆 ⊆ 𝐵𝑥 and the

corresponding feasible partial local density profile P𝑆 .

19
An example of local density of each vertex 𝑣 ∈ 𝑆 is its degree.

20
As such,𝑉𝑥 is a union of (not necessarily disjoint) vertex sets, and thus is also a set

of vertices. Note that this subtree includes 𝐵𝑥 .
21
Note that the two criteria do not conflict because P𝑆 is required to be feasible.

As bags in 𝑇 are not necessarily disjoint, it is necessary for

FSGSel-TD to carefully examine the overlapping vertices and mon-

itor their local densities. Another key challenge is that a feasible
local density profile may need to be decomposed into infeasible lo-
cal density sub-profiles in order to achieve the performance bound.

As a conceptual example, observe that a (𝑘 + 1)-clique 𝐶 is a le-

gitimate 𝑘-core (aforementioned as a special case of DCSGQ), but

any proper subgraph 𝐶 ⊂ 𝐶 of the (𝑘 + 1)-clique is not a 𝑘-core by
definition, i.e., the degree of some vertex in 𝐶 must be smaller than

𝑘 . Moreover, the local density d(𝑣) of a vertex 𝑣 may decrease to

below the lower bound 𝑑 (𝑣) when 𝐻 is decomposed into smaller

subgraphs, and it is necessary for FSGSel-TD to examine these type

of subgraphs. Therefore, FSGSel-TD also maintains and optimizes

the subproblems with infeasible partial density profiles for the sub-

queries to construct the final optimal solution. For the subproblem

not requiring feasibility, let W
′
max
(𝐵𝑥 , 𝑆, P𝑆 ) denote the maximum

total vertex weight among a subgroup 𝐻𝑥 ⊆ 𝑉𝑥 such that:

• 𝐻𝑥 ⊆ N
ℎ
𝐺
(𝑣0), (distance constraint)

• 𝐻𝑥 is consistent with P𝑆 , (consistency)
• The vertices in 𝐻𝑥 \ 𝑆 satisfy the local density constraints,

i.e., 𝑑 (𝑣) ≥ d(𝑣) ≥ 𝑑 (𝑣),∀𝑣 ∈ 𝐻𝑥 \ 𝑆 . (feasibility overrided
by the partial profile)

In other words, vertices in 𝑆 may violate the local density constraints
to comply with the (infeasible) P𝑆 , but other vertices in 𝐻𝑥 \ 𝑆 are

still regulated by personalized local density constraints. Equipped

with the above two types of subproblems, FSGSel-TD iteratively

visits the bags in 𝑇 to build the subgraph.

The objective of DCSGQ can be achieved by setting the parame-

ters carefully, as indicated in the following observation.

Observation 1. Assume that the root bag 𝐵𝑟 in the nice tree de-

composition contains 𝑣0 (i.e., the initiator).
22

Then, for each 𝑆 ⊆ 𝐵𝑟
containing 𝑣0 and each feasible P𝑆 defined on 𝑆 , Wmax (𝐵𝑟 , 𝑆, P𝑆 )
corresponds to the objective of a feasible solution of DCSGQ, where

all the vertices of 𝑆 ⊆ 𝐻 are selected into 𝐻 with local den-

sity consistent with P𝑆 . Thus, the optimal objective of DCSGQ

is max𝑆,P𝑆 Wmax (𝐵𝑟 , 𝑆, P𝑆 ).23

5.3 Derivation of Four Bag Types in FSGSel-TD
Equipped with the two types of subqueries, FSGSel-TD iteratively

visits the bags in𝑇 to build up the subgraph. As the bags are of four

major categories in a nice tree decomposition, it is necessary to

derive different computation steps respective to i) different settings

of local density metrics, and ii) different types of tree bags.

5.3.1 Leaf bag. For a leaf bag 𝐵𝑥 = {𝑣}, the only nonempty partial

vertex set is 𝑆 = 𝐵𝑥 = {𝑣}. As 𝑉𝑥 = {𝑣} consists of only one

vertex, the local density of any vertex in any subgraph of𝑉𝑥 is zero.

Therefore, for the feasible-type subqueries, it suffices to check the

feasibility of the following partial local density profile.

22
This can be guaranteed by always including the initiator in the root in the nice tree

decomposition. For simplicity, here we assume that every tree bag 𝐵 ⊆ N
ℎ
𝐺
(𝑣0 ) , i.e.,

vertices outside the feasible region are filtered out and not considered.

23
Here P𝑆 is required to be feasible. Note that the optimal subgroup𝐻 could correspond

to multiple Wmax (𝐵𝑟 , 𝑆, P𝑆 ) ; however, the optimal objective is unique as all such

subproblems share the same value.
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Case I: 𝑑 (𝑣) ≥ 0 ≥ 𝑑 (𝑣), or equivalently, 𝑑 (𝑣) = 0. In this case,{
Wmax (𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = W

′
max
(𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = w(𝑣), P𝐵𝑥 = 0

Wmax (𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = W
′
max
(𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = −∞, otherwise.

Here a value of −∞ is given to infeasible subqueries.

Case II: 𝑑 (𝑣) > 0. In this case, no profile is feasible. For the second

type of subqueries, we have{
Wmax (𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = −∞, W′max

(𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = w(𝑣), P𝐵𝑥 = 0

Wmax (𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = W
′
max
(𝐵𝑥 , 𝐵𝑥 , P𝐵𝑥 ) = −∞, otherwise.

For the empty partial vertex set 𝑆 = ∅, 𝑃𝑆 does not take

any input and is a null function. In this case, Wmax (𝐵𝑥 , ∅, ∅) =
W
′
max
(𝐵𝑥 , ∅, ∅) = 0.

5.3.2 Introduce bag. For an introduce bag 𝐵𝑥 , let its single child

bag be 𝐵𝑦 = 𝐵𝑥 \ {𝑢}. A subgroup 𝑆𝑥 ⊆ 𝐵𝑥 either contains 𝑢 or

not containing 𝑢. Case I: 𝑢 ∉ 𝑆𝑥 . Then we have 𝑆𝑥 ⊆ 𝐵𝑦 , and for

all possible partial local density profiles P𝑆𝑥 , Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) =
Wmax (𝐵𝑦, 𝑆𝑥 , P𝑆𝑥 ) and W

′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = W

′
max
(𝐵𝑦, 𝑆𝑥 , P𝑆𝑥 ).

Case II: 𝑢 ∈ 𝑆𝑥 . From the property of tree decomposition,∑︁
𝑣∈𝑆𝑥

f(u,v) = P𝑆𝑥 (𝑢 ) (𝑢’s degree is consistent with profile). (8)

To findWmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ), we need to ensure that P𝑆𝑥 is feasible.

For P𝑆𝑥 to be a feasible profile, we check whether the following

condition holds.

𝑑 (𝑣) ≥ P𝑆𝑥 (𝑣) ≥ 𝑑 (𝑣), ∀𝑣 ∈ 𝑆𝑥 (profile is feasible) (9)

- Case II-(1): Condition (8) does not hold for 𝑢. Then
P𝑆𝑥 is impossible (not consistent with 𝑆𝑥 ). In this case, we have

Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = W
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = −∞.

- Case II-(2): Condition (8) holds for 𝑢, and Condition (9)
holds (for all 𝑣 ∈ 𝑆𝑥 ). It means 𝑆𝑥 is feasible. Let 𝑆𝑦 = 𝑆𝑥 \ {𝑢}.
We define another partial local density profile P𝑆𝑦 on 𝑆𝑦 as follows:

P𝑆𝑦 (𝑣) = P𝑆𝑥 (𝑣)−f(𝑣,𝑢),∀𝑣 ∈ 𝑆𝑦 . If there exists a feasible subgroup
𝐻 consistent with P𝑆𝑥 , by deleting vertex 𝑢 from 𝐻 , the resulting

subgroup𝐻 \ {𝑢} must be consistent with P𝑆𝑦 . Note that P𝑆𝑦 might

not be feasible since 𝑢 is deleted from 𝐻 . Fortunately, deleting 𝑢

can only violate the core constraints for vertices in 𝑆𝑥 , i.e., it can be

proved by the properties of tree decomposition. Therefore, for any

feasible 𝐻 consistent with P𝑆𝑥 , not only is 𝐻 \ {𝑢} consistent with
P𝑆𝑦 , but all core constraints for vertices in𝐻 \𝑆𝑥 = (𝐻 \{𝑢})\𝑆𝑦 are

satisfied. Thus, Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = W
′
max
(𝐵𝑦, 𝑆𝑦, P𝑆𝑦 ) +w(𝑢) .

- Case II-(3): Condition (8) holds for 𝑢, but Condition (9)
does not hold (for some 𝑣 ∈ 𝑆𝑥 ). Since 𝑆𝑥 is not a feasible partial

profile, Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = −∞.
To findW

′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ), 𝑆𝑥 is not required to be feasible. Thus,

W
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = W

′
max
(𝐵𝑦, 𝑆𝑦, P𝑆𝑦 ) +w(𝑢) for both cases II-(2)

and II-(3).

5.3.3 Forget bag. For a forget bag 𝐵𝑥 , let its single child bag be

𝐵𝑦 = 𝐵𝑥 ∪ {𝑢}. Assume a subgraph 𝐻 ⊆ 𝑉𝑥 is consistent with

P𝑆𝑥 . Then 𝐻 either does not contain 𝑢 or does indeed contain 𝑢.

In the former case, 𝐻 is consistent with P𝑆𝑥 w.r.t. 𝐵𝑦 (note that

P𝑆𝑥 is a valid partial local density profile in 𝐵𝑦 because 𝑆𝑥 ⊆ 𝐵𝑥 ⊆
𝐵𝑦 ). For the latter case, let 𝑆𝑦 = 𝑆𝑥 ∪ {𝑢}. Then i) 𝐻 ∩ 𝐵𝑦 = 𝑆𝑦 ,

and 𝐻 should be consistent to some partial local density profile

defined on 𝑆𝑦 . ii)
∑

𝑤∈𝐻
f(𝑣,𝑤) = P𝑆𝑥 (𝑣), and the local densities

specified P𝑆𝑥 remain unchanged, since 𝐻 is consistent with P𝑆𝑥 . iii)

∑
𝑣∈𝐻

f(𝑢, 𝑣) ≥ ∑
𝑣∈𝑆𝑥

f(𝑢, 𝑣), since 𝑆𝑥 ⊆ 𝐻 . In other words, assume that

𝐻 is consistent with some P𝑆𝑦 in 𝐵𝑦 , then P𝑆𝑦 (𝑣) = P𝑆𝑥 (𝑣) ∀𝑣 ∈ 𝑆𝑥 ,
and P𝑆𝑦 is decided solely by P𝑆𝑦 (𝑢). For convenience, we denote
P
𝑑 (𝑢 )
𝑆𝑦

to describe the partial profile where 𝑢’s local density is 𝑑 (𝑢).

More specifically, we have i) P
𝑑 (𝑢 )
𝑆𝑦
(𝑣) = P𝑆𝑥 (𝑣), ∀𝑣 ∈ 𝑆𝑥 and ii)

P
𝑑 (𝑢 )
𝑆𝑦
(𝑢) = 𝑑 (𝑢). Note that 𝑑 (𝑢) ≥ ∑

𝑣∈𝑆𝑥
f(𝑢, 𝑣) (since these vertices

are guaranteed to contribute to𝑢’s local density in𝐻 ). Furthermore,

for 𝐻 to be feasible, we have 𝑑 (𝑢) ≤ 𝑑 (𝑢) ≤ 𝑑 (𝑢). Therefore, let
𝑑′ (𝑢) = max{ ∑

𝑣∈𝑆𝑥
f(𝑢, 𝑣), 𝑑 (𝑢)}, we have the following relations:

OPT
I

Wmax

= Wmax (𝐵𝑦, 𝑆𝑥 , P𝑆𝑥 )

OPT
II

Wmax

= max

𝑑 (𝑢) ∈ [𝑑 ′ (𝑢),𝑑 (𝑢) ]
Wmax (𝐵𝑦, 𝑆𝑦, P

𝑑 (𝑢)
𝑆𝑦
)

Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = max{OPTI
Wmax

,OPTII
Wmax

}

To findW
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ), it needs to identify some subgraph𝐻

that satisfies the CORE constraints for all vertices except for those

in 𝑆𝑥 . The local density for 𝑢 thereby should fall between 𝑑 (𝑢) and
𝑑 (𝑢) if 𝑢 ∈ 𝐻 . Therefore, we have a similar set of relations:

OPT
I

W
′
max

= W
′
max
(𝐵𝑦, 𝑆𝑥 , P𝑆𝑥 )

OPT
II

W
′
max

= max

𝑑 (𝑢) ∈ [𝑑 ′ (𝑢),𝑑 (𝑢) ]
W
′
max
(𝐵𝑦, 𝑆𝑦, P

𝑑 (𝑢)
𝑆𝑦
)

W
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = max{OPTI

W
′
max

,OPTII
W
′
max

}

5.3.4 Join bag. For a join bag 𝐵𝑥 , let its two children bags be 𝐵𝑦
and 𝐵𝑧 . Recall that𝑉𝑦 and𝑉𝑧 denote the union of all tree bags in the

subtrees rooted by 𝐵𝑦 and 𝐵𝑧 , and𝑉𝑥 = 𝑉𝑦 ∪𝑉𝑧 . A key observation

is as follows: if there exists vertices 𝑦 ∈ 𝑉𝑦 and 𝑧 ∈ 𝑉𝑧 such that

(𝑦, 𝑧) ∈ 𝐸, then at least one of𝑦 and 𝑧 is contained in 𝐵𝑥 . Otherwise,

neither 𝑦 nor 𝑧 are contained in 𝐵𝑥 . Recall that there exists at least

one tree bag 𝐵 containing both 𝑦 and 𝑧 (the first requirement of

the tree decomposition). Let 𝑝𝑦 denote the path from 𝐵 to 𝐵𝑦 in

the tree decomposition, and let 𝑝𝑧 denote the path from 𝐵 to 𝐵𝑧
similarly. Then at least one of 𝑝𝑦 and 𝑝𝑧 goes through 𝐵𝑥 , which

violates the second requirement of the tree decomposition that all

bags containing 𝑦 (or 𝑧) should form a connected subtree.

With the above observation, when merging two subgroups𝐻𝑦 ⊆
𝑉𝑦 and 𝐻𝑧 ⊆ 𝑉𝑧 such that 𝐻𝑦 ∩ 𝐵𝑥 = 𝐻𝑧 ∩ 𝐵𝑥 = 𝑆𝑥 , we need to

check only the local densities of vertices in 𝐵𝑥 .∑︁
𝑣∈𝐻𝑦∪𝐻𝑧

f(𝑢, 𝑣) =
∑︁
𝑣∈𝐻𝑦

f(𝑢, 𝑣) +
∑︁
𝑣∈𝐻𝑧

f(𝑢, 𝑣) −
∑︁
𝑣∈𝑆𝑥

f(𝑢, 𝑣), ∀𝑢 ∈ 𝑆𝑥 .

Therefore, if 𝐻𝑦 is consistent with some partial local density

profile P
′
𝑆𝑥 (in 𝐵𝑥 ), and 𝐻𝑧 is consistent with some partial local

density profile P
′′
𝑆𝑥 (in 𝐵𝑥 ), then P𝑆𝑥 is consistent with the sub-

graph 𝐻𝑦 ∪ 𝐻𝑧 (in 𝐵𝑥 ) if and only if

P𝑆𝑥 (𝑢 ) = P
′
𝑆𝑥 (𝑢 ) + P′′𝑆𝑥 (𝑢 ) −

∑︁
𝑣∈𝑆𝑥

f(𝑢, 𝑣), ∀𝑢 ∈ 𝑆𝑥 .

Let P = P
′ + P′′ represent that the above relation holds for all

𝑢 ∈ 𝑆𝑥 . To find Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ), similar to that in Introduce bags,
we first require P𝑆𝑥 to be feasible as follows:

𝑑 (𝑣) ≥ P𝑆𝑥 (𝑣) ≥ 𝑑 (𝑣), ∀𝑣 ∈ 𝑆𝑥 . (10)
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- Case I: Condition (10) holds (for all 𝑣 ∈ 𝑆𝑥 ).
Then Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = max

P=P′+P′′
{W′

max
(𝐵𝑦, 𝑆𝑥 , P′𝑆𝑥 ) +

W
′
max
(𝐵𝑧 , 𝑆𝑥 , P′′𝑆𝑥 ) −

∑
𝑣∈𝑆𝑥

w(𝑣)}.

- Case II: Condition (10) does not hold (for some 𝑢 ∈ 𝑆𝑥 ).
Then Wmax (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = −∞.

Again, similar to that in Introduce bags, to find

W
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ), 𝑆𝑥 is not required to be feasible;

thus, W
′
max
(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) = max

P=P′+P′′
{W′

max
(𝐵𝑦, 𝑆𝑥 , P′𝑆𝑥 ) +

W
′
max
(𝐵𝑧 , 𝑆𝑥 , P′′𝑆𝑥 ) −

∑
𝑣∈𝑆𝑥

w(𝑣)} for both cases I and II.

5.4 FSGSel-TD and Performance Analysis
The pseudo code of FSGSel-TD is presented in Algorithm 2.

FSGSel-TD includes a backtracking procedure, which retrieves the

corresponding subgraph 𝐻 after the optimal objective is found.

Recall that we find the optimal objective max𝑆,P𝑆 Wmax (𝐵𝑟 , 𝑆, P𝑆 )
in the original query, where P𝑆 needs to be feasible. Let 𝑆∗ be the
subset of 𝐵𝑟 and 𝑃∗

𝑆∗ be the local density profile that achieve the

above objective, i.e., Wmax (𝐵𝑟 , 𝑆∗, P∗𝑆∗ ) = max𝑆,P𝑆 Wmax (𝐵𝑟 , 𝑆, P𝑆 )
for vertex subset 𝑆∗ and some partial local density profile P

∗
𝑆∗ , where

𝑆∗ ⊆ 𝐻 . To retrieve other vertices in 𝐻 , the backtracking proce-

dure traces back the derivation of the optimal objective value by

examining the four bag types, as summarized in Algorithm 2.

FSGSel-TD discretizes the edge weights f(𝑢, 𝑣) to significantly

reduce the computational overhead while introducing only a small

bounded error. In other words, FSGSel-TD finds a solution with

a good performance guarantee to strike a good balance between

solution quality and efficiency as follows.

Theorem 2. (Performance bound and time complexity).
Given an error factor 𝜖 , let 𝜌 =

𝜖𝑑

Δ(𝐺 ) , where Δ(𝐺) = max

𝑢∈𝑉
deg𝐺 (𝑢)

and 𝑑 = min𝑢∈𝑉 𝑑 (𝑢). Then, FSGSel-TD returns a solution �̃� such
that i)

∑
𝑣∈�̃� w(𝑣) ≥ (1 − 𝜖) · OPT, where OPT is the objective value

of the optimal solution, and ii) (1+𝜖) ·𝑑 (𝑣) ≥ d𝐻 (𝑣) ≥ 𝑑 (𝑣),∀𝑣 ∈ �̃� ,
within𝑂 (𝜔 |𝑇 | · 2𝜔 ·𝑀2𝜔 ) time,24 where 𝜔 and |𝑇 | are the treewidth
and the number of tree nodes, respectively. Here, 𝑀 = 𝑄 + 1 after
discretizing the edge weights f(𝑢, 𝑣) into 𝑄 + 1 different values.

Proof. Please see [56] for details. □

Please note that the treewidth 𝜔 is usually small for social net-

works and is viewed as a constant [8, 9].

6 HYBRID APPROACH (FSGSEL-HYBRID)
In the following, we present FSGSel-Hybrid to combine the mer-

its of FSGSel-TD and FSGSel-RR. FSGSel-Hybrid is based on the

unique core-fringe phenomenon [1, 11, 14, 46] of networks, i.e.,

many real-world networks exhibit a densely connected core (here,
the core is not the mathematical notion of 𝑘-core) and multiple

fringes with low treewidths. More specifically, given a width thresh-

old parameter𝜔 ,25 the core-fringe structure can be efficiently found

by degree-based tree decomposition strategies, such as DEGREE and

24
Please note that the time complexity looks unrelated to 𝜖 at the first glance. However,

as 𝜖 and𝑀 are inversely proportional,𝑀 (and time complexity) becomes larger with

a smaller 𝜖 .
25
We analyze different settings of 𝜔 in [56].

Algorithm 2 FSGSel-TD

Input: input graph𝐺 = (𝑉 , 𝐸 ) , tree decomposition𝑇 on𝐺 , initiator 𝑣0 ∈ 𝑉 , vertex

weight w(𝑢 ) ≥ 0, edge weight f(𝑢, 𝑣) ≥ 0, hop countℎ ∈ N, local density metric

d(𝑢 ) personalized local density thresholds
¯𝑑 (𝑢 ) and 𝑑 (𝑢 ) , for all 𝑢, 𝑣 ∈ 𝑉 .

Output: A subgraph �̃�

1: Let𝑇ℎ
𝑣
0

⊆ 𝑇 denote the nice tree decomposition on𝐺 w.r.t. 𝑁ℎ
𝐺
(𝑣0 ) ; Pick bag 𝐵𝑟

containing 𝑣0 as the root bag

2: Traverse𝑇ℎ
𝑣
0

from 𝐵𝑟 to retrieve a traversal order𝑂 ; Apply rounding-and-scaling
(detailed in [56])

3: For each bag 𝐵 in the reversed order of 𝑂 , compute Wmax (𝐵, ·, · ) and

W
′
max
(𝐵, ·, · ) values (detailed in [56])

4: Invoke the following Backtrack procedure for each tree bag 𝐵 and its vertex

subset 𝑆𝑥 ⊆ 𝐵𝑥 to find solution �̃�

5: return �̃�

6:

7: procedure Backtrack(tree bag 𝐵𝑥 , vertex subset 𝑆𝑥 ⊆ 𝐵𝑥 , partial local density

profile P𝑆𝑥 defined on 𝑆𝑥 , type TYPE ∈ {Wmax,W
′
max
})

8: if 𝐵𝑥 is Leaf then
9: return 𝑆𝑥

10: if 𝐵𝑥 is Introduce with children 𝐵𝑦 , where 𝐵𝑥 = 𝐵𝑦 ∪ {𝑢} then
11: if 𝑢 ∉ 𝑆𝑥 then
12: return Backtrack(𝐵𝑦 ,𝑆𝑥 ,P𝑆𝑥 ,TYPE)
13: else
14: Create 𝑆𝑦 and P𝑆𝑦 (Case II-(1) for Introduce bags [56])
15: return {𝑢} ∪ Backtrack(𝐵𝑦 ,𝑆𝑦 ,P𝑆𝑦 ,W

′
max

)

16: if 𝐵 is Forget with children 𝐵𝑦 , where 𝐵𝑥 = 𝐵𝑦 \ {𝑢} then
17: 𝑆 ′𝑥 ← 𝑆𝑥 ∪ {𝑢}
18: 𝑆TYPE (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) ← TYPE(𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) − TYPE(𝐵𝑦 , 𝑆

′
𝑥 , P𝑆′𝑥 )

19: if 𝑆TYPE (𝐵𝑥 , 𝑆𝑥 , P𝑆𝑥 ) ≠ 0 then
20: return Backtrack(𝐵𝑦 ,𝑆𝑥 ,P𝑆𝑥 ,TYPE)
21: else
22: 𝑑 (𝑢 ) ← P𝑆′𝑥 (𝑢 ) ; Create 𝑆𝑦 and P

𝑑 (𝑢)
𝑆𝑦

23: return Backtrack(𝐵𝑦 ,𝑆𝑦 ,P
𝑑 (𝑢)
𝑆𝑦

,TYPE)

24: if 𝐵 is Join with children 𝐵𝑦 and 𝐵𝑧 then
25: P

′ ← arg maxP𝑆𝑥
TYPE(𝐵𝑦 , 𝑆𝑥 , P𝑆𝑥 )

26: P
′′ ← arg maxP𝑆𝑥

TYPE(𝐵𝑧 , 𝑆𝑥 , P𝑆𝑥 )
27: return Backtrack(𝐵𝑦 ,𝑆𝑥 ,P

′
,TYPE) ∪ Backtrack(𝐵𝑧 ,𝑆𝑥 ,P

′′
,TYPE)

28: return 𝐻

FILLIN [46]. This process, termed partial tree decomposition, cre-
ates a forest of bags with the width at most 𝜔 interconnected via a

dense core. Partial tree decomposition is also beneficial to a social

network with small treewidth, because by controlling 𝜔 , we are

able to reduce the width of the fringe, which allows the proposed

FSGSel-Hybrid to gain better performance.

Our idea of FSGSel-Hybrid is to leverage the core-fringe struc-

ture to divide the initial problem into two parts: i) a core subproblem,

focusing on the vertices in the dense core and exploiting the efficient

FSGSel-RR; ii) a fringe subproblem, employing FSGSel-TD to find a

good subgroup on the fringe tree structure. As FSGSel-RR is scal-
able on large graphs, and the widths of the fringe are significantly

lower than the original treewidth, FSGSel-Hybrid is able to find

better subgraphs than FSGSel-RR efficiently. However, it is impor-

tant to effectively combine the subgraphs retrieved by FSGSel-RR
and FSGSel-TD such that the personalized local density constraints

on all vertices are satisfied. For the boundary vertices, i.e., vertices
appearing in the dense core but having edges connecting to the

fringe (and vice versa), it is necessary for FSGSel-Hybrid to care-

fully monitor their local densities to meet the constraints, and the

details are presented in [56].
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Table 1: Summary of datasets.

Dataset |𝑉 | |𝐸 | Avg. Deg. CC

LiveJ 3,997,962 34,681,189 17.35 0.2843

Orkut 3,072,441 117,185,083 76.28 0.1666

Wiki 1,791,489 25,446,040 28.41 0.2746

Email 36,692 183,831 10.02 0.497

FB 4,039 88,234 43.7 0.61

Youtube 1,134,890 2,987,624 5.27 0.0808

7 EXPERIMENTAL RESULTS
Datasets. We conduct experiments on a variety of real datasets.

The datasets and the codes are available publicly [56]. LiveJournal
(LiveJ) and Orkut are both online social networks with approxi-

mately 4M vertices with 34M edges and 3M vertices with 117M

edges, respectively [71].Wiki is extracted from the web graph of

Wikipedia hyperlinks [72] and has approximately 1.8M vertices and

25M edges. Email is an e-mail social network with 36K vertices and

183K edges [39], and Youtube is a video sharing dataset with 1.1M

vertices and approximately 3M edges [71]. Table 1 summarizes the

characteristics of the above datasets.

Performance metrics.We compare the proposed algorithms with

the baselines using the following performance metrics: i) Objective
value; ii) Objective ratio: the ratio of the objective value to that of

the optimal solution; iii) Feasibility ratio: the ratio of the number of

vertices satisfying the personalized local density requirement to the

total number of vertices for the returned subgraph; iv) Computation
time. All the algorithms are implemented on an HP DL580 server

with Quadcore Intel X5450 3.0 GHz CPUs and 1TB RAM. Each

experimental result is averaged over 50 data samples.

Baselines. Since no existing algorithm was proposed for DCSGQ,

we evaluate the proposed algorithms against three baselines: i)

IP, the Integer Program detailed in Section 4. It obtains the opti-

mal solution to DCSGQ, thus acting as a benchmark for DCSGQ;

ii) (𝑘, 𝑟 )-core [74], aiming to identify the maximum subgraph by

jointly considering the social tightness and similarity, which could

be viewed as solving a subproblem of DCSGQ; iii) Flexible Socio
Spatial Group Query (FSSGQ) [26], a flexible query that considers

the group size, spatial closeness, and social connectivity simultane-

ously. Please note that by setting the vertex weight to 1, DCSGQ

indeed maximizes the selected subgraph size while satisfying the

social constraints. As FSSGQ considers similar factors, we chose it

as a baseline for comparison;
26

iv) Influential Community Search
(ICS) [41], a community search approach that extracts dense sub-

graphs, which considers the social density factor as DCSGQ does;

v) Personalized Influential Community Search (EPICS) [66], an ex-

tension of ICS that requires the specified query vertex to be in the

returned subgraph, which also considers the social factor as DCSGQ

does; vi) BnB, a branch-and-bound approach that employs effec-

tive pruning and branching strategies, which acts as a benchmark

approach here; vii) G-Peeling, a greedy approach that iteratively

removes the vertex that violates the local density constraints, which

is included to demonstrate that a trivial approach does not perform

well for DCSGQ. For a fair comparison, these baselines are executed

on the same N
ℎ
𝐺
(𝑣0) as our approaches do.

26
To achieve the best solution quality, we implemented the Exact approach [26].

(a) Obj. ratios (diff. 𝑑 (𝑢 )). (b) Time (diff. 𝑑 (𝑢 )).

(c) Feasibility (diff. 𝑑 (𝑢 )). (d) OTU (diff. 𝑑 (𝑢 )).

(e) Obj. ratios (diff. 𝑑 (𝑢 )). (f) Time (diff. 𝑑 (𝑢 )).

Figure 2: Comparisons with baselines in LiveJ.

7.1 Performance Evaluation
Comparisons with baseline approaches. We first compare vari-

ous approaches on two large-scale datasets, LiveJ and Orkut, where
f(𝑢, 𝑣) = w(𝑣) = 1,∀𝑢, 𝑣 ∈ 𝑉 . For (𝑘, 𝑟 )-core, we set 𝑘 = 𝑑 (𝑢)
since both 𝑘 and 𝑑 (𝑢) are requirements on the minimum degree.

Following [74], the similarity score of each pair of vertices (𝑢, 𝑣) is
assigned with the Jaccard similarity on their 1-hop neighbors, and 𝑟

is set as the top-1% similarity value. For FSSGQ, we set its minimum

acquaintance constraint 𝑐 to require each selected user having at

least 𝑑 (𝑢) friends in the group. We set weighting parameters as

𝛼 = 𝛾 = 0.5, and 𝛽 = 0, to let FSSGQ focus on the social tightness

and group size. For BnB, we let it run the same amount of time as

IP. If BnB does not terminate when the time is up, BnB returns the

best solution obtained so far as its solution. For ICS, we set 𝑟 = 1

and 𝑘 = 𝑑 (𝑢); For EPICS, we set 𝑘 = 𝑑 (𝑢) and 𝑞 = 𝑣0.

Figures 2(a) and 2(e) present the objective ratios with different

𝑑 (𝑢) and 𝑑 (𝑢), and ℎ = {1, 2} in LiveJ. All the results in Orkut are
with similar trends, and are presented in [56]. IP and TD achieve

100% objective ratios because IP is designed to extract the optimal

solution, and TD is designed to achieve the guaranteed performance.

The objective ratios of Hybrid is close to 100% in LiveJ, indicating
that this proposed approach effectively obtains the solutions very

close to the optimal ones. In contrast, (𝑘, 𝑟 )-core and FSSGQ both
perform very poorly because their problem formulations do not aim

to satisfy the personalized density requirements. G-Peeling and
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BnB both achieve poor solution quality. G-Peeling usually removes

a very large number of extra vertices. When BnB uses up the time,

it only explores a tiny portion of the solution space, resulting in

very poor solutions. However, as the results of the approaches

are averaged over multiple test cases, in some cases BnB indeed

performs better than FSGSel-TD. The baselines ICS and EPICS also
achieve very poor objective and feasibility ratios (as will be shown),

because they do not consider the personalized local density and

thus usually return infeasible solutions.

Figures 2(b) and 2(f) compare the efficiency. IP and TD achieve
the perfect objective and feasibility ratios, while TD is much more

computationally efficient because TD well leverages the notion of

partial local density profile and tree decomposition to break the

original problem into subproblems and effectively combine them.

Hybrid achieves very high objective and feasibility ratios within a

reasonable computation time, which achieves a good balance on ef-

ficiency and solution quality, much better than RR. The computation

time of the baselines, (𝑘, 𝑟 )-core and FSSGQ is huge, because they

need to examine different groups but do not leverage the structural

information summarized by tree decomposition. G-Peeling is effi-

cient, but its solution quality is also very poor. While the baselines

ICS and EPICS incur more computation time than the proposed RR,
their objective and feasibility ratios are much inferior to RR. Please
note that the time complexity of G-Peeling is𝑂 ( |𝐸 | + |𝑉 |2). For RR,
by carefully controlling the sampled elements to be much smaller

than |𝐸 |, the time complexity of RR does not exceed G-Peeling.

Figure 2(c) shows the feasibility ratios in LiveJ for various 𝑑 (𝑢).
For varying 𝑑 (𝑢), the results show very similar trends and thus are

presented in [56]. IP and TD both achieve 100% feasibility. Hybrid
is able to achieve very high feasibility ratios, outperforming RR,
because Hybrid combines the strengths of TD and RR to strike a

good balance on efficiency and solution quality. In contrast, the

baselines (𝑘, 𝑟 )-core and FSSGQ both show very poor feasibility

because they do not consider the personalized density requirement

𝑑 (𝑢). G-Peeling and BnB both achieve 100% feasibility, because

they are designed to return only feasible solutions. However, their

poor solution quality makes them impractical for deployment in

real-world scenarios. Figure 2(d) presents the Objective per Time
Unit (OTU), which is the objective value acquired per time unit.

The proposed RR and Hybrid significantly outperform the other

baselines. It indicates that these two approaches are able to acquire

very good solutions efficiently.

Analyses of returned subgraphs. Figure 3 presents community-

related measures of the resulting subgraphs in the dataset LiveJ,
such as subgraph size, average degree, clustering coefficient, and ratio
of empty returned subgraphs, i.e., the ratio of empty subgraphs that

are returned by each approach. Additional results, i.e., diameter
and the quantity of distinct subgraphs, are presented in the full

version [56].

Figure 3(a) shows the returned subgraph sizes. The returned

graph sizes of the proposed TD, RR, and Hybrid outperform the other

baselines, and are close to the optimal solution IP. This is because
these proposed approaches pay special attention to the local density

requirements, enabling them to find large and feasible subgraphs.

Figure 3(b) presents the average degree of the subgraphs. For IP, TD,

RR, and Hybrid, the average degrees increasewhen𝑑 (𝑢) grows. This

(a) Returned subgraph sizes in LiveJ. (b) Average degrees in LiveJ.

(c) Clustering coefficients in LiveJ. (d) Ratios of empty returned solutions
in LiveJ.

Figure 3: Community scores in LiveJ.

(a) Obj. ratios in Y2B. (b) Time in Y2B.

Figure 4: Diff. ℎ in Y2B.

is because these approaches tend to find larger subgraphs in order to

maximize the objective function. Figure 3(c) presents the clustering

coefficients, where IP, TD, and Hybrid slightly decline when 𝑑 (𝑢)
increases, because these three algorithms find larger subgraphs

with a larger 𝑑 (𝑢). Figure 3(d) presents the ratios of solutions that
are empty. The results show that the proposed approaches almost

return no empty solution, indicating that they all are able to handle

the personalized local density requirement well and extract feasible

solutions.

Sensitivity tests: different ℎ and tree decomposition. We

conducted the experiments on the Youtube (Y2B) dataset with
ℎ = {2, 3, 4}. Here, we set ℎ = {2, 3, 4} because Y2B exhibits the

small-world phenomenon, i.e., the 90-percentile effective diame-

ter of Y2B is 6.5. Since the trends of feasibility ratios on Y2B are

very similar to those on other datasets, we present them in [56].

As shown in Figures 4(a) and 4(b), the proposed Hybrid is able

to obtain very good solutions that are close to the optimal ones.

Also, the computation time of TD is similar to EPICS and ICS but
outperforms BnB, a branch-and-bound approach. In contrast, the

other baseline approaches all achieve very poor objective ratios.

Please note that, since BnB is a branch-and-bound algorithm that

examines the huge amount of combinations of the solutions, BnB
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takes a large amount of time to return the solution when ℎ = {3, 4}
(here, we set the time limit of BnB as 2 hours for ℎ = {2} and 24

hours for ℎ = {3, 4}). In contrast, Hybrid is able to acquire much

better solutions efficiently.

(a) Obj. ratios with various 𝑤 (𝑢 ) . (b) Fea. ratios with various 𝑤 (𝑢 ) .

Figure 5: Diff.𝑤 (𝑢) assignments.

Sensitivity tests: 𝑤 (𝑢) and 𝑓 (𝑢, 𝑣) assignments. Figure 5

presents the results on various vertex weights, i.e.,𝑤 (𝑢), on LiveJ.
We present the results of varying 𝑓 (𝑢, 𝑣) assignments in [56] since

the results of varying 𝑓 (𝑢, 𝑣) are very similar to those of𝑤 (𝑢). Fol-
lowing related works [4, 62], we assign the vertex weights (and edge

weights) with Gaussian distribution with different variance values

(𝜎2
). Figures 5(a) and 5(b) present the objective and feasibility ratios

with different𝑤 (𝑢). Hybrid is very efficient and its feasibility ratios

are all very close to 100%, indicating that it can effectively tackle

the proposed DCSGQ under different vertex weight settings. We

also observe that the feasibility ratios of Hybrid slightly increase

when 𝜎2
grows. This is because a larger 𝜎2

results in more diverse

local density requirements. In this case, Hybrid is able to find larger
subgraphs that satisfy the density requirements.

7.2 User Study and Case Study
User study.We conduct a user study with 359 users to validate the

proposed problem formulation with its key feature, personalized
local density constraint. In this study, we aim to answer the following

research questions by surveying users’ opinions.

- RQ1. Does the proposed DCSGQ with personalized local density
constraint fit users’ need better?
- RQ2. What are the preferred 𝑑 (𝑢) and 𝑑 (𝑢) values in different
scenarios?

To answer RQ1, we design 8 scenarios to ask for users’ opin-

ions, i.e., whether they consider setting a personalized local density

constraint in an activity would better fit their needs. For each sce-

nario, each user is asked to answer RQ1 with different group sizes,

i.e., groups with 4, 6, 10, 20, and 30 users. Figures 6(a) and 6(b)

present the results for RQ1. Figure 6(a) presents the ratios of users

who consider DCSGQ is better. For the 8 categories, around 90%

of users consider DCSGQ better because of its personalized local

density constraint. Moreover, introverts (identified by the big five

personality test) prefer DCSGQ more compared to extroverts be-
cause the introverts can freely adjust the social atmosphere in the

activity. Figure 6(b) presents users’ opinions with different group

sizes. When the group size increases, the users desire the personal-

ized local density more because people feel safe to participate in

activities with friends, and the DCSGQ allows users flexibly adjust
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DCSGQ better (activity category).
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(b) User study - ratios of users rating
DCSGQ better (group size).

(c) Case study of individual #1. (d) Case study of individual #2.

Figure 6: User study and case study results.

and personalize the number of friends in the activity. We provide

more detailed discussions and the answers to RQ2 in [56].

Case study. Figures 6(c) and 6(d) show the ground-truth numbers

of friends in various categories of groups for these two individuals

in the large-scale real activity planning dataset Meetup NY+SF (the

dataset is detailed in [56]). The results manifest that they both have

quite diverse numbers of friends in these categories. Moreover, for

the three categories, {Movements & Politics, New Age & Spiritual-
ity, Health & Wellbeing}, the individual in Figure 6(c) has median

numbers of friends of 80, 23, and 16, respectively. In contrast, for

the individual in Figure 6(d), these median numbers become 48,

43, and 39. It suggests that an individual may have various social

tightness in different types of activities. We also provide more

comparisons with our proposed DCSGQ and conventional dense

subgraph queries in [56].

We present additional results of sensitivity tests in other datasets

mentioned in Table 1, sensitivity tests for different 𝜆 and 𝜎 values,

and treewidths of popular online social networks in [56].

8 CONCLUSION
We propose DCSGQ, a new query with personalized local den-

sity requirements. We show that DCSGQ is NP-hard and propose

three effective algorithms from different perspectives and prove

the guaranteed performance bound. Experimental results on mul-

tiple datasets demonstrate the effectiveness and efficiency of the

proposed algorithms, which outperform the other baselines.
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