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ABSTRACT

A key performance bottleneck when training graph neural net-

work (GNN) models on large, real-world graphs is loading node

features onto a GPU. Due to limited GPU memory, expensive data

movement is necessary to facilitate the storage of these features on

alternative devices with slower access (e.g. CPU memory). More-

over, the irregularity of graph structures contributes to poor data

locality which further exacerbates the problem. Consequently, ex-

isting frameworks capable of efficiently training large GNN models

usually incur a significant accuracy degradation because of the

currently-available shortcuts involved. To address these limitations,

we instead propose FreshGNN, a general-purpose GNN mini-batch

training framework that leverages a historical cache for storing

and reusing GNN node embeddings instead of re-computing them

through fetching raw features at every iteration. Critical to its

success, the corresponding cache policy is designed, using a combi-

nation of gradient-based and staleness criteria, to selectively screen

those embeddings which are relatively stable and can be cached,

from those that need to be re-computed to reduce estimation er-

rors and subsequent downstream accuracy loss. When paired with

complementary system enhancements to support this selective his-

torical cache, FreshGNN is able to accelerate the training speed

on large graph datasets such as ogbn-papers100M and MAG240M by

3.4× up to 20.5× and reduce the memory access by 59%, with less

than 1% influence on test accuracy.
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1 INTRODUCTION

Graphs serve as a ubiquitous abstraction for representing relations

between entities of interest. Linked web pages, paper citations,

molecule interactions, purchase behaviors, etc., can all be modeled

as graphs, and hence, real-world applications involving non-i.i.d.

instances are frequently based on learning from graph data. To in-

stantiate this learning process, graph neural networks (GNN) have

emerged as a powerful family of trainable architectures with suc-

cessful deployment spanning a wide range of graph applications,

including community detection [6], recommender systems [47],

fraud detection [9], drug discovery [14] and more. The predictive

performance of GNNs is largely attributed to their ability to ex-

ploit both entity-level features as well as complementary structural

information or network effects via message passing schemes [15],

whereby updating any particular node embedding requires collect-

ing and aggregating the embeddings of its neighbors. Repeatedly

applying this procedure by stacking multiple layers allows GNN

models to produce node embeddings that capture local topology

(with extent determined by model depth) and are useful for down-

stream tasks such as node classification or link prediction.

Not surprisingly, the scale of these tasks is rapidly expanding

as larger and larger graph datasets are collected. As such, when

the problem size exceeds the memory capacity of hardware such

as GPUs, a workaround is required, with some form of mini-batch

training being the most common [7, 16, 53, 54]. Similar to the mini-

batch training of canonical i.i.d. datasets involving images or text,

one full training epoch is composed of many constituent iterations,

each optimizing a loss function using gradient descent w.r.t. a small

batch of nodes/edges. In doing so, mini-batch training reduces mem-

ory requirements on massive graphs but with the added burden of

frequent data movement from CPU to GPU. The latter is a natural

consequence of GNN message passing, which for an 𝐿-layer model

requires loading the features of the 𝐿-hop neighbors of each node

in a mini-batch. The central challenge of efficient GNN mini-batch

training then becomes the mitigation of this data loading bot-

tleneck, which otherwise scales exponentially with 𝐿; even for

moderately-sized graphs this quickly becomes infeasible.

Substantial effort has been made to address the data loading

challenges posed by large graphs using system-level optimizations,
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algorithmic approximations, or some combination thereof. For ex-

ample, on the system side, GPU kernels are used to efficiently load

features in parallel or store hot features in a GPU cache [32, 33, 50];

however, these approaches cannot avoid memory access to the

potentially large number of nodes that are visited less frequently.

On the other hand, there are generally speaking two lines of

work on the algorithm front. The first is based on devising sampling

methods to reduce the computational footprint and the required

features within each mini-batch. Notable strategies of this genre

include neighbor sampling [16], layer-wise sampling [5, 57], and

graph-wise sampling [7, 53]. However, neighbor sampling does not

solve the problem of exponential growth mentioned previously,

and the others may converge slower or to a solution with lower

accuracy [56]. Meanwhile, the second line of work [4, 12, 27] stores

intermediate node representations computed for each GNN layer

during training as historical embeddings and reuses them later to

reduce the need for recursively collecting messages from neighbors.

Though conceptually promising and foundational to our work, as

we will later show in Section 2.3, these solutions presently struggle

to simultaneously achieve both high training efficiency and high

model accuracy when scaling to large graphs, e.g., those with more

than 108 nodes and 109 edges.

To this end, we propose a new mini-batch GNN training solution

with system and algorithm co-design for efficiently handling large

graphs while preserving predictive performance. As our starting

point, we narrow the root cause of accuracy degradation when

using historical embeddings to the non-negligible accumulation

of estimation error between true and approximate representations

computed using the history. As prior related work has no practical

mechanism for controlling this error, we equip mini-batch training

with a historical embedding cache whose purpose is to selectively

admit accurate historical embeddings while evicting those likely to

be harmful to model performance. In support of this cache and its

attendant admission/eviction policy, we design a prototype system

called FreshGNN: Reducing mEmory access via Stable Historical

embeddings, which efficiently trains GNN models on large-scale

graphs with high accuracy. In realizing FreshGNN, our primary

contributions are as follows:

• We propose a novel mini-batch training algorithm for GNNs that

achieves scalability without compromising model accuracy. This

is accomplished through the use of a historical embedding cache,

with a corresponding cache policy that adaptively maintains

node representations (via gradient and staleness criteria to be

introduced later) that are likely to be stable across training itera-

tions. Moreover, by design our algorithm judiciously balances the

caching on GPU of both embeddings and raw node features to

reduce IO costs. In this way, we can economize GNN mini-batch

training while largely avoiding the reuse of embeddings that are

likely to lead to large approximation errors and subsequently,

poor predictive accuracy.

• We create the prototype FreshGNN system to realize the above

training algorithm with efficient implementation of subgraph

pruning and data loading for both single-GPU and multi-GPU

hardware settings.

• We provide a comprehensive empirical evaluation of FreshGNN

across common baseline GNN architectures, large-scale graph

datasets, and hardware configurations. Among other things, the

results demonstrate that FreshGNN can closely maintain the ac-

curacy of non-approximate neighbor sampling (within 1%) while

training 3.4× up to 20.5× faster than state-of-the-art baselines.

2 BACKGROUND AND MOTIVATION

2.1 Graph Neural Networks

Let G = (V, E) be a graph with node set V and edge set E ⊆

V × V , where 𝑛 = |V|. Furthermore, let 𝐴 ∈ {0, 1}𝑛×𝑛 be the

graph adjacency matrix such that𝐴𝑢𝑣 = 1 if and only if there exists

an edge between nodes 𝑢 and 𝑣 . Finally, 𝑋 ∈ R𝑛×𝑑 denotes the

matrix of 𝑑-dimensional node features (i.e., each row is formed by

the feature vector for a single node) while 𝑌 ∈ R𝑛×𝑐 refers to the

corresponding node labels with 𝑐 classes.

Given an input graph defined as above, the goal of a GNN model

is to learn a representation ℎ𝑣 for each node 𝑣 , which can be used

for downstream tasks such as node classification or link predic-

tion. This is typically accomplished via a so-called message passing

scheme [15]. For the (𝑙 + 1)-th GNN layer, this involves computing

the hidden/intermediate representation

ℎ
(𝑙+1)
𝑣 = 𝑓

(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑣 ,



ℎ
(𝑙 )
𝑢 : 𝑢 ∈ N (𝑣)



= 𝜙
(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑣 , AGG

𝑢∈N(𝑣)



𝜓
(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑢 , ℎ

(𝑙 )
𝑣




,
(1)

where ℎ
(𝑙 )
𝑣 and N(𝑣) are the embedding and neighbors of node

𝑣 respectively, with ℎ
(0)
𝑣 equal to the 𝑣-th row of 𝑋 . Additionally,

𝜓 computes messages between adjacent nodes while the opera-

tor AGG is a permutation-invariant function (like sum, mean, or

element-wise maximum) designed to aggregate these messages.

Lastly, 𝜙 represents an update function that computes each layer-

wise embedding. Note that both 𝜙 and 𝜓 are parameterized by a

learnable set of weights𝑊 . Within this setting, the goal of training

an 𝐿-layer GNN is to minimize an application-specific loss func-

tion L(𝐻 (𝐿) , 𝑌 ) with respect to𝑊 . This can be accomplished via

gradient descent as𝑊 ←𝑊 − 𝜂∇𝑊 L, where 𝜂 is the step size.

2.2 Difficulty in Training Large-Scale GNNs

Graphs used in GNN training can have a large number of nodes

containing high-dimensional features (e.g., 𝑑 ∈ {100, . . . , 1000}) [19,

51]. As a representative example, within the widely-adopted Open

Graph Benchmark (OGB) [18, 19], the largest graph MAG240M has

240M nodes with 768-dimensional 16-bit float vectors as features

(i.e. 350GB total size); real-world industry graphs can bemuch larger

still. On the other hand, as nodes are dependent on each other, full

graph training requires the features and intermediate embeddings

of all nodes to be simultaneously available for computation, which

goes beyond the memory capacity of a single GPU.

In light of this difficulty with full graph training, the most widely

acceptedworkaround is to instead trainwith stochasticmini-batches

[13, 16, 41, 50, 51]. At each iteration, instead of training all the nodes,

a subset/batch are first selected from the training set. Then, the

multiple-hop neighbors of these selected nodes (one hop for each

network layer) are formed into the subgraph needed to compute

a forward pass through the GNN and later to back-propagate gra-

dients for training. Additionally, further reduction in the working

memory requirement is possible by sampling these multi-hop nodes
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as opposed to using the entire neighborhood [16]. The size of the

resulting mini-batch subgraph with sampled neighborhood is much

smaller relative to the full graph, and for some graphs can be trained

using a single device achieving competitive accuracy [52] and gen-

erality [16]. Hence mini-batch training with neighbor sampling has

become a standard paradigm for large-scale GNN training.

Yet even this standard paradigm is limited by a significant bottle-

neck: loading the features of the sampled multiple-hop neighbors

in each mini-batch, which still involves data movement growing

exponentially with the number of GNN layers. In many cases, data

movement can occupy more than 85% of the total training time.

2.3 Existing Mini-Batch Training Overhauls

Both system-level and algorithmic approaches have been pursued

in an attempt to alleviate the limitations of mini-batch training.

System Optimizations. GNNLab [50] and GNNTier [32] cache

the raw features of frequently visited nodes to GPU using metrics

such as node degree, weighted reverse PageRank, and profiling.

However, for commonly-encountered graphs exhibiting a power-

law distribution [10], most of the nodes will experience a moderate

visiting frequency and hence, the feature cache is unlikely to re-

duce memory access to them. More generally, because the overall

effectiveness of this approach largely depends on graph structure,

consistent improvement across different graph datasets is difficult

to guarantee. PyTorch-Direct [33] proposes to store node features in

CUDA Universal Virtual Addressing (UVA) memory so that feature

loading can be accelerated by GPU kernels. Even so, data loading

remains a bottle-neck for PyTorch-Direct, occupying 66% of the

total execution time, as the data transfer bandwidth is still limited

by CPU-GPU bandwidth.

Broader Sampling Methods.While neighbor sampling reduces

the size of each mini-batch subgraph, it does not completely re-

solve recursive, exponential neighbor expansion. Consequently,

alternative sampling strategies have been proposed such as layer-

wise [5, 57] and graph-wise [7, 53] sampling. However, the resulting

impact on model accuracy is graph-dependent and prior evalua-

tions [50, 56] on large graphs like ogbn-papers100M indicate that

a significant degradation (over 10% accuracy drop) may occur.

Reusing Historical Intermediate Embeddings. The other line

of algorithmic work [4, 12, 27] for revamping mini-batch training

approximates the embeddings of some node set S using their his-

torical embeddings from previous training iterations. This involves

modifying the original message passing scheme from 1 to become

ℎ
(𝑙+1)
𝑣 = 𝑓

(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑣 ,



ℎ
(𝑙 )
𝑢



𝑢∈N(𝑣)



= 𝑓
(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑣 ,



ℎ
(𝑙 )
𝑢



𝑢∈N(𝑣)\S
∪


ℎ
(𝑙 )
𝑢



𝑢∈N(𝑣)∩S



≈ 𝑓
(𝑙+1)
𝑊



ℎ
(𝑙 )
𝑣 ,



ℎ
(𝑙 )
𝑢



𝑢∈N(𝑣)\S
∪


ℎ̄
(𝑙 )
𝑢



𝑢∈N(𝑣)∩S


Historical embeddings



.

(2)

The above computation is mostly the same as the original, except

that now the node embeddings from S are replaced with their his-

torical embeddings ℎ̄
(𝑙 )
𝑢 . A typical choice for S is any node not

included within the selected seed nodes, and after each training

step, the algorithm will refresh ℎ̄
(𝑙+1)
𝑣 with the newly generated

embedding ℎ
(𝑙+1)
𝑣 (authentic embedding). Using historical embed-

dings avoids recursive visits to neighbor node features and the

aggregation of neighbor embeddings as well as the corresponding

backward propagation. This reduces not only the number of raw

features to load but also the computation associated with neigh-

bor expansion. Moreover, the underlying training methodology is

compatible with arbitrary message passing architectures.

While promising, there remain two major unresolved issues with

existing methods that utilize historical embeddings. First, by uns-

electively recording the history, they all require an extra storage

of size 𝑂 (𝐿𝑛𝑑) for an 𝐿-layer GNN, an amount which can be even

larger than the total size of node features (𝑂 (𝑛𝑑)), a significant

limitation. Secondly, historical embeddings as currently used may

introduce impactful estimation errors during training. To help illus-

trate this point, let ℎ̃
(𝑙+1)
𝑣 denote the approximated node embedding

computed using Equation (2). The estimation error can be quantified

by ∥ℎ̃
(𝑙+1)
𝑣 − ℎ

(𝑙+1)
𝑣 ∥, meaning the difference between the approxi-

mated embeddings and the authentic embeddings computed via an

exact message passing scheme.

E
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40
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0 10 20 30 40 50

Figure 1: Average estimation error in one training epoch for

GAS [12] on ogbn-products.

Figure 1 shows that the estimation error of each mini-batch

increases considerably with more training iterations on the ogbn-

products graph fromOGB [19]when usingGNNAutoScale (GAS) [12],

a representative system based on historical embeddings. The root

cause of this problem is that existing methods lack a mechanism for

controlling the quality of the cached embeddings used for replac-

ing message passing. Since the model parameters are updated by

gradient descent after each iteration, the un-refreshed embeddings

may gradually drift away from their authentic values resulting in a

precipitous accuracy drop compared with the target accuracy from

mini-batch training with vanilla/canonical neighbor sampling.

For the above reasons there remain ample room for new sys-

tem designs that exploit historical embeddings for the setting of

mini-batch training in a more nuanced way so as to maintain accu-

racy. This is especially true as graph size grows larger and existing

methods begin to exhibit accuracy degradation or run out of GPU

memory as shown in Figure 2 (see also Section 7.3 for more in-depth

evaluation of these approaches).

2.4 Historical Embeddings in Full Graph
Training

We note that the SANCUS algorithm from [36] also utilizes histor-

ical embeddings; however, the purpose is to reduce the commu-

nication overhead of multi-GPU full graph training by refreshing

the remotely cached embeddings when they drift away. Even so,
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Figure 2: Test accuracy of mini-batch training algorithms

(ClusterGCN [7], GNS [8], LADIES [57], GraphFM [27],

GAS [12], and MariusGNN [41]) and full graph training with

historical embedding (SANCUS [36]) compared with the tar-

get accuracy achieved by (expensive) neighbor sampling on:

(a) relatively small ogbn-products graph where the gap is

modest for most algorithms, and (b) larger ogbn-papers100M

graph where the gap grows significantly.

SANCUS still relies on an 𝑂 (𝐿𝑛𝑑) storage for all the historical

embeddings, making it run out of memory on large graphs like

ogbn-papers100M, or else compromising the model capacity by the

necessity of a small hidden size and/or lower floating precision. See

Figure 2 for representative examples and Section 7.3 for further de-

tails. More critically, this approach requires access to the authentic

embeddings themselves, which are naturally obtainable only in full

graph training; in the setting of more scalable mini-batch training

(our focus), computing them requires exact message passing, the

very process we are trying to avoid.

3 DESIGN OF FRESHGNN

In this work, we propose a new strategy for utilizing historical

embeddings, with targeted control of the resulting estimation error

to economize GNN mini-batch training on large graphs without

compromising accuracy. Intuitively, this strategy is designed to

favor historical embeddings with small ∥ℎ̄
(𝑙 )
𝑢 − ℎ

(𝑙 )
𝑢 ∥ when pro-

cessing each mini-batch, while avoiding the use of those that have

drifted away. However, directly computing this error requires the

authentic embeddings ℎ
(𝑙 )
𝑢 , which are only obtainable via the ex-

act/expensive message passing we are trying to avoid as mentioned

previously. We therefore adopt an alternative strategy based on a

key observation about the stability of the node embeddings during

GNN mini-batch training: most of the node embeddings experience

only modest change across the majority of iterations.

Embedding Stability Illustration. Figure 3 showcases this phe-

nomenon using a GCN [24] model trained on the ogbn-arxiv

dataset. We measure the cosine similarity of the node embeddings

at mini-batch iteration 𝑡 with the corresponding embeddings at

𝑡 −𝑠 for lag 𝑠 = 20 and plot the resulting distribution across varying

𝑡 . After iteration 100 (the model converges with more than 500

iterations), most of the node embeddings exhibit a cosine similarity

greater than 0.8. This provides evidence of temporal stability in

many node embeddings during GNN mini-batch training, which

motivates a refined historical embedding cache to selectively detect,

store, and reuse such stable node embeddings.

Figure 3: Distribution of cosine similarity between embed-

dings at iteration 𝑡 and embeddings at iteration 𝑡 − 𝑠 during

the training of a GCN model on ogbn-arxiv. Here 𝑠 = 20.

Algorithm 1 Mini-Batch Training w/ Historical Emb. Cache

1: Input: Graph G = (V, E), input node features 𝐻 (0) , number
of batches 𝐵, number of layers 𝐿, historical embedding cache C,
rate for check-out using gradient 𝑝𝑔𝑟𝑎𝑑 , the maximum staleness

threshold 𝑡𝑠𝑡𝑎𝑙𝑒
2: 𝑖 ← 0 ⊲ Iteration ID

3: {B1, · · · ,B𝐵} ← 𝑆𝑝𝑙𝑖𝑡 (G, 𝐵) ⊲ Mini-batches of training nodes

4: for B𝑏 ∈ {B1, · · · ,B𝐵} do
⊲ Subgraph generator

5: G𝑏 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (G,∪𝑣∈B𝑏
)

6: for 𝑙 ∈ {𝐿 − 1, · · · , 1} do

7: V
(𝑙 )

𝑐𝑎𝑐ℎ𝑒
← V

(𝑙 )
G𝑏

∩ C (𝑙 )
⊲ History index lookup

8:
G𝑏 .𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑟𝑜𝑜𝑡 = V

(𝑙 )

𝑐𝑎𝑐ℎ𝑒
)

⊲ Remove nodes for the calculation of V
(𝑙 )
𝑐𝑎𝑐ℎ𝑒

9: V
(𝑙 )

𝑛𝑜𝑟𝑚𝑎𝑙
← V

(𝑙 )
G𝑏

\ V
(𝑙 )

𝑐𝑎𝑐ℎ𝑒

10: end for
⊲ Data loader

11: 𝐻
(0)
𝑛𝑜𝑟𝑚𝑎𝑙

← 𝐿𝑜𝑎𝑑_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (V
(0)
𝑛𝑜𝑟𝑚𝑎𝑙

)

12: for 𝑙 ∈ {1, ..., 𝐿} do
⊲ Historical embedding cache

13: ℎ
(𝑙 )
𝑣 ← C (𝑙 ) [𝑣],∀𝑣 ∈ V

(𝑙 )

𝑐𝑎𝑐ℎ𝑒

14: ℎ
(𝑙 )
𝑣 ←𝑓

(𝑙 )
𝑊



ℎ
(𝑙−1)
𝑣 ,



ℎ
(𝑙−1)
𝑢



𝑢∈NG𝑏
(𝑣)



,∀𝑣∈V
(𝑙 )

𝑛𝑜𝑟𝑚𝑎𝑙

15: end for

16: 𝑙𝑜𝑠𝑠 = L(ℎ
(𝐿)
B𝑏

, 𝑙𝑎𝑏𝑒𝑙B𝑏
)

17: 𝑙𝑜𝑠𝑠 .𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ()
18: 𝑖 ← 𝑖 + 1
19: for 𝑙 ∈ {1, · · · , 𝐿} do

20: Update(C (𝑙 ) ,V
(𝑙 )

𝑛𝑜𝑟𝑚𝑎𝑙
,V

(𝑙 )
G𝑏

, ℎ (𝑙 ) , 𝑖, 𝑡𝑠𝑡𝑎𝑙𝑒 , 𝑝𝑔𝑟𝑎𝑑 )

21: end for
22: end for

FreshGNN Training Algorithm. To leverage the aforementioned

embedding stability, Algorithm 1 introduces our mini-batch train-

ing process using the historical embedding cache. For each batch,

we first generate a subgraph according to a user-defined sampling
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method (Line 5). A subgraph consisting of the sampled 𝐿-hop neigh-

bors for the training nodes is returned, where 𝐿 is defined by what-

ever GNN model is chosen. Then for each layer, the nodes in the

subgraph are divided into two types: normal nodes (V𝑛𝑜𝑟𝑚𝑎𝑙 on

Line 9) and those nodes whose embeddings can be found in the

historical cache (V𝑐𝑎𝑐ℎ𝑒 on Line 7). For the latter, embeddings are

directly read from the cache (Line 13), while for the normal nodes,

embeddings are computed by the neighbor aggregation assumed

by the GNN (Line 14). Finally, at the end of each iteration, the al-

gorithm will utilize information from the forward and backward

propagation steps to update the historical embedding cache. The

goal is to check in stable embeddings that are more reliable for

future reuse while checking out those that are not (Line 20).

Figure 4 further elucidates Algorithm 1 using a toy example.

Here node 𝑣1 is selected as the seed node of the current mini-batch

as in Figure 4(a). Computing 𝑣1’s embedding requires recursively

collecting information from multi-hop neighbors as illustrated by

the subgraph in Figure 4(b). As mentioned previously, neighbor

sampling can reduce this subgraph size as shown in Figure 4(c).

Figure 4(d) then depicts how the historical embedding cache can

be applied to further prune the required computation and mem-

ory access. The cache contains node embeddings recorded from

previous iterations as well as some auxiliary data related to stal-

eness and gradient magnitudes as needed to estimate embedding

stability. In this example, the embeddings of node 𝑣3 are found in

the cache, hence its neighbor expansion is no longer needed and is

pruned from the graph. Additionally, after this training iteration,

some newly generated embeddings (e.g., node 𝑣2) will be pushed to

the cache for later reuse. Existing cached embeddings may also be

evicted based on the updated metadata. In this example, both 𝑣11

(by staleness) and 𝑣3 (by gradient magnitude criteria to be detailed

later) are evicted from the cache.

Main FreshGNN Components. To instantiate Algorithm 1, and

enable accurate, efficient GNN training over large graphs in CPU-

GPU or multi-GPU scenarios, we require three system components,

namely, (i) the historical embedding cache, (ii) the subgraph genera-

tor, and (iii) the data loader; each of these correspond with a colored

block in Algorithm 1). Figure 5 situates these components within a

typical GNN training workflow, while supporting summaries are

as follows (with subsequent sections filling in the full details):

(1) The historical embedding cache is the central component of

our FreshGNN design, selectively storing node embeddings in

GPU and providing efficient operations for fetching or updat-

ing its contents as will be detailed in Section 4. Note that we

also couple historical embeddings with frequently-visited raw

features in the cache to reduce memory access.

(2) The subgraph generator is responsible for producing a pruned

subgraph given the current mini-batch and cached historical

embeddings as will be discussed further in Section 5. Com-

pared with other GNN systems, a unique characteristic of our

approach is that each subgraph structure is dependent on the

nodes stored in the historical embedding cache, and the latter

is dynamically updated at each training iteration. This essen-

tially creates a reversed data dependency between the stages

of mini-batch preparation and mini-batch training, making it

difficult to apply pipelining to overlap the two stages like in

other GNN systems [34, 41, 50]. To address this challenge, we

further partition the workload into two steps: graph sampling

and graph pruning, where only the latter step depends on the

historical embedding cache. We then adopt a mixed CPU-GPU

design that samples graphs in CPU while pruning graphs in

GPU, where CPU sampling can be overlapped by training time;

the pruning is complemented by a GPU-friendly data structure

for fast graph pruning.

(3) The data loader is in charge of loading the relevant node fea-

tures or historical embeddings given a generated subgraph. For

each node that is not pruned by historical embeddings, the data

loader fetches its raw features. Since these features are typically

stored in a slower but larger memory device, FreshGNN further

optimizes the data transmission for three scenarios: (1) fetching

features from CPU to a single GPU, (2) fetching features from

CPU to multiple GPUs, and (3) fetching features from other

GPUs. See Section 6 for further details.

4 HISTORICAL EMBEDDING CACHE

The historical embedding cache design is informed by the following:

(1)What is a suitable cache policy for selecting stable node embed-

dings that favor high accuracy? and (2) On top of this, how can we

simultaneously take advantage of both embeddings and raw features

to optimize system performance? We address each in turn below.

4.1 Cache Policy for Accuracy

Caching intermediate node embeddings is fundamentally differ-

ent with caching raw node features. Unlike the raw node features

staying unchanged, the embeddings are constantly updated dur-

ing model training, meaning the quality of cached embedding will

influence the accuracy of trained model. As a result, we have to

selectively cache and reuse the stable embeddings.

4.1.1 Caching Stable Embeddings. In order to selectively cache

historical embeddings, it is crucial to identify the stable ones. How-

ever, quantifying the stability of embeddings poses a significant

challenge. In the context of GNN training, stability is measured by

the disparity between a true node embedding and its corresponding

cached version. A naive approach would involve recomputing all

embeddings in the cache after each training iteration and removing

those that have deviated significantly. However, this solution is

impractical due to its reliance on computationally expensive data

loading and computation, which contradicts the purpose of caching

aimed at reducing costs.

FreshGNN introduces a lightweight approach utilizing gradient-

based criteria to identify stable embeddings. During training, the

gradients of node embeddings are naturally computed to update

the weight parameters, resulting in zero-cost acquisition of embed-

ding gradients. These gradients serve as feedback from the model

training process and can effectively indicate the stability of the

embeddings. Specifically, a near-zero gradient magnitude suggests

that the embedding contributes to accurate predictions and requires

minimal adjustments during the current training iteration. In con-

trast, embeddings with large gradient magnitudes are considered

less stable. By comparing the absolute values of embedding gradi-

ents, FreshGNN is capable of assessing the stability of embeddings

at each iteration, enabling the storage of newly produced stable

embeddings and invalidating unstable ones in the cache.

1477



v1

v2 v3 v4

v6 v7v5 v8 v9

(b) Original subgraph

v1

v2 v3

v6v5 v8v7

(c) Sampled subgraph(a) Mini-batch 

v1

v2
v4

v3

v6

v5

v7

v9

v8

Seed node of Mini-batch

1-hop neighbors

2-hop neighbors

(d) Subgraph with historical embedding cache

v1

v2 v3

v6v5

Node ID Staleness Valid

2 0 0.2 ✔

11 100 N/A ✘

3 6 10.3 ✘

Update

Node ID Staleness Valid

11 99 N/A ✔

3 5 N/A ✔

∥∇∥

∥∇∥

Figure 4: Illustration of historical embedding cache using an example mini-batch graph.
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Based on the concept of using gradient as the indicator of em-

bedding stability, we formulate the embedding cache policy for

accuracy as follows. Given a mini-batch graph, denote the set of

nodes at layer 𝑙 as V (𝑙 ) and the set of cached nodes as V𝑐𝑎𝑐ℎ𝑒 . For

nodes 𝑣 ∈ V (𝑙 ) , we use the magnitude of embedding gradients

w.r.t. the training loss as a proxy for node stability at each layer.

FreshGNN admits nodes with small absolute values of gradients to

the cache, with the rate controlled by 𝑝𝑔𝑟𝑎𝑑 , the fraction of newly

generated embeddings to be admitted. Of the remaining (1−𝑝𝑔𝑟𝑎𝑑 )

fraction of the nodes in the mini-batch, if any of these are already

present in the cache, they will now be evicted.

In the example shown in Figure 6, at layer 1, Node 3 fetches its

embedding from the cache while Node 2 computes its embedding

faithfully by aggregating from neighbors. During backward prop-

agation, FreshGNN calculates both gradients ∇
ℎ
(1)
3

L and ∇
ℎ
(1)
2

L,

and compares their norms to decide which to admit or evict; here

the embedding cache decides to admit Node 2 and evict Node 3.

4.1.2 Evicting Stale Embeddings. To ensure model accuracy, it is es-

sential to address the issue of stale embeddings that may arise due to

the continuous weight parameter updates during each iteration. In

addition to the gradient-based criteria, FreshGNN bounds the stale-

ness of the embeddings. The staleness is initially set to zero when an

embedding is admitted to the cache. With each subsequent iteration,

the staleness increases by one. FreshGNN considers embeddings

with staleness exceeding a predefined threshold 𝑡𝑠𝑡𝑎𝑙𝑒 as outdated

and consequently evicts them from the cache. As illustrated in

Figure 6, Node 11 is evicted based on this criterion. More broadly,

utilizing and limiting staleness is a commonly used technique in

training neural networks; the difference between FreshGNN and

prior work that incorporates staleness criteria during training is

discussed in Section 8.

4.1.3 Resulting Adaptive Cache Size. A notable difference from

typical cache usage, which emerges from the above gradient-based

and staleness-based criteria, is that our historical embedding cache

size is not static or preset, but rather implicitly controlled by the
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Figure 6: Illustration of the admission/eviction policy of the

historical embedding cache. After a training iteration, the

cache admits the embedding of Node 2 but evicts Node 3

(whichwas originally in the cache at the start of the iteration)

by the gradient-based criteria. It also evicts Node 11 according

to the staleness criteria.

two thresholds 𝑝𝑔𝑟𝑎𝑑 and 𝑡𝑠𝑡𝑎𝑙𝑒 . Larger 𝑝𝑔𝑟𝑎𝑑 or 𝑡𝑠𝑡𝑎𝑙𝑒 means more

embeddings to be cached but also requires the model to tolerate

larger approximation errors introduced by historical embeddings.

Moreover, setting 𝑝𝑔𝑟𝑎𝑑 = 0 or 𝑡𝑠𝑡𝑎𝑙𝑒 = 0 degrades the algorithm to

normal neighbor sampling without caching historical embeddings.

In contrast, setting 𝑝𝑔𝑟𝑎𝑑 = 100% and 𝑡𝑠𝑡𝑎𝑙𝑒 = ∞ results in a policy

that is conceptually equivalent to that used by GAS [12] and VR-

GCN [4]. So in this sense FreshGNN is a more versatile paradigm

w.r.t. previous historical embedding based methods. Later in Section

7 we demonstrate that finding suitable values of 𝑝𝑔𝑟𝑎𝑑 and 𝑡𝑠𝑡𝑎𝑙𝑒
is relatively easy in practice; however, we leave open to future

research on exploiting this flexible dimension within the historical

cache design space.

4.1.4 Avoiding Initial Instability. According to Figure 3, we remark

that many embeddings may be unstable at the beginning of training.

To address this, FreshGNN can incorporate a stabilization period

when training begins. This involves initially disabling the histori-

cal cache and instead using regular mini-batch training. After the

stabilization period, the historical cache is activated to reuse the

stable embeddings. Experimental results in Section 7 demonstrate

that introducing a short stabilization period (less than half of an

epoch) can at times lead to improved model quality.
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4.2 Cache Policy for System Performance

The cache policy of FreshGNN, aimed at ensuring model accuracy,

incorporates gradient and staleness criteria to maintain stable and

up-to-date embeddings. However, it is also crucial to consider the

cache’s impact on system performance. Therefore, in addition to

accuracy considerations, we refine the cache policy by integrating

both embeddings and raw features to minimize memory access and

improve system performance.

The design of a runtime cache should be capable of effectively

managing both embeddings and features on the GPU becomes im-

perative. However, the dynamic nature of embeddings presents

two distinct challenges. The first challenge involves the genera-

tion of features and embeddings, noting that raw features remain

static whereas embeddings are dynamically generated during train-

ing. Consequently, it is crucial to efficiently cache the embeddings

while leveraging the static property of features, thereby optimizing

resource utilization. The second challenge revolves around the evic-

tion of features and embeddings. Raw features can be retained in the

cache permanently, whereas embeddings necessitate dynamic evic-

tion to maintain accuracy. Therefore, it is important to invalidate

evicted embeddings with minimal overhead while simultaneously

freeing up space to accommodate new embeddings.
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Figure 7: Bidirectional cache implementation.

To tackle these challenges, we propose a novel solution called

the bidirectional cache to effectively manage both embeddings and

features. The fundamental concept is to statically cache frequently

visited features on one side of the buffer, while dynamically caching

the embeddings generated during training on the other side. At the

junction between embeddings and features in the buffer, features

are less frequently visited and will be replaced by newly generated

embeddings. The detailed design of the bidirectional cache is pre-

sented in three distinct parts: the feature side, the embedding side,

and the junction where they converge.

Before the training process, FreshGNN populates the available

GPU buffer with hot raw features (right hand side in Figure 7).

These features are ordered based on their estimated saved memory

access, ensuring that those with larger saved memory access are

positioned closer to the feature side of the buffer. This placement

reduces the likelihood of these features being replaced by newly

generated embeddings present on the other side of the buffer.

During the training phase, FreshGNN dynamically stores the

newly generated embeddings on the embedding side of the buffer

(left hand side in Figure 7). To optimize runtime efficiency, GPU

threads are utilized to effectively manage embeddings in parallel.

To facilitate this parallel management, FreshGNN maintains a node

ID mapping array with a length of𝑂 ( |V|), where each entry stores

the index of the cache that holds the embedding of the correspond-

ing node. The additional storage required for this mapping array is

affordable in comparison to the storage of the embeddings them-

selves. Moreover, this mapping array ensures that the compute

complexity of each fetching operation is 𝑂 (1). Since there are no

dependencies between different entries, FreshGNN can fully exploit

the parallelism capabilities of the GPU.

At the junction of cached features and embeddings, FreshGNN

employs a ring buffer design that effectively admits new embed-

dings while evicting old ones. This design ensures that features are

not unnecessarily displaced by newly generated embeddings. As

illustrated in Figure 7, FreshGNN maintains an embedding cache

header. It initially points to the first item of the cache and moves

forward when new embeddings are added. At every 𝑡𝑠𝑡𝑎𝑙𝑒 iteration,

FreshGNN resets the embedding cache header to the beginning.

Consequently, newly added embeddings overwrite outdated ones,

naturally evicting them from the cache. To evict embeddings with

significant gradient magnitudes, FreshGNN employs an approach

where it invalidates the corresponding entries in the node ID map-

ping array, instead of physically deleting them. These invalidated

slots are naturally recycled within the ring buffer design.

5 CACHE-AWARE SUBGRAPH GENERATOR

In FreshGNN, the mini-batch subgraphs are generated adaptively

according to the node embeddings stored in the cache. As the

cache is in turn updated at the end of each iteration, this prevents

FreshGNN from adopting a naive pipelining strategy to parallelize

subgraph generation and model training as in other systems. To

address this challenge, we decompose subgraph generation into

two steps: graph sampling and graph pruning, where only the latter

depends on the historical embedding cache. We then adopt a mixed

CPU-GPU design to further accelerate them.

AsynchronousCPUGraph Sampling.This step first extracts/samples

subgraphs normally for the given mini-batch and then moves them

to GPU without querying information from the cache. As a result,

graph sampling can be conducted asynchronously with the later

GPU computation. We further utilize multithreading instead of

multiprocessing to produce multiple subgraphs concurrently in

contrast to the existing systems like DGL [44] and PyG [11]. Addi-

tionally, we use a task queue to control the production of subgraphs

and avoid overflowing the limited GPU memory.

GPU Graph Pruning. The graph pruning step scans the mini-

batch graph from the seed node layer to the input node layer. For

any cached node, it recursively removes all the multiple-hop neigh-

bors so that the corresponding computation is no longer needed

for model training. The remaining challenge is that traditional

sparse formats are not suitable for parallel modification in GPU.

As shown in Figure 8, the Coordinate (COO) format represents

a graph using two arrays containing the source and destination

node IDs of each edge. Pruning incoming neighbors of a node in

COO requires first locating neighbors using a binary search and

then deleting them from both arrays. The prune complexity is

𝑂 (log( |E𝑠𝑎𝑚𝑝𝑙𝑒 |) + 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ), in which |E𝑠𝑎𝑚𝑝𝑙𝑒 | is the number

of edges in the sampled graph and 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is the number of

neighbors to be pruned. Somewhat differently, for the Compressed

Sparse Row (CSR) format, after deleting the edges, the row index

arrays need to be adjusted accordingly, with prune complexity of

𝑂 ( |V𝑠𝑎𝑚𝑝𝑙𝑒 | +𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ), where |V𝑠𝑎𝑚𝑝𝑙𝑒 | is the number of nodes

in the sampled graph.

To reduce these graph pruning costs onGPU, we designed a novel

data structure called CSR2 for FreshGNN. CSR2 uses two arrays to

represent row indices ś the first array records the starting offset

1479



0 1 0 1 0

1 0 0 0 1

0 0 1 1 1

0 1 0 0 0

0 0 0 0 1

✘

[0 2 4 7 8 9]

[1 3 0 4 2 3 4 1 4]

[0 2 4 4 5 6]

[1 3 0 4 2 3 4 1 4]

Row index

Col index 
CSR:

[1 3 0 4 2 3 4 1 4]

[0 0 1 1 2 2 2 3 4]

[1 3 0 4 2 3 4 1 4]

[0 0 1 1 2 2 2 3 4]Desnaon

Source
COO:

[0 2 4 7 8]

[1 3 0 4 2 3 4 1 4]

[2 4 7 8 9]

Row index start

Row index end

Col index

[0 2 4 7 8]

[1 3 0 4 2 3 4 1 4]

[2 4 4 8 9]CSR2: Sparse matrix for 

graph structure

Figure 8: Removing a center node’s neighbors using different

graph data structures

of a node’s neighbors to the column index array while the second

array records its ending offset. As illustrated in Figure 8, for node 𝑖 ,

its neighbors are stored in the column index segment starting from

𝑠𝑡𝑎𝑟𝑡 [𝑖] to 𝑒𝑛𝑑 [𝑖]. To remove a node’s neighbors, we can simply

set the corresponding 𝑒𝑛𝑑 [𝑖] = 𝑠𝑡𝑎𝑟𝑡 [𝑖] without any changes to

the column index array, resulting in an 𝑂 (1) prune complexity.

The data structure is also suitable for parallel processing on GPU

because there is no data race condition.

6 DATA LOADER

Once a subgraph has been pruned, FreshGNN needs to load the his-

torical embeddings for cached nodes and the features for unpruned

nodes. Unlike historical embeddings stored in local GPU memory,

features are stored on CPU (single-GPU training) or remote GPUs

(multi-GPU training). Therefore, the loading process is still critical

to performance.

However, the indices for unpruned nodes and their features

reside on different devices. The index is calculated in the GPU (com-

putation device) while the needed features are stored on the CPU

or remote GPUs (storage device). Under such conditions, the naive

way to fetch the features is via two-sided communication. This in-

volves first transferring node indices from the computation device

to the storage device, compacting the corresponding features on the

storage device, and then sending the packed features back to the

computation device. This process introduces extra communication

for transferring indices and synchronization between the computa-

tion and storage devices. The FreshGNN data loader can initialize

memory access from a GPU side computation device (one-sided

communication) and change the communication schedule to fully

utilize the bandwidth (multi-round communication). As a result, it

can efficiently load the features of the unpruned nodes.

One-sided Communication. FreshGNN employs one-sided com-

munication to address this problem. Based on Unified Virtual Ad-

dressing (UVA) [33], the CPU and GPU memories are mapped to

a unified address. This enables the computation device to directly

fetch features from a mapped buffer of the storage device using the

node index. As shown in Figure 9(a), nodes needed for training are

partly pruned by the cache (green color), and for the unpruned ones

(orange color), the GPU fetches features using their node ID directly

from node features mapped with UVA. In Figure 9(b), multiple GPUs

can concurrently fetch data using UVA for parallel training.

Multi-round Communication.With a larger number of GPUs

available during training, all node features can be partitioned and

stored across multiple machines such that GPUs serve as both

computation and storage devices. Therefore, each GPU fetches the

features of the relevant unpruned nodes from other GPUs, resulting

in all-to-all communication between every pair of GPUs. UVA can

still be used to perform one-sided memory access in this scenario.

However, as GPUs are connected asymmetrically, link congestion

could badly degrade the overall bandwidth. To address this problem,

in addition to one-sided communication, FreshGNN breaks cross-

GPU communication into multiple rounds to avoid congestion and

fully utilize the bi-directional bandwidth on links. Figure 9(c) shows

a typical interconnection among four GPUs, where GPUs are first

connected via PCIe and then bridged via a host. For this topology,

FreshGNN will decompose the all-to-all communication into five

rounds. In round one, data is exchanged only between GPUs un-

der the same PCIe switch, while the remaining four rounds are

for exchanging data between GPUs across the host bridge. The

data transmission at each round is bi-directional to fully utilize the

bandwidth of the underlying hardware. This multi-round communi-

cation can effectively avoid congestion in all-to-all communication.
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Figure 9: Feature data loading for (a) CPU-GPU training and

(b) multi-GPU training.

7 EVALUATION

In this section, we first describe our experimental setup, followed by

results covering system efficiency and model accuracy. We conclude

with an empirical study of our cache effectiveness, ablations over

our system optimizations, and heterogeneous extensions.

7.1 Experimental Setup

Table 1: Graph dataset details, including input node feature

dimension (Dim.) and number of classes (#Class).

Dataset |V | | E | Dim.1 #Class

ogbn-arxiv [19] 2.9M 30.4M 128 40
ogbn-products [19] 2.4M 123M 100 47
ogbn-papers100M [19] 111M 1.6B 128 172
MAG240M [18] 244.2M 1.7B 768 153
Twitter [48] 41.7M 1.5B 768 64
Friendster [49] 65.6M 1.8B 768 64

Environments. Experiments were conducted on servers each with

two AMD EPYC 7742 CPUs (2×64 cores in total) and four NVIDIA

1The first three datasets use float32 while the latter three use float16 [18, 19].
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A100 (40GB) GPUs connected via PCIe 4.0. The software environ-

ment on this machine is configured with Python v3.9, PyTorch

v1.10, CUDA v11.3, DGL v0.9.1, and PyG v2.2.0.

Datasets. The dataset statistics are listed in Table 1. Among them,

the two smallest datasets, ogbn-arxiv and ogbn-products, are

included only for model accuracy comparisons and to provide con-

trast with much larger datasets, including ogbn-papers100M and

MAG240M [18] that are used to test both accuracy and speed. Fol-

lowing the common practice of previous work [13, 50], we also use

the graph structure from Twitter [48] and FriendSter [49] with

artificial features to test the speed of different systems.

GNNmodels & Training details.We employed three widely-used

GNN architectures for our experiments: GraphSAGE [16], GCN [24],

and GAT [39]. All models have 3 layers and 256 as the hidden size.

The base sampling method for mini-batch training is neighbor

sampling, and we follow the setting of OGB leaderboard [19] to set

the neighbor sampling fan-out as 20, 15, and 10. To measure their

baseline model accuracy, we train the models using mini-batch

neighbor sampling in DGL. The batch size is chosen to be 1000. We

set 𝑝𝑔𝑟𝑎𝑑 = 0.9 and 𝑡𝑠𝑡𝑎𝑙𝑒 = 200 for FreshGNN for all experiments

(with the exception of Section 7.4, where we study the impact of

these thresholds). For speed tests, as the performance bottleneck is

data loading, we only measure the performance of different systems

on GraphSAGE; similar performance occurs with other models.

7.2 System Efficiency

We first demonstrate the system advantage of FreshGNN against

state-of-the-art/representative alternatives for mini-batch train-

ing, including PyG [11], GAS [12], ClusterGCN [7], DGL [44] (as

well as DistDGL [56]), PyTorch-Direct [33], MariusGNN [41], and

GNNLab [50].
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Figure 10: Epoch time comparisons training a GraphSAGE

model using a single GPU.

Figure 10 compares the time for training a GraphSAGE model

for one epoch on the four large-scale graph datasets using a sin-

gle GPU. FreshGNN significantly outperforms all the other base-

lines across all the datasets. On ogbn-papers100M and MAG240M,

FreshGNN has average speedup of 3.4× over the best of other base-

lines (MariusGNN). Compared with the widely-used GNN systems

DGL and PyG, FreshGNN is 5.3× and 23.6× faster respectively

on ogbn-papers100M. Both PyTorch-Direct and FreshGNN utilize

CUDA UVA memory to accelerate feature loading, but FreshGNN

is still 4.6× faster because it can reduce the number of features to

load by a large margin. With respect to other mini-batch training

algorithms, FreshGNN is orders of magnitude faster than GAS and

ClusterGCN on ogbn-papers100M. GAS also runs out of memory

on graphs that have either more nodes/edges or larger feature di-

mensions due to the need to store the historical embeddings of

all the nodes. Incidentally, on the largest dataset MAG240M only

DGL, MariusGNN, and FreshGNN avoid OOM, but with FreshGNN

executing 5.3× faster than DGL and 3.7× faster than MariusGNN.
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Figure 11: Scalability comparison for training a GraphSAGE

model on obgn-papers100M using multiple GPUs.

FreshGNN can also scale to multiple GPUs and machines. In

this setting, we include new baselines DistDGL [56] for distributed

training, DSP [2] for fast multi-GPU sampling and training, and

GNNLab [50] which partitions GPUs to sampling or training work-

ers; hence GNNLab does not have single-GPU performance. Fig-

ure 11 compares the throughput (measured as the number of itera-

tions computed per second) when training GraphSAGE on ogbn-

papers100M. BothDGL and PyTorch-Direct deliver almost no speedup

because of the data loading bottleneck that cannot be parallelized

via addition of more GPUs. DSP utilizes GPU resources for graph

sampling. However, as its graph structure is stored in a distributed

manner on multiple GPUs, extra communication is needed among

GPUs, which leads to inferior performance on our testing server

equipped with PCIe connections. Meanwhile, FreshGNN enjoys

good scalability from 1 to 4 GPUs and is up to 1.49× faster than

GNNLab. When scaling to two machines each with four GPUs,

the scalibility of FreshGNN becomes better, as it has more CPU

resource for graph sampling, and is 4.07× faster than DistDGL.
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Figure 12: Test accuracy versus training time comparisons

for GraphSAGE on ogbn-papers100M.

To further showcase FreshGNN speed advantages, Figure 12 plots

the time-to-accuracy curve of different training systems across 50

epochs. Except MariusGNN, all the baselines here are using mini-

batch neighbor samplingwithout any further approximation so they

converge to the same accuracy of∼66%; MariusGNN obtains a lower

accuracy of ∼63% and further epochs did not improve performance.

FreshGNN can reach this same accuracy in 25 minutes; the slowest

baseline (PyG) takes more than 6 hours.
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Figure 13: (a) (c) The percentage saving of I/O for loading node features and (b) (d) the test accuracy on ogbn-papers100M and

MAG240M under different choices of 𝑝𝑔𝑟𝑎𝑑 and 𝑡𝑠𝑡𝑎𝑙𝑒 .

7.3 Model Accuracy

Table 2 compares the test accuracy of FreshGNN with other mini-

batch training algorithms GAS [12], ClusterGCN [7], GraphFM [27],

and MariusGNN [41], as well as the full-graph training algorithm

SANCUS [36] (which also uses historical-embeddings as described

previously). Following the common practice in [8, 13], the target

accuracy is obtained from training the base models (GraphSAGE,

GAT, GCN) using neighbor sampling.

In general, nearly all algorithms perform relatively well on

small graphs such as ogbn-arxiv and ogbn-products with only a

few exceptions. However, when scaling to larger graphs such as

ogbn-papers100M, most of the baselines experience a substantial

accuracy drop (from 7% to 18%) while running out of memory on

MAG240M. MariusGNN can run on all datasets with GraphSAGE and

GCN (but not GAT), albeit with lower accuracy (over 2% drop) and

longer epoch time (from Figure 10). We remark that SANCUS, as

the representative of scalable full graph training, has low accuracy

or suffers from OOM on large graphs due to the required storage

overhead mentioned in Section 2.4. By contrast, FreshGNN only

experiences a less than 1% accuracy difference across all datasets

and base models.

Table 2: Test accuracy of different training algorithm minus

the target accuracy obtained by neighbor sampling (larger is

better). Bold numbers denote the best performing method.

Small datasets Large datasets

Methods arxiv products papers100M MAG240M 2

G
ra
p
h
S
A
G
E

Target Accuracy 70.91 78.66 66.43 66.14
GAS +0.44 -1.19 -8.17 OOM
ClusterGCN -3.10 +0.00 -7.57 OOM
GraphFM +0.62 -7.90 -18.40 OOM
MariusGNN -3.91 -4.33 -3.43 -2.97
SANCUS -4.42 -7.83 OOM OOM
FreshGNN +0.60 +0.38 -0.15 -0.51

G
A
T

Target Accuracy 70.93 79.41 66.13 65.16
GAS -0.04 -2.23 -8.67 OOM
ClusterGCN -3.91 -2.92 -8.08 OOM
GraphFM -22.67 -16.54 OOM OOM
MariusGNN -1.37 OOM OOM OOM
SANCUS -2.47 OOM OOM OOM
FreshGNN -0.50 -0.54 -0.71 -0.36

G
C
N

Target Accuracy 71.24 78.57 65.78 65.24
GAS +0.44 -1.91 -12.29 OOM
ClusterGCN -3.13 +0.40 -12.43 OOM
GraphFM +0.47 -15.70 -18.70 OOM
MariusGNN -0.55 -1.10 -2.04 -2.37
SANCUS -3.04 -9.44 OOM OOM
FreshGNN -0.71 -0.31 -0.16 -0.29

7.4 Cache Effectiveness

Recall that 𝑝𝑔𝑟𝑎𝑑 and 𝑡𝑠𝑡𝑎𝑙𝑒 are the two thresholds that control the

admission and eviction criteria of the historical embedding cache.

In this section, we study their impact on system performance and

model accuracy. We will show that a straightforward choice of the

two thresholds can lead to the aforementioned competitive system

speed as well as model accuracy.

Impact on System Performance. In typical cache systems, the

I/O saving percentage is equal to the cache hit rate. However, hitting

the cached historical embeddings of a node will prune away all the

I/O operations that would otherwise be needed to load the features

of multi-hop neighbors, meaning the I/O savings can potentially be

much larger than the cache hit rate. We plot this saving percentage

w.r.t. neighbor sampling (i.e., no caching) under different 𝑝𝑔𝑟𝑎𝑑 and

𝑡𝑠𝑡𝑎𝑙𝑒 in Figure 13 (a) and (c). Because the historical embedding

cache in FreshGNN is initialized via raw node features (Section 4.2),

the red 𝑝𝑔𝑟𝑎𝑑 = 0 line reflects the performance of neighbor sampling

with a raw feature cache. As expected, larger 𝑝𝑔𝑟𝑎𝑑 or 𝑡𝑠𝑡𝑎𝑙𝑒 results

in more I/O reduction. On both graph datasets, a raw feature cache

can only reduce I/O by < 40% but the historical embedding cache

can reduce I/O by more than 60% when choosing 𝑡𝑠𝑡𝑎𝑙𝑒 > 200.
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Figure 14: IO saving using different caching policies

We further present a detailed comparison of IO saving among

various cache policies in Figure 14. Specifically, we evaluate the

degree-based and PageRank-based cache policies [32] for feature

cache and investigate three caching policies for historical embed-

ding cache: cache policy for accuracy (𝐸𝑚𝑏𝑎𝑐𝑐 ), cache policy for

accuracy with features (𝐸𝑚𝑏𝑎𝑐𝑐 + 𝐹𝑒𝑎𝑡 ), and the cache policy for

accuracy and performance with features (𝐸𝑚𝑏𝑎𝑐𝑐+𝑝𝑒𝑟 𝑓 + 𝐹𝑒𝑎𝑡 ) that

utilizes bidirectional cache and prioritizes embeddings with high

memory access savings. Our findings suggest that the IO saving

achieved through feature caching is similar across different policies

(on average 36.4% vs. 38.0%), as there are only a few hot nodes. On

the other hand, caching historical embeddings alone does not result

2We report validation accuracy for MAG240M due to the absence of labels for test set.
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Table 3: Accuracy with historical cache introduced at differ-

ent iterations. INF refers to never starting historical cache,

which reproduces the original target accuracy.

Iteration ID 0 200 400 800 INF/Target accuracy

papers100M -0.15 -0.29 -0.06 -0.27 66.43
MAG240M -0.51 -0.12 -0.18 -0.12 66.14

in significant IO saving (36.7%), as the embedding cache policy is

limited to stable embeddings. However, by combining feature and

embedding caching, we observe a substantial improvement (43.4%)

compared to using either of the two caching schemes individu-

ally. Furthermore, by leveraging cache policy for performance to

select embeddings that save a larger amount of memory access,

FreshGNN achieves even higher IO savings (59.0%).

Impact on Model Accuracy. We plot the corresponding accuracy

curves under different configurations in Figure 13 (b) and (d). As

expected, larger 𝑝𝑔𝑟𝑎𝑑 or 𝑡𝑠𝑡𝑎𝑙𝑒 means more relaxed control on the

embedding errors which consequently results in lower test accu-

racy. Beyond this, there are two interesting findings with practical

significance. First, we can set 𝑝𝑔𝑟𝑎𝑑 very close to one without an

appreciable impact on the model accuracy. This aligns well with

the observation in Figure 3 that most of the node embeddings are

temporally stable and can be safely admitted to the cache. Sec-

ondly, with a proper 𝑝𝑔𝑟𝑎𝑑 value, GNN models can tolerate node

embeddings that were last updated hundreds of iterations ago. By

cross-checking the I/O saving figures, we find that this is also a

sweet spot in terms of system performance, which eventually led

us to choose 𝑝𝑔𝑟𝑎𝑑 = 0.9 and 𝑡𝑠𝑡𝑎𝑙𝑒 = 200 for all the experiments

(obviously excluding the Figure 13 results).

The accuracy of FreshGNN can be further improved using the

stabilization period from Section 4.1.4. Table 3 shows the accuracy

of GraphSAGE with the historical cache introduced at different

iterations (for reference, there are 1200 iterations in an epoch for

papers100M). Here 0 means starting the historical cache at the be-

ginning of training, and 𝐼𝑁 𝐹 means never starting historical cache,

which is equivalent to regular mini-batch training. For papers100M,

the effect is inconsequential, as the accuracy gap is small even with-

out a stabilization period. However, for mag240M, the accuracy gap

can be reduced from -0.51 to -0.12 with the stabilization period.

7.5 Ablation Study of System Optimizations

In this section, we study the system performance of individual

components. All the results are tested on ogbn-papers100M with a

three-layer GraphSAGE model.

Subgraph Generator. Figure 15(a) shows sampling time per epoch

of FreshGNN and DGL, as well as the training epoch time achieved

by FreshGNN. FreshGNN sampler shows good scalabilitywithmore

CPU threads. With 32 CPU threads, FreshGNN is able to reduce the

sampling time per epoch to 11 seconds, which can be overlapped by

training epoch time (∼30s). While DGL takes more than 70 seconds

to finish graph sampling.

Figure 15(b) measures the time to prune the cached nodes and

their neighbors from a subgraph. Overall, CSR2 is orders-of-magnitude

faster than CSR and COO regardless of the batch size in use. Specif-

ically, CSR requires frequent CPU-GPU synchronization when in-

validating the neighbors of the pruned nodes in the column index.
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Figure 15: Effectiveness of FreshGNN’s subgraph generator

(measured on ogbn-papers100M).

As a result, graph pruning in total takes 99% of the iteration time.

Subgraph pruning using COO is faster, which reduces the pruning

overhead to 4.5% of the iteration time, but is still much slower than

CSR2. The subgraph pruning time using CSR2 is negligible ś it only

occupies 26µs per iteration.

Data Loader. Figure 18 shows the improvement afforded by the

optimizations of FreshGNN’s data loader for multi-GPU communi-

cation, on the aforementioned PCIe server and a server equipped

with NVLink. Compared with the communication utilizing NCCL

all-to-all operations, the one-sided communication is 23% faster

on average on PCIe and NVLink GPUs. After scheduling using the

multi-round communication pattern, the bandwidth is increased

by 145% and 85%, respectively.
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Figure 16: (a) IO savings for papers100M with varying model

depth; (b) Overhead analysis for training on papers100M

IO Savings with Varying Model Depth. Figure 16(a) shows how

IO savings change with GNN depth. For both feature cache and

historical caches adopted by FreshGNN, the IO saving decreases

with the increased number of layers and accessed nodes. How-

ever, FreshGNN consistently maintains higher IO saving of 1.50×

compared to a standard feature cache based on node degree.

Pre-processing Overhead. In Figure 16(b), we compared the pre-

processing overhead with other necessary steps during training,

such as loading node features from the disk (Disk2DRAM) and

the training time for each epoch (Epoch time). The pre-processing

overhead is smaller compared to these steps. Additionally, for the

same dataset, the pre-processing results can be reused multiple

times. Therefore, the pre-processing overhead of FreshGNN is not

a significant factor.

IO Savings with Different Graph Topologies. Figure 17 shows

the IO saving from historical cache on graph structures generated

with different topology. By changing the average node degree and

diameters, we find that historical cache used by FreshGNN can

always lead to more IO saving than degree-based feature cache

(1.56× and 1.43×).
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7.6 Extension to Heterogeneous Graphs

While our primary focus has been on the most popular large-scale

benchmark settings, FreshGNN can also be naturally extended to

heterogeneous graphs.We now show one such use case on MAG240M,

which was homogenized in the previous experiments. Here we

instead use the heterogeneous form, along with R-GCN [37], which

is arguably the most popular heterogeneous GNN architecture. In

Figure 19, we compare FreshGNN with the neighbor sampling DGL

baseline, which is the only related work capable of running in this

setting; other baselines either do not support heterogeneous graphs

or else suffer from OOM. From these results we observe that while

the accuracy is almost the same, FreshGNN is 20.5× faster.
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Figure 19: R-GCN evaluation on MAG240M.

8 RELATED WORK

Full-Graph GNN Systems. There exists a rich line of work on

scaling full-graph GNN training, where the general idea is to split

the graph into multiple partitions that can fit into the computing

devices. Unlike mini-batch training, full-graph training updates

all the nodes and edges simultaneously. Notable systems include

NeuGraph [30], ROC [21], and DistGNN [31], which design smart

data partitioning or data swap strategies to reduce the memory

consumption and I/O cost of full-graph training. DGCL [1] pro-

poses a new communication pattern to reduce network congestion.

Dorylus [38] and GNNAdvisor [45] optimize the computation of

GNN training by exploring properties of the graph structure. BNS-

GCN [42] proposes boundary-node-sampling to reduce the com-

munication incurred by boundary nodes during full graph training.

Beyond these, PipeGCN [43] and DIGEST [3] utilize stale represen-

tations of neighbor nodes to reduce communication overhead, and

MGG [46] applies pipelined communication for overhead hiding.

Finally, as discussed in Section 2.4, SANCUS [36] uses historical

embeddings to reduce communication overhead among GPUs, and

compares them with authentic embeddings to limit bias.

System Optimizations for GNNs. Previous work has shown that

data movement is the bottleneck for GNN mini-batch training on

large graphs. By using smart graph partitioning [22, 29, 32, 56]

and data placement [2, 13, 33, 50], this cost can be reduced un-

der various training settings. For example, DistDGL [56] replicates

high-degree nodes, together with sparse embedding updates, to re-

duce the communication workload for distributed training. DSP [2]

stores node features and graph structure in a distributed way on

GPUs to fully utilize NVlink bandwidth. MariusGNN [41] addresses

the scenario of out-of-core training, reducing data swaps between

disk and CPU memory by reordering training samples for better

locality. FreshGNN’s selective historical embedding method is or-

thogonal to both DistDGL and MariusGNN, and can potentially

be combined with them. Other systems, such as GNNLab [50] and

NextDoor [20], utilize GPUs to accelerate the graph sampling pro-

cess. These techniques are complementary to FreshGNN which

optimizes feature loading.

Trainingwith Staleness. Staleness criteria have long been adopted

for efficiency purposes when training deep neural networks. Sys-

tems including SSP [17], MXNet [25], and Poseidon [55] update

model parameters asynchronously across different devices, helping

to reduce global synchronization among devices and improve par-

allelism. Another branch of work, including PipeDream [35] and

PipeSGD [26], pipeline DNN training and utilize stale parameters

to reduce pipeline stall. They limit the staleness by periodically per-

forming global synchronization. FreshGNN, however, selectively

stores and reuses stale node embeddings instead of parameters

which is unique to GNN models.

Cache for GNNs. There are two ways to cache for GNN training.

The first is based on finding and caching node features that are

frequently visited to save memory access. Previous methods utilize

node degree [28, 40, 45], PageRank [23, 32], or profiling [50] to esti-

mate the frequency. The second is based on historical embeddings.

Previous work [4, 12] caches either the historical embeddings of

all nodes, or boundary nodes [36]. Such methods may experience

out-of-memory or low accuracy on large graphs as we have shown.

9 CONCLUSION

In this paper, we propose FreshGNN, a general framework for train-

ing GNNs on large, real-world graphs. At the core of our design

is a new mini-batch training algorithm that leverages a histori-

cal cache for storing and reusing GNN node embeddings to avoid

re-computation from raw features. To identify stable embeddings

that can be cached, FreshGNN designates a cache policy using a

combination of gradient-based and staleness criteria. Accompanied

with other system optimizations, FreshGNN is able to accelerate

the training speed of GNNs on large graphs by 3.4× over state-of-

the-art systems, with less than 1% influence on model accuracy.
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