
AutoTSAD: Unsupervised Holistic Anomaly Detection
for Time Series Data

Sebastian Schmidl
Hasso Plattner Institute,
University of Potsdam
Potsdam, Germany

sebastian.schmidl@hpi.de

Felix Naumann
Hasso Plattner Institute,
University of Potsdam
Potsdam, Germany

felix.naumann@hpi.de

Thorsten Papenbrock
Philipps University of Marburg

Marburg, Germany
papenbrock@informatik.uni-

marburg.de

ABSTRACT

Detecting anomalous subsequences in time series data is one of the
key tasks in time series analytics, having applications in environ-
mental monitoring, preventive healthcare, predictive maintenance,
and many further areas. Data scientists have developed various
anomaly detection algorithms with individual strengths, such as
the ability to detect repeating anomalies, anomalies in non-periodic
time series, or anomalies with varying lengths. For a given dataset
and task, the best algorithm with a suitable parameterization and,
in some cases, sufficient training data, usually solves the anomaly
detection problem well. However, given the high number of exist-
ing algorithms, their numerous parameters, and a pervasive lack of
training data and domain knowledge, effective anomaly detection is
still a complex task that heavily relies on manual experimentation.

We propose the unsupervised AutoTSAD system, which param-
eterizes, executes, and ensembles various highly effective anom-
aly detection algorithms. The ensembling system automatically
presents an aggregated anomaly scoring for an arbitrary time series
without a need for training data or parameter expertise. Our experi-
ments show that AutoTSAD offers an anomaly detection accuracy
comparable to the best manually optimized anomaly detection algo-
rithms, and can significantly outperform existing method selection
and ensembling approaches for time series anomaly detection.

PVLDB Reference Format:

Sebastian Schmidl, Felix Naumann, and Thorsten Papenbrock. AutoTSAD:
Unsupervised Holistic Anomaly Detection for Time Series Data. PVLDB,
17(11): 2987 - 3002, 2024.
doi:10.14778/3681954.3681978

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://hpi.de/naumann/s/autotsad.

1 ANOMALY DETECTION IN TIME SERIES

A data series is an ordered sequence of real-valued data points
recorded in equidistant intervals based on some continuous mea-
sure, such as temperature, mass, angle, position, or speed. If the
order is based on time, the sequence is referred to as a time series.
Because many data series analytics algorithms are agnostic to the
reference measure, we use the term time series throughout this

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681978

Flip Amplitude Outlier

2200 2300 2400 2500 2600 2700 2800
0

1

Timeseries
Sub-LOF
GrammarViz
K-Means

Figure 1: A time series with three anomalies. The anomaly

scores of the three algorithms eachmark a different anomaly.

paper. While the data points of a time series can consist of mul-
tiple real-valued variables (multivariate time series), we focus on
time series with only a single variable (univariate time series). “An
anomaly in such a time series is either a point [...] or a sequence of
points [...] that deviates significantly w. r. t. some measure, model,
or embedding from the regular patterns of the time series.” [61] The
anomalies in a time series can differ in their lengths, magnitudes,
and shapes. Figure 1 depicts a time series with three different typi-
cal anomalies: (i) A flip (reversal in time), (ii) an amplitude (scalar
magnification), and (iii) an outlier (single anomalous value). In this
example, each anomaly type occurs only once, but in many datasets,
anomalies might re-appear and occur in different types.

Time series anomaly detection (TSAD) is an important task for
many areas, ranging from healthcare monitoring [4, 22], over air-
craft manufacturing processes [5, 74], network intrusion detec-
tion [40], and earth sciences [16] to finance applications [64]. Anom-
alies in time series can describe important events, such as structural
defects, heart failures, adversarial attacks, earthquakes, or special
environmental phenomena. These events need to be detected to act
on them, prevent damage, or trigger further investigations.

Because detecting anomalies in time series is a difficult task that
usually cannot be solved via visual inspection alone, researchers
in different areas have developed a multitude of TSAD algorithms
with different strengths and for different types of use cases [50,
61, 79]. Achieving good detection results on a given dataset in a
non-specifically addressed domain is, however, still a challenge due
to the manual experimentation needed for the following choices:

Algorithm selection: The applicability of a TSAD algorithm
to a certain use case depends not only on different time series prop-
erties but also on the shape and types of the (yet unknown) anom-
alies [61]. Because analyzing time series properties is a complex task
in itself, and the anomalies are unknown upfront, identifying an
appropriate algorithm is challenging. Given the at least 175 TSAD
algorithms with different strengths and requirements [50, 61, 79],
practitioners need to test many algorithms to detect all anomalies.

2987

https://orcid.org/0000-0002-6597-9809
https://orcid.org/0000-0002-4483-1389
https://orcid.org/0000-0002-4019-8221
https://doi.org/10.14778/3681954.3681978
https://hpi.de/naumann/s/autotsad
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681978
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Algorithm parameterization: TSAD algorithms expose vari-
ous hyperparameters, such as window size, node degree, neighbor
count, and various thresholds [62]. The specification of these hyper-
parameters is difficult because (i) their meaning and implications
are known only to domain experts, (ii) they usually have a signif-
icant impact on the algorithm’s performance, (iii) they cover an
(often infinitely) large domain of potential values, and (iv) their
optimal values depend on the given time series and anomaly proper-
ties [62]. So even given the optimal algorithm for a specific anomaly
detection setup, configuring that algorithm to detect the actually
relevant anomalies remains a challenge.

Algorithm ensembling: Time series often contain different
motifs and different types of anomalies (e. g. in Figure 1). The algo-
rithm selection and parameterization, however, tailor the detection
process to a specific target anomaly. To find all anomalies with
potentially different properties and in potentially different contexts,
multiple algorithm executions are needed. This demand is particu-
larly apparent in scenarios with only little to no knowledge about
the to-be-expected anomalies. An effective anomaly detection solu-
tion, therefore, needs to run an ensemble of appropriate algorithm
configurations and intelligently combine the results [1, 13, 58].

Training data generation: In general, method selection tech-
niques [68] and hyperparameter optimization (HPO) algorithms [20,
47] can (partially) solve the algorithm selection, parameterization,
and ensembling challenges. They, however, require sufficient quan-
tities of labeled training data, which are not available in typical
anomaly detection scenarios. Using training data from known time
series is also rarely possible due to the strong dependence of hyper-
parameter settings on the properties of a target dataset. Practical
anomaly detection attempts, therefore, spend significant efforts on
data labeling, which is not only expensive and time-consuming but
also subjective and error-prone (as shown by the manually created
labels in many real-world benchmark datasets [75]). Obtaining suit-
able training data in a systematic and preferably automatic way for
a specific target dataset, therefore, remains a challenge.

To address all four challenges, we propose AutoTSAD, a novel,
unsupervised system that automatically ensembles TSAD algo-
rithms for a given univariate anomaly detection task. AutoTSAD
can be applied without prior knowledge about the properties and
anomalies of an input time series, and requires no configuration.
The system automatically optimizes, executes, and ensembles mul-
tiple highly efficient, but specialized TSAD algorithms. The result
of the anomaly detection is an aggregated anomaly score. Because
each internal TSAD algorithm has a special view on the time series
and a specific interpretation of anomalies, their ensemble can detect
different types of anomalies. AutoTSAD also exposes the ranking
of anomaly scores from the ensembled components for interactive
exploration and explainability. Its technical contributions are:

(1) A data generation module that creates diverse training
datasets for specific input time series with a novel regime creation
procedure and a comprehensive anomaly injection strategy (cf.
Section 4.2).

(2) An algorithm optimizationmodule that creates promising
algorithm configurations for a broad spectrum of anomaly types
based on novel parameter seeding, study pruning, and instance
selection strategies (cf. Section 4.3).

(3) A scoring ensembling module for TSAD algorithms cal-
culates score ranks and a final combined score with a novel com-
position of scoring, ranking, and aggregation approaches for time
series anomaly scores (cf. Section 4.4).

We evaluate AutoTSAD on 106 benchmark datasets and com-
pare its anomaly detection quality to six baselines, including three
anomaly detection ensembling methods [13, 58], a state-of-the-art
TSAD method selection approach [29], and two synthetic baselines
that summarize the results of 158 TSAD algorithms from a recent
benchmark [61] and the performance of our base components re-
spectively (cf. Section 5). The evaluation shows that AutoTSAD
achieves significantly better results than state-of-the-art TSAD algo-
rithms, ensembling techniques, and method selection approaches.

2 RELATEDWORK

Time series anomaly detection (TSAD). Research in TSAD has
a long history, and well over 150 algorithms have been proposed
and surveyed [8, 11, 15, 19, 61]. The algorithms stem from various
research communities, such as deep learning [31, 33, 36, 67, 76],
classic machine learning [56, 77], outlier detection [12, 17, 46, 48],
signal analysis [57, 70], or data mining [10, 38, 63, 81]. Due to the
typical lack of training data, most of the algorithms are unsuper-
vised (no training data) or semi-supervised (anomaly-free training
data) [61]. Because anomalies are context-dependent and manifold,
anomaly detection algorithms specialize on specific types of anom-
alies and time series and, thus, exhibit unique individual strengths.
Existing benchmarks agree that there is no single universally best
TSAD algorithm, parameterization is hard, and algorithm selection
is challenging [35, 52, 61, 71]. For this reason, AutoTSAD uses a
carefully chosen set of eight very well performing base algorithms
with unique strengths and method family properties.
Algorithm Selection. Algorithm selection approaches, also called
meta-learning approaches, try to identify the optimal algorithm for
a given dataset based on different dataset characteristics [60]. Most
approaches and, in particular, TSAD meta-learning techniques [68,
78, 80] rely on labeled datasets. They can, however, be applied
only if labeled training datasets with representative anomalies are
available, which is rarely the case. AutoTSAD, in contrast, does not
require any external training data and solves not only the algorithm
selection but also the algorithm parameterization task.

The unsupervised method selection technique TSADAMS [29]
circumvents the use of training data with three surrogate metrics
and Robust Rank Aggregation (RRA) to select the possibly best
method. The base methods in TSADAMS are semi-supervised fore-
casting algorithms, which require training data without anomalies.
Similar to TSADAMS, AutoTSAD also uses injected anomalies for
performance assessment and algorithm selection. However, it uses
unsupervised algorithms as base methods, regime segmentation in
the data generation, algorithm hyperparameter optimization for
fine-tuning, and algorithm ensembling (instead of selection), which
results in clearly better detection scores in our evaluation.
Algorithm Ensembling. AutoTSAD is an unsupervised, hetero-
geneous, bias- and variance-reducing, model-centered ensembling
system [1]. There exist many unsupervised outlier ensembling
techniques of various types (sequential vs. independent, bias- vs.
variance-reduction, data-centric vs. model-centric, . . .), but all of

2988

these techniques have been proposed for relational data and point
outliers [1]. The SELECT algorithm [58] is an unsupervised ensem-
bling technique for outlier detection in point data, but in the same
category as AutoTSAD. SELECT demonstrates that selectively
combining the results of different outlier detectors yields superior
performance compared to the individual approaches and standard
ensembling techniques, as the combination reduces both variance
and bias. SELECT’s applicability to TSAD is, however, limited (cf.
Section 5.2).AutoTSAD adopts SELECT’s selective ensembling idea
and applies it to time series (anomaly scores), but it utilizes proxy
metrics computed on synthetic training data for the instance selec-
tion, it ranks algorithm instances instead of individual data points,
and it uses score-wise instead of rank-wise combination methods.
AutoTSAD is the first heterogeneous, bias- and variance-reducing
ensembling approach designed for TSAD. In contrast toAutoTSAD
and SELECT, also homogeneous ensembling approaches exist. Ex-
amples are Sub-IF [48] and deep-learning-based ensembles, such
as RAE-Ensemble [41] or CAE-Ensemble [13]. Such ensembling
approaches mainly reduce variance, which leaves room for improve-
ment that AutoTSAD can successfully leverage (cf. Section 5.2).
With Sub-IF, we show that homogeneous ensembling approaches
can be used as an internal algorithm in AutoTSAD.

Hyperparameter optimization (HPO). AutoTSAD performs
HPO to find suitable hyperparameter values for the system’s base
anomaly detection algorithms. HPO takes a labeled training data
corpus, a target algorithm, and an optimization criterion as input;
it, then, executes the algorithm on the data corpus with different
hyperparameter values to maximize the algorithm’s performance
w. r. t. the optimization criterion. Most approaches choose values
randomly (random search) [7], systematically and exhaustively (grid
search) [24, 32, 44], or via exploration-exploitation-style sample
generation (Bayesian optimization (BO)) [54, 65, 66].

Opprentice [47] and Isudra [20] are two supervised HPO sys-
tems for TSAD algorithms that, in contrast to AutoTSAD, require
labeled training data. HYPEX [62] is an HPO framework that learns
a parameterization model from time series characteristics; like Au-
toTSAD, it also alleviates the need for labeled training data, but it is
less exact as it cannot specialize for specific (and different) types of
anomalies. Combined Algorithm Selection and Hyperparameter Opti-

mization (CASH) systems run the optimization of hyperparameters
and the selection of an algorithm in one process [25]. AutoTSAD
also serves both tasks, but instead of identifying a single best algo-
rithm, it finds an ensemble of multiple, possibly diverse algorithms.

3 TIME SERIES AND ANOMALIES

AutoTSAD is a system that detects anomalies in time series datasets.
To provide the formal background for the presentation of Auto-
TSAD, this section introduces the formal definitions for time series,
subsequences, and anomalies.

As already stated in Section 1, time series are univariate, if they
follow a single random variable, and multivariate, if they record
multiple random variables. We focus on univariate time series and
assume equidistant data points, which is a valid assumption formost
anomaly detection scenarios. This assumption is inherited from
the existing TSAD algorithms, which AutoTSAD uses internally;
noncomplying data series need to be discretized. Local regions of a

time series are called subsequences, and anomalies in a time series
are regions, i. e., subsequences, that deviate from the norm:

Definition 3.1 (time series). A univariate time series 𝑇 ∈ R𝑛 is a
sequence of real-valued points𝑇𝑖 ∈ R, where 𝑖 ∈ |𝑇 | and |𝑇 | = 𝑛. We
denote the length of the time series 𝑇 as |𝑇 | or 𝑛, and the 𝑖𝑡ℎ-point
of the sequence as 𝑇𝑖 .

Definition 3.2 (subsequence). A subsequence 𝑇𝑖,𝑚 of a time series
𝑇 is a continuous subset of the values in 𝑇 starting from index 𝑖
with length𝑚 =

|︁|︁𝑇𝑖,𝑚 |︁|︁: [𝑇𝑖 ,𝑇𝑖+1, . . . ,𝑇𝑖+𝑚−1], where 0 ≤ 𝑖 ≤ 𝑛 −𝑚.
Usually𝑚 ≪ 𝑛. For a given time series𝑇 , the set of all subsequences
in 𝑇 of length𝑚 is defined as T𝑚 =

{︁
𝑇0,𝑚,𝑇1,𝑚, . . . ,𝑇𝑛−𝑚,𝑚

}︁
.

Definition 3.3 (anomaly cf. [61]). A time series anomaly is a sub-
sequence 𝑇𝑖,𝑚 of length 1 ≤ 𝑚 < 𝑛 that deviates w. r. t. some
characteristic embedding, model, and/or similarity measure from
frequent patterns in the time series 𝑇 .

This anomaly definition covers subsequence anomalies as well as
point anomalies, which are subsequences with a length of 1 (𝑚 = 1).
The definition’s dependence on some characteristic embedding,
model, and/or similarity measure already shows the fuzzy nature of
anomalies and, therefore, the need for holistic detection approaches.

Time series anomaly detection (TSAD) is the process of marking
anomalies within a time series. Most TSAD algorithms compute
anomaly scores to assess the abnormality of the points in the time
series. However, the different method families use different ways
to compute this anomaly score, such as probabilities, distances, or
forecasting errors for points or subsequences. Thus, their meaning,
range, and ability to contrast normal and abnormal points varies
widely [42]. In line with related work [61], we use a point-wise
unified result format for all internally used algorithms called scoring
and transform the output of the algorithms into this format:

Definition 3.4 (scoring cf. [61]). Given a time series 𝑇 , a time
series scoring 𝑆 = [𝑆1, 𝑆2, . . . , 𝑆𝑛] with 𝑆𝑖 ∈ R is the result of a
TSAD algorithm that assigns each point 𝑇𝑖 ∈ 𝑇 an anomaly score
𝑆𝑖 ∈ 𝑆 . For any two scores 𝑆𝑖 and 𝑆 𝑗 , it must be true that if 𝑆𝑖 > 𝑆 𝑗 ,
then 𝑇𝑖 is more anomalous than 𝑇𝑗 (in their respective contexts).

The transformation of a scoring into binary labels (0 for normal
and 1 for abnormal points) is usually done by applying a threshold
to the scoring in a final step. If needed, e. g., for ranking, we use
the common thresholding strategy 2𝜎-thresholding that computes
a threshold 𝜃2𝜎 from the mean 𝜇 and the standard deviation 𝜎 of
the scoring 𝑆 : 𝜃2𝜎 (𝑆) = 𝜇𝑆 + 2 · 𝜎𝑆 . To measure the quality of an
anomaly scoring independent of a specific threshold, we utilize the
Area Under the range-based Precision-Recall-Curve [51] (RANGE-
PR-AUC) metric. RANGE-PR-AUC extends the popular point-based
Area Under the Precision-Recall Curve [21, 55] (AUC-PR) metric, such
that it puts the same weight on all to-be-detected anomalies in one
time series regardless of their lengths. AutoTSAD uses RANGE-
PR-AUC to optimize TSAD algorithms, rank their results, and judge
the final anomaly scores in our evaluation.

A snippet in a periodic time series is a subsequence with a spe-
cific, re-occurring pattern [34]. A time series that follows the same
repeating snipped is called a regime. Regimes often describe states,
such as heart rates at different activities. Because TSAD algorithms
are most effective when tuned on specific regimes, we use regiming
for training data generation.

2989

4 AUTOTSAD

AutoTSAD is an anomaly detection system that utilizes a diverse
ensemble of state-of-the-art anomaly detection algorithms for an
exhaustive and unsupervised analysis of univariate time series. In
this section, we introduce this novel system that, similar to existing
TSAD algorithms, takes a single univariate time series 𝑇 as input
and produces an anomaly scoring 𝑆 as output. The general anomaly
detection approach works as follows: AutoTSAD, first, uses the
input time series as a seed to generate a diverse set of training time
series that cover the different motifs of the input time series and
a wide range of potential anomalies. With this training data, our
system, then, automatically parameterizes and selects promising
algorithm configurations in a joint optimization attempt. These
configurations, i. e., algorithm instances, are subsequently executed
on the original input time series, resulting in a comprehensive set
of more or less relevant anomaly scorings. Afterward, AutoTSAD
ranks the scorings and combines the top-ranked results into a final
aggregated scoring 𝑆 . In addition to 𝑆 , AutoTSAD can also provide
a score ranking as output that users can interactively explore.

In this section, we give an overview of AutoTSAD’s architecture
(Section 4.1) and, then, explainAutoTSAD based on its sequentially
executed modules: (i) data generation (Section 4.2), (ii) algorithm
optimization (Section 4.3), and (iii) scoring ensembling (Section 4.4).

4.1 Architecture

AutoTSAD consecutively executes the three modules data genera-
tion, algorithm optimization, and scoring ensembling. As shown in
Figure 2, these modules contain the following processing steps:

(1) The data generation (Section 4.2) module generates a di-
verse set of synthetic training time series by (i) analyzing the input
time series for dominant periods and snippets that form represen-
tative subsequences, (ii) extracting different coherent regimes as
base behaviors, (iii) cleaning the regimes to remove potentially
anomalous subsequences, and (iv) injecting (potentially multiple)
different anomaly configurations to produce labeled training time
series. This leads to a set of up to 120 diverse training time series.

(2) The algorithm optimization (Section 4.3) uses the pre-
labeled training time series to create a pool of optimized, possibly
diverse algorithm configurations by (i) seeding the optimization pro-
cess with promising hyperparameter settings, (ii) applying Bayesian
optimization (BO) for the hyperparameter and algorithm search,
(iii) pruning unpromising or already fully optimized algorithm
types, and (iv) pruning redundant training time series. The op-
timization module’s output is a relatively small set of algorithm
instances that together successfully solve all time series in the train-
ing corpus. The hyperparameter optimization process is an optional
step in AutoTSAD (cf. dashed steps in Figure 2) because our default
values already provide good results in practice.

(3) The scoring ensembling (Section 4.4) ensembles the final
ranking by (i) executing the algorithm instances on the input time
series, (ii) ranking the best algorithm instances, and (iii) aggregating
their anomaly scorings to show them to the user.

AutoTSAD exposes various configuration options for expert
users to tailor its behavior to specific requirements. Configuration
options are, for example, the list of internal algorithms, the types
of injected anomalies, the optimization metric, pruning switches,

and limits for maximum training time series lengths or maximum
number of optimization trials. For our evaluation and general us-
age of AutoTSAD, we, however, suggest a conservative default
configuration that provides reliably good results (cf. Section 5).

Many steps of AutoTSAD can be executed in parallel. For these
steps, AutoTSAD uses a (cached) pool of processes, distributes
the tasks evenly across them, and collects all results in the main
process when the tasks are finished. Figure 2 shows parallel steps,
such as the dataset analysis, anomaly injection, or algorithm instance

execution, as staggered boxes.

4.2 Data Generation

The first modules’ goal is to produce, based on the input time series,
a diverse set of training time series that can be used to optimize and
select algorithm instances. To capture the variance of the input time
series, we analyze the dataset (Section 4.2.1) and extract multiple
representative regions from it (Section 4.2.2). After a thorough
cleaning step (Section 4.2.3), we assume that the extracted regions
consist of only normal subsequences. Because AutoTSAD does not
know the properties of the anomalies in the input dataset, it injects
(potentially multiple) different synthetic anomalies into the base
time series (Section 4.2.4). In this way, the resulting training time
series represent different motifs of the input time series and cover a
wide variety of precisely labeled potential anomalies. AutoTSAD’s
training data generation approach is similar to data augmentation
for self-supervised learning methods [36, 37]. However,AutoTSAD
does not only inject synthetic anomalies, but also extracts and cleans
different regimes of the input time series.

4.2.1 Dataset Analysis. Often, time series consist of multiple re-
gions with different characteristics. For example, jet engine mea-
surements differ at takeoff, climb, cruise, descend, landing, and taxi.
The first step of the training data generation, therefore, reads the
input time series, extracts the dominant period length, and discov-
ers time series snippets, each based on prior methods. The period
length is used in multiple places throughout the AutoTSAD system
to improve the effectiveness and the efficiency of the processes. We
use the period length (i) to set the window size parameter of the
snippet discovery algorithm, (ii) to fix gaps in regimes and remove
undersized parts of regimes, (iii) to set the window size parameter
of the cleaning algorithms, (iv) to avoid creating too small training
time series, (v) to set the length of the injected anomalies, and (vi) to
initialize window size hyperparameters during HPO.

If the input time series consists of multiple regions with different
characteristics, we need to generate training time series that cover
all those regions. Hence, we use a snippet discovery algorithm to
discover distinct representative subsequences in the input time
series. If there are multiple different regions in the time series, we
discover multiple snippets and use them to extract the different re-
gions. In the following paragraphs, we explain the period detection
and snippet discovery process in detail.

Period Detection. To estimate the dominant period length in the
input time series, we use a simple, yet effective, feature extraction
method from tsfresh [18] called number_peaks. This method counts
the number of points in the input time series that have a larger
value as their 𝑛 left and right neighbors [18]. We use a conservative

2990

Dataset Analysis
Dataset Analysis

Regime Extraction
Regime Extraction

Regime Cleaning
Regime Cleaning

Anomaly Injection
Anomaly Injection

Data Generation (Section 4.2)

t
r
a
i
n
i
n
g
t
i
m
e
s
e
r
i
e
s

Optimization Seeding

HPO

Hyperparameter Optimization

Search Space Pruning

Algorithm Instance Selection

Algorithm Optimization (Section 4.3)

a
l
g
o
r
i
t
h
m

i
n
s
t
a
n
c
e
s

Algorithm Instance Execution
Algorithm Instance Execution

Algorithm Instance Ranking

Scoring Aggregation

Scoring Ensembling (Section 4.4)

Figure 2: Overview of the AutoTSAD process with the three modules Data Generation, Algorithm Optimization, and Scoring

Ensembling. Parallel steps are shown with staggered boxes and optional steps with dashed lines. The output of AutoTSAD is an

aggregated anomaly scoring and optionally a ranking of anomaly scorings.

support of 𝑛 = 100. To estimate the dominant period length, we
devide the time series length by the number of peaks. If the time
series has no significant periodicity, number_peaks detects very
few to no peaks and the computed period size explodes. Because
current TSAD algorithms cannot deal with very large window sizes,
we limit the period size to below 600 data points, and ignore larger
periods. AutoTSAD deals with this edge case by using fallback
mechanisms in all places where a period length would be used. For
example, we fall back to sampled fixed-length subsequences for the
regime extraction process (cf. Section 4.2.2) and, as relatedwork [61],
use a default value of 100 for the window size parameters.

Snippet Detection. Time series snippets are distinct representative
subsequences in a time series that balance fidelity (low distance to a
part of the time series) and coverage (representative of large regions
of the time series) [34]. Because they are the ideal tool to detect and
extract potentially diverse regions, AutoTSAD extracts the 𝑘 most
representative snippets from our input time series. The optimal
𝑘 in this extraction depends on the input time series and period
length, and is determined automatically in the snippet detection
process. For the implementation of this step, AutoTSAD uses the
snippet discovery algorithm Snippet-Finder [34]. This algorithm
executes a classic greedy search strategy to identify the 𝑘 most
representative snippets in the input time series (with a conservative
𝑘𝑚𝑎𝑥 = 𝛿𝑚𝑎𝑥_𝑠𝑛𝑖𝑝𝑝𝑒𝑡𝑠 = 5 because time series rarely have more
than one snipped per dominant period length). Snippet-Finder
leverages the following two data structures to guide the search: the
snippet profile and the snippet profile area.

The snippet profile is a new (shorter) time series that captures
the distance between a subsequence (the snippet) and all (sliding
window) subsequences of the time series:

Definition 4.1 (snippet profile cf. [34]). Given a snippet 𝑇𝑖,𝑚 as a
subsequence of 𝑇 , the snippet profile 𝑃𝑖,𝑚 =

[︂
𝑃
𝑖,𝑚
0 , 𝑝

𝑖,𝑚
1 , . . . , 𝑝

𝑖,𝑚
𝑛−𝑚

]︂
is a sequence of distance values 𝑃𝑖,𝑚

𝑗
= 𝑀𝑃𝑑𝑖𝑠𝑡 (𝑇𝑖,𝑚,𝑇𝑗,𝑚) com-

puted between the snippet𝑇𝑖,𝑚 and all subsequences T𝑚 of𝑇 using
the MPdist distance measure.

The distances are computed using the robust MPdist distance
measure [28]. For example, given the time series of Figure 3 (A), then
Figure 3 (B) shows the top-5 snippet profiles with window size 100.
The corresponding snippets are listed in the legend. The smaller the
distance in the snipped profile is, the better its snipped describes
the time series at the considered point. Hence, the snippet with the
smallest distance (ideally close to zero) in some region describes
that region best. The more snippets we consider, the better the set of
snippets can approximate every segment in the time series. Because
AutoTSAD requires only the most significant snippets, a selection
is needed. Snippet-Finder considers the snippet profile area, which
is the area under the element-wise minimum of all snippet profiles,
to find a possibly small, but well enough snippet set:

Definition 4.2 (profile area cf. [34]). For a given list of snippets
𝑇𝑇 =

[︁
𝑇𝑖,𝑚 |0 ≤ 𝑖 ≤ 𝑛 −𝑚, 3 < 𝑚 ≪ 𝑛

]︁
of length 𝑙 = |𝑇𝑇 | for time

series 𝑇 and their respective snippet profiles 𝑃𝑃 = [𝑃𝑖,𝑚 ∀𝑇𝑖,𝑚 ∈
𝑇𝑇] also of length 𝑙 , we can compute a new curve𝑀 as the elemen-
twise minimum of all snippet profiles: 𝑀 = [𝑀0, 𝑀1, . . . , 𝑀𝑛−𝑚],
where 𝑀𝑗 = 𝑚𝑖𝑛

(︂ [︂
𝑃
𝑖,𝑚
𝑗

∀𝑃𝑖,𝑚 ∈ 𝑃𝑃

]︂)︂
. The profile area 𝐴 is the

(discrete) area under the curve𝑀 : 𝐴 = Σ𝑛−𝑚
𝑗=0 𝑀𝑗 .

With increasing 𝑘 , the snippet profile area shrinks constantly. To
determine a small number of snippets𝑘 that also possibly minimizes
the snippet profile area, we execute Snippet-Finder with all 𝑘 ∈
{1, ..., 𝑘𝑚𝑎𝑥 } and use the knee-finding algorithm on the change in
the profile area over 𝑘 [34, Sect. 3B]. Figure 3 (C) displays the change
in the profile area when considering the top-𝑘 snippets compared
to the top-(𝑘 − 1) snippets. The best 𝑘 has the highest change in the
profile area, thus, 𝑘 = 4 is optimal for this example. The snipped
detection finally forwards the top-𝑘 snippets with their profiles to
the regime extraction.

4.2.2 Regime Extraction. AfterAutoTSAD analyzed the input time
series, it extracts certain subsequences that correspond to poten-
tially different base behaviors, such as takeoff, cruise, and landing
of a plane. These regimes will later serve as the foundation for
generating training time series. By default, we use the previously
detected snippets and their profiles to extract various regimes from

2991

(A) Timeseries

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

(B) Snippet profiles

1

2

3

4

5

k

(C) Δ profile area

Snippet #1
Snippet #2

Snippet #3
Snippet #4

Snippet #5
Optimal k

Figure 3: Regime extraction process using snippets of length

𝑚 = 100 and 𝑘𝑚𝑎𝑥 = 5: (A) Input time series partitioned into

snippet-based regimes with a zoom-in on a subsequence that

is not covered by the selected regimes. (B) Distance profile for

each snippet. (C) Change in the profile area when comparing

the top-𝑘 area to the top-(𝑘 − 1) area.

the input time series with a specific snippet-based extraction tech-
nique. However, if we could not extract any snippets or if there is
only a single snippet, AutoTSAD falls back to a sampling-based

strategy. In the following, we describe both the snippet-based and
the sampling-based extraction in more detail.

Snippet-based Extraction. The snippet-based extraction uses the
snippet profiles to identify subsequences of the time series that are
covered by a specific snippet. We call all subsequences of the same
snippet a regime. Given the snippet profiles PP for a period length
𝑚, we can easily calculate the profile area curve𝑀 as described in
Definition 4.2. The element-wise minima in 𝑀 partition the time
series into up to 𝑘 different snippet types. A coherent subsequence
of a specific snippet might be longer or shorter.AutoTSAD extracts
all these subsequences, groups them by snippet type, and concate-
nates the grouped sets to retrieve one possibly long regime for each
snipped type. To make the described regime extraction process
work in practice, we have to add a few additional considerations
that we describe in the following.

Because the concatenation leaves sharp cut points between the
concatenated subsequences that anomaly detection algorithms will
identify as anomalous, AutoTSAD needs to track all cut points and
deal with them appropriately: (i) When fetching an actual training
time series from a regime, we choose a concatenated subsequence
with a minimal number of cut points, (ii) when injecting anomalies
into the regimes, we ensure an anomaly-free margin around the cut
points, and (iii) when optimizing the TSAD algorithms, we mask
the cut points, such that the algorithms do not see them.

If certain snippets were chosen badly or if the dataset is partic-
ularly chaotic, the regime extraction sometimes produces highly
fragmented regimes with many cut points. To reduce regime frag-
mentation, AutoTSAD first identifies subsequences, which are
shorter than one period length (technically 0.95 ·𝑚 or shorter). If
such a short subsequence lies between two sufficiently long subse-
quences of another regime in the profile area curve𝑀 , AutoTSAD

resolves the short subsequence by assigning it to the surrounding
regime. The remaining, not re-assignable short subsequences, such
as the zoomed-in subsequence in Figure 3 (A), are simply dropped,
as the cut-point masking would ignore them anyway.

Despite the short subsequence removal, regimes might still be
highly fragmented. To measure the degree of fragmentation in
a regime, AutoTSAD measures every regimes’ median number
of consecutive periods. If the median is less than five consecutive
periods (5 ·𝑚), we consider the regime as highly fragmented. The
threshold 5 ·𝑚 works well as a static decision criterion, because
fragmentation is usually either very high (1-2 periods) or very
low (hundreds of periods). AutoTSAD removes every highly frag-
mented regime and corresponding snippet. It, then, restarts the
entire regime extraction with the reduced number of snippets. Snip-
pet #1 in Figure 3 (B), for example, generates only one tiny regime
at𝑇1900,100. Because the regime’s size of 100 is below the 5 ·𝑚 = 500
threshold, it is excluded entirely.

Sampling-based Extraction. If the entire time series consists of
only a single normal behavior, AutoTSAD cannot do any better
than taking a random subsequence for generating training time se-
ries. This simple random sampling (SRS) strategy, which has shown
to be competitive in many domains [34], is also the fallback strategy
if either the period detection or the snipped extraction produced
empty results. SRS, then, randomly cuts at most two continuous
regimes without overlap from the time series. The length of the
extracted regimes is chosen 10% larger than the desired training
data length (cf. Section 4.2.3) to allow some further reduction in the
subsequent cleaning step. If the input time series is shorter than this
length, AutoTSAD selects the entire time series without sampling.

4.2.3 Regime Cleaning. To generate well labeled training data from
the regimes, AutoTSAD tries to avoid the real anomalies in the
input dataset – otherwise, we might train the algorithms to ignore
them. The short subsequence removal in the previous step has
already removed some potential anomalies, but others may still
prevail, especially when SRS was used. Thus, AutoTSAD employs
an additional, aggressive cleaning step that removes possibly many
anomalous points from our regimes.

For the cleaning, AutoTSAD executes our internal TSAD algo-
rithms with their default parameters and the window sizes𝑚 and
𝑚
2 on each extracted regime. Then, it removes from every regime all
points, for which a stable majority of at least 75% of the algorithm
instances (with default parameters) agree that they are anomalous.
An algorithm defines a point of a regime as anomalous by applying
a threshold on its anomaly scoring to produce binary predictions;
all points above the threshold are anomalous. Initially, AutoTSAD
sets this threshold to the 90-th percentile of the scoring. To alleviate
the impact of unreliable results that produce highly fragmented
predictions with many short anomalous subsequences, AutoTSAD
dynamically increases the threshold for some algorithms: It counts
the predicted anomalies, which are contiguous subsequences of
anomalously predicted points, and increases the threshold until the
algorithm does not report more than half of the number of periods
in the regime as anomalous. This dynamic threshold is purposefully
aggressive but retains sufficiently large portions of the regimes for
training. Wherever AutoTSAD removes points from a regime, it
introduces new cut points.

2992

outlier 22% noise 2% vmirror 12%

compress 3% smoothing <1% scale 5%

stretch 8% hmirror <1% pattern 46%

Figure 4: The synthetic anomaly types that can be injected

into the regimes and their occurrences in the benchmark

datasets; the original regimes are shown in light blue and the

resulting training time series in dark blue.

What remains from the regimes is now trimmed to a maximum
length 𝑙 of 2000 or 10 ·𝑚 points, whichever is larger. For a useful
trimming result, AutoTSAD extracts the subsequences of length 𝑙
from each regime, such that it contains the least number of cut points.
The overall length restriction is necessary, because AutoTSAD’s
algorithm optimization step is an iterative process and would starve
on extremely long regimes, i. e., training time series.

4.2.4 Anomaly Injection. The final step in the data generation
module is the injection of synthetic anomalies into the extracted,
cleaned, and trimmed regimes. For each regime, AutoTSAD applies
different anomaly injection configurations, which results in a rich
set of training time series with different anomalies and base regimes.

The injected anomalies cover nine different types (see Figure 4):
(i) deviation of a single point (outlier), (ii) reduction of the resolu-
tion (compress), (iii) increase in the resolution (stretch), (iv) addition
of Gaussian or white noise (noise), (v) removal of small deviations
(smoothing), (vi) reversal in the time axis (vmirror), (vii) mirroring
on the mean value (horizontal axis) (hmirror), (viii) amplitude mag-
nification or reduction by some factor (scale), and (ix) interference
with one of ten different signals generated with, in our case, the
GutenTAG time series generator [73] (pattern). These types cover
all anomalies in our evaluation datasets and they also cover all
anomaly types discussed in related works [29, 36, 37, 52, 73]. The in-
jection process transforms the respective regimes and may slightly
alter their lengths (e. g., for compress or stretch). The process config-
uration is also customizable, but we recommend using our default
values, which have empirically shown to produce reliable and ro-
bust results; AutoTSAD’s documentation explains the parameters
and their default values in more detail. The default configuration
uses all anomaly types and four representative anomaly lengths.
Besides the configuration parameters, AutoTSAD determines the
remaining anomaly properties, such as the anomaly positions, their
strengths, and their order, via random sampling. The placement
chooses random positions biased towards the middle of the time se-
ries, while enforcing margins around the anomalies and cut points.
If the injection process cannot insert all desired anomalies due to a
lack of viable positions, the current configuration is ignored. Be-
cause AutoTSAD injects for each anomaly type and each anomaly
length one anomaly into each regime, the process generates up to 36

Table 1: All unsupervised TSAD algorithms in AutoTSAD

with their method family, research area, supported dimen-

sionality (uni- or multivariate), and programming language.

Algorithm Area [61] Family [61] Dim. Lang.

STOMP [81] Data Mining distance uni Python
k-Means [77] Classic ML distance multi Python
Sub-KNN [56] Classic ML distance uni Python
Sub-LOF [12] Outlier Det. distance uni Python
Sub-IF [48] Outlier Det. trees uni Python
GrammarViz [63] Data Mining encoding uni Java
Torsk [31] Deep L. forecasting multi Python
DWT-MLEAD [70] Signal A. distribution uni Python

training time series per base behavior, of which up to 𝛿𝑚𝑎𝑥_𝑠𝑛𝑖𝑝𝑝𝑒𝑡𝑠
have been extracted from the input time series.

4.3 Algorithm Optimization

The second module’s goal is to build a set of promising algorithm
instances that can successfully detect the synthetic anomalies in the
diverse training time series, and by proxy work well on the input
dataset. AutoTSAD is an ensembling system that builds on a care-
fully chosen set of eight base TSAD algorithms that perform well
and have unique strengths. Table 1 lists the algorithms with their
research area and method family. Note, though, that AutoTSAD
allows the addition of more or different algorithms.

STOMP [81] efficiently computes the matrix profile, a vector
representing the Euclidean distance between all z-normalized sub-
sequences and their nearest neighbors. The distances in the matrix
profile can be used as anomaly scores. k-Means [77], Sub-KNN [56],
Sub-LOF [12], and Sub-IF [48] slide a fixed-length window over
the time series to generate subsequences. k-Means clusters these
subsequences, and uses the distance to their nearest cluster center
as anomaly scores, Sub-KNN computes the distance to the subse-
quences’ 𝑘𝑡ℎ nearest neighbor, and Sub-LOF computes the local
outlier factor (LOF) (a measure for how isolated a subsequence is
from its local neighborhood). Sub-IF builds an ensemble of trees
isolating the subsequences from each other; anomalies are easier to
isolate and, thus, are close to the root. The reciprocal of the average
path lengths from each subsequence to the tree roots are used as
anomaly scores. GrammarViz [63] is based on symbolic discretiza-
tion and grammar inference. It discovers variable-length time series
patterns and uses the grammar rule coverages as anomaly scores.
Torsk [31] is a deep learning algorithm that uses echo state networks
to forecast time series’ points; anomalies are harder to forecast, so
their predictions deviate significantly from the observed values.
The prediction errors are, therefore, used as anomaly scores. DWT-

MLEAD [70] computes the discrete wavelet transform (DWT) over
many levels and utilizes maximum likelihood estimation (MLE)
to fit Gaussian distributions on windows of each level. For each
point, the log-likelihoods of its windows in the different levels are
aggregated to form anomaly scores.

To ensure that AutoTSAD can build a capable ensemble of opti-
mized algorithm instances, we need to optimize the hyperparame-
ters of the base algorithms on the training time series, choose the

2993

best candidates, and measure their strengths for the ensembling.
This is implemented in an efficient four-step HPO process: First,
we initialize the search with intelligently chosen hyperparameter
values (Section 4.3.1). Then, we run the hyperparameter search for
a fixed number of trials (Section 4.3.2), prune the search space (Sec-
tion 4.3.3), and repeat this step until convergence or the maximum
number of trials is reached. At the end, we select the best algorithm
instance for each training time series and compute its performance
on all training time series as a proxy for its real performance on the
actual input dataset (Section 4.3.4). Because we already have good
heuristics to set the hyperparameters of our current selection of
base algorithms (from TimeEval), HPO and search space pruning
are optional (dashed steps in Figure 2).

4.3.1 Optimization Seeding. We initialize the hyperparameters of
each algorithm with the manually optimized values from the Time-
Eval benchmark (including window size heuristics based on Auto-
TSAD’s detected period sizes) [61, 73]. If we lack TimeEval heuris-
tics for an algorithm, we use its default hyperparameter values.

4.3.2 Hyperparameter Optimization. AutoTSAD optimizes the hy-
perparameters of every base algorithm for every training time se-
ries separately and relies on different pruning techniques to reduce
the search space (cf. Section 4.3.3). We use Bayesian optimization
(BO) [54] to efficiently explore the search space and RANGE-PR-
AUC as the optimization criterion.

AutoTSAD uses the Optuna library [3] for the implementation
of the BO process with the CMA-ES (Covariance Matrix Adapta-
tion Evolution Strategy) [30] for real-valued hyperparameters and
the TPE (Tree-structured Parzen Estimator) [6] as a fallback for
categorical and integer hyperparameters. AutoTSAD configures
both sampling strategies to use 100 random guesses to explore
the hyperparameter search space before exploiting existing trials
to provide informed suggestions. Every combination of base algo-
rithm and training time series is one independent Optuna study
in AutoTSAD, for which the system performs a maximum of 800
trials. AutoTSAD stops the optimization process every 80 trials to
prune non-promising studies. The first round is allowed 160 trials to
have a better decision basis for pruning. AutoTSAD uses two stop
conditions that are evaluated after each trial: A study is stopped
when either the maximum number of trials (800) is reached, or
when AutoTSAD found ten hyperparameter settings with a quality
≥ 0.95, which is sufficiently good considering that our training
data also only approximates the real anomalies. The chosen BO
configuration (100 guesses, 800 trails, 160 warm-ups, 10 stopping)
is a fair compromise between runtime and effectiveness.

4.3.3 Search Space Pruning. Despite the initial optimization seed-
ing step, all studies are processed independently of each other. We
can, however, leverage information from already executed studies
to prune entire studies from our search space. Algorithm config-
urations of pruned studies are not optimized, but they are still
considered in the subsequent processing steps. After every round
of optimization,AutoTSAD evaluates two pruning rules:Algorithm
pruning stops the study of the worst performing algorithm for each
dataset if still more than one algorithm per dataset remains. Dataset
pruning stops all but one representative study for a group of similar
datasets that are successfully solved by the same algorithm with

(E)

⋆
(A)

⋄
∘
+

⋆
(B)

⋄
∘
+

TQ TR AP KM GD
 E

SD
GD

 A
OD

M
M

Q
ES

D
M

M
Q

AO
D

2
3
1
4

2
3
1
4

2
5
5
1

5
3
1
2

4
3
1
2

3
4
1
2

2
4
1
3

2
3
1
4⋆

⋄
∘
+

(C) RR
A

3
4
1
2⋆

⋄
∘
+

(D)

⋆ Torsk
⋄ kMeans

∘ GrammarViz
+ Sub-LOF

Input TS
Mean(⋆,⋄,+)

Figure 5: Scoring ensembling process with 𝑘 = 3: (A) → (B)

Gaussian scoring normalization, (B) → (C) algorithm in-

stance ranking, (C) → (D) Robust Rank Aggregation, and,

(B, D) → (E) Mean scoring aggregation.

the same hyperparameter configuration; at the end of the optimiza-
tion process, AutoTSAD then considers the best hyperparameter
configuration of the representative study as the best configuration
for all datasets in the entire group if the configuration leads to a
better detection quality than the initial configuration.

4.3.4 Algorithm Instance Selection. After all studies have been
processed (or simply skipped), AutoTSAD builds a set of well-
performing algorithm instances by selecting the best algorithm
instance for each training time series. In this way, AutoTSAD
translates the variance in the input time series and the variety of
potential anomalies into a broad, but still concise ensemble of algo-
rithm configurations. To increase the variance further and ensure
that every algorithm is present at least once, AutoTSAD adds each
algorithm with its default hyperparameter values if it is not yet
present in the set. After selecting the best algorithm instances, Au-
toTSAD executes these algorithm instances on all training time
series to compute proxy performance metrics. If an algorithm in-
stance was already executed on a training time series during the
previous optimization step, AutoTSAD uses the existing results. As
proxy metrics, we compute for each algorithm instance the mean

quality (RANGE-PR-AUC per default) over all training time series
to capture the algorithm instance’s absolute anomaly detection
effectiveness and the number of datasets, for which this algorithm
instance performed best, to capture the algorithm instance’s relative
effectiveness. AutoTSAD, finally, stores the set of top-performing
algorithm instances and their proxy metrics for the ensembling.

4.4 Scoring Ensembling

The third module’s goal is to compute the final anomaly scoring
of AutoTSAD. This process is visualized in Figure 5 (A-E). Auto-
TSAD, first, executes the best-performing algorithm instances from
the previous step on the actual input time series to retrieve their
anomaly scorings (A) and normalize the scoring ranges (B) (Sec-
tion 4.4.1). Then, it runs different algorithm selection and ranking
methods that use the proxy performance and scoring diversity of
the algorithm instances to create interesting score rankings (C). The
rankings are, subsequently, aggregated into a single ranking (D) of
up to size 𝑘 (Section 4.4.2). In a last step, AutoTSAD computes a
single final ensemble scoring 𝑆 (E) by aggregating the scorings of

2994

the 𝑘 selected algorithm instances (Section 4.4.3). Because this pro-
cess precomputes the scorings for all suggested ranking methods, it
allows the user to further explore and tune the results interactively.

4.4.1 Algorithm Instance Execution. The first step takes all algo-
rithm instances that survived the selection step and executes them
on the entire input time series. The resulting anomaly scorings are,
then, used in the next steps to capture diversity in the rankings.

The executed algorithms differ in the way they compute their
anomaly scorings. For example, distancemethods (STOMP, k-Means,
Sub-KNN, and Sub-LOF) use the distance to a normal model as the
anomaly score, while distribution methods (DWT-MLEAD) use a
probability or likelihood as the anomaly score. These differences
foster diversity in the score rankings, but they also necessitate that
we calibrate and unify the score ranges before computing any diver-
sity measures or aggregated scores [42]. To scale all scorings to be
in [0, 1], AutoTSAD uses Gaussian normalization, which is the pre-
ferred normalization method for outlier/anomaly scores [42] and
also performed best in our evaluations. It converts any scoring 𝑆 to
probabilities 𝑆∗ assuming a Gaussian distribution by transforming
every score 𝑆𝑖 ∈ 𝑆 to 𝑆∗

𝑖
= erf

(︂
𝑆𝑖−𝜇𝑆√
2𝜎𝑆

)︂
, where 𝜇𝑆 is the scoring’s

mean, 𝜎𝑆 is its standard deviation, and erf () is the error function.

4.4.2 Algorithm Instance Ranking. The second step of the ensem-
bling takes as input (i) the proxy metrics mean quality and number

of datasets from theAlgorithm Instance Selection step and (ii) the nor-
malized scorings of the algorithm instances on the input time series
from the Algorithm Instance Execution step. Because we found many
interesting ranking methods for the anomaly scorings (and their
respective algorithm instances), we take the following approach
to create a single, possibly robust and diverse ranking: We first
let AutoTSAD create multiple individual rankings using different
ranking heuristics. Afterward, AutoTSAD aggregates all rankings
via Robust Rank Aggregation (RRA) [29] into a single ranking. From
this ranking, the top-𝑘 algorithm instances are selected for the final
ensemble. We use 𝑘 = 6 as default to potentially cover all algorithm
families in one ranking. The ranking step in AutoTSAD covers six
ranking methods that each implement a unique ranking heuristic:

(1) Training Quality (TQ) simply ranks algorithm instances
based on their mean quality proxy scores. The algorithm instance
with the highest mean quality on the training data is ranked first.

(2) Training Result (TR) ranks algorithm instances based on
their normalized mean of both proxy metrics, mean quality and
number of datasets. Again, high scores are ranked first.

(3) K-Medoids Clustering (KM) uses 𝑘-medoids clustering [53]
with a scoring distance metric to create 𝑘 diverse clusters of al-
gorithm instances. AutoTSAD chooses 𝑘 to equal the maximum
number of algorithm instances in the ensemble and selects the clus-
ter medoids as ensemble candidates. The medoids are, then, sorted
descending by their proxy metrics.

(4) Affinity Propagation Clustering (AP) uses affinity prop-

agation clustering [26] with a scoring distance metric to create
diverse clusters of algorithm instances. Affinity propagation clus-
tering determines the optimal number of clusters automatically, and
AutoTSAD uses the algorithm instances belonging to the cluster
centers as ensemble candidates. The selected algorithm instances
are again sorted descending by their proxy metrics.

(5) Greedy (GD) is a ranking strategy comparable to Farthest
Point Sampling (FPS) in point cloud analysis [45, 49] or image sam-
pling [23] and, hence, tries to maximize the diversity in the ranked
scorings. For initialization, the greedy strategy selects the scoring
of the algorithm instance with the highest number of datasets proxy
metric value as the first element in the ranking. Then, it iteratively
adds those scorings to the ranking that maximize the scoring dis-
tance to all already contained scorings in the ranking. The process
ends when all scorings are part of the ranking.

(6) Maximal Marginal Quality (MMQ) is comparable to the
Maximal Marginal Relevance (MMR) criterion from information
retrieval [14]. It tries to balance the quality and diversity of the
scorings by also building the candidate list greedily. AutoTSAD
uses training-quality as the quality measure and a scoring distance
as the diversity measure. As the first element in the ranking, MMQ
selects the algorithm instance with the highest quality. For all fol-
lowing elements, it iteratively chooses the algorithm instance that
maximizes a weighted score of quality and maximum distance to
the existing algorithm instances. For AutoTSAD, we propose a
weighting of 30% quality to 70% diversity. The MMQ strategy fin-
ishes when all algorithm instances have been added to the ranking.

The different rankings are all biased towards specific metrics and
diversity-creating selection strategies. AutoTSAD, therefore, uses
RRA to combine the (noisy) rankings of all ranking methods into a
single scoring ranking. More specifically, we use the Minimum In-

fluence Metric (MIM) method [29, Section A.7.2], which works well
for algorithm selection use cases [29]. It computes the empirical
influence of each algorithm instance on an all-encompassing Borda
ranking. The algorithm instances are, then, ranked with increasing
influence: High influence indicates “bad” rankings, while low in-
fluence indicates “good” rankings. The RRA method is the default
ranking technique in AutoTSAD, but AutoTSAD’s user interface
allows exploring the results of all ranking strategies.

The attentive reader might have noticed that the ranking strate-
gies (3) to (6) rely on a scoring distance, which is a distance measure
for two anomaly scorings. This distance can be calculated in various
ways. InAutoTSAD, we utilize the two scoring distances, Euclidean
Scoring Distance and Annotation Overlap Distance.

The Euclidean Scoring Distance (ESD) is computed directly on
the point-wise anomaly scorings, which is possible because the
scorings from different algorithm instances have the same length.
After normalization in the previous step, the values are also in the
same range and comparable to each other. Thus, we can simply
apply the Euclidean distance function to each pair of scorings in

the ensemble: 𝑑𝐸𝑆𝐷 (𝑆𝑖 , 𝑆 𝑗) =
√︂(︁

𝑆𝑖 − 𝑆 𝑗
)︁2. The Euclidean distance

captures small variations in the scorings and is sensitive to large
differences in single points. This emphasizes point outlier detections
in the rankings. However, also small differences for many points
sum up over the time series, which might lead to the inclusion of
non-optimal scorings in the rankings.

The Annotation Overlap Distance (AOD) uses the Jaccard index
on the binary predictions received after applying 2𝜎-thresholding
(cf. Section 3) on each anomaly scoring. We, first, compute the bi-
nary predictions 𝑃 𝑗 for all scorings 𝑆 𝑗 of the candidate algorithm

2995

instances by 𝑃
𝑗
𝑖
= 1

(︂
𝑆
𝑗
𝑖
≥ 𝜃2𝜎 (𝑆 𝑗)

)︂
for all points 𝑆 𝑗

𝑖
∈ 𝑆 𝑗 . Then,

we compute the Jaccard distance for a candidate pair of algorithm
instances 𝑖 and 𝑗 using 𝑑𝐴𝑂𝐷 (𝑃𝑖 , 𝑃 𝑗) = |𝑃𝑖∩𝑃 𝑗 |

|𝑃𝑖∪𝑃 𝑗 | . The AOD is more
robust to small changes in the scores compared to the ESD, and al-
lows us to include algorithm instances in the ensemble that consider
different parts of the time series as anomalous.

The ranking strategies (3) and (4) use ESD. For the ranking
strategies (5) and (6), AutoTSAD considers both scoring distance
metrics; thus, they actually produce four rankings. This leads to
overall eight different ranking strategies plus their RRA.

4.4.3 Scoring Aggregation. Because rank-wise aggregation looses a
lot of information [1], especially the temporal context, AutoTSAD
aggregates the results of the algorithm instances score-wise to
produce a final scoring 𝑆 . Let S be the ranking of chosen scorings
for the final aggregation with |S| = 𝑘 . All 𝑆𝑖 ∈ S are already in
[0, 1] because the aggregation is performed after the unification of
the anomaly scorings (cf. Section 4.4.1). This allows AutoTSAD to
use either of two traditional aggregation methods: Max or Mean.

Max aggregation calculates the element-wise maximum anomaly
score over all scorings. Hence, we aggregate each index 𝑖 in the
scorings as 𝑆𝑖 = 𝑚𝑎𝑥

(︂
𝑆0
𝑖
, . . . , 𝑆

𝑗
𝑖
, . . . , 𝑆𝑘

𝑖

)︂
for all 𝑆 𝑗 ∈ S. While

Max is bias-reducing, it can be unstable [1], and tends to produce
scorings, where large regions have high scores and few scorings
dominate the overall result.

Mean aggregation calculates the element-wise mean anomaly
score over all scorings. For each index 𝑖 in the scorings, we take
the average of all algorithm instance’s scorings 𝑆 𝑗 ∈ S: 𝑆𝑖 =

𝑚𝑒𝑎𝑛

(︂
𝑆0
𝑖
, . . . , 𝑆

𝑗
𝑖
, . . . , 𝑆𝑘

𝑖

)︂
. Mean is variance-reducing [1], and we

show in Section 5.4 that it is superior to Max aggregation.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate AutoTSAD’s performance in differ-
ent settings and on various datasets. More specifically, we first
evaluate the relevance of the hyperparameter optimization (Sec-
tion 5.1), afterward, we compare AutoTSAD’s detection quality
to six state-of-the-art baselines (Section 5.2), then we evaluate the
effectiveness of the data generation module (Section 5.3), and fi-
nally, we assess the differences among AutoTSAD’s ensembling
strategies (Section 5.4).
Hardware and Software. We perform all experiments in a Slurm-
managed HPC lab. The compute nodes are equipped with Intel
Xeon Gold 5220S or AMD EPYC 7742 CPUs and run Ubuntu Linux.
We assign a single CPU, 20 GB of main memory, and a time limit
of 12 hours to every job/execution, and disable AutoTSAD’s par-
allelism. AutoTSAD is implemented in Python version 3.8.15 and
uses OpenJDK version 11.0.20 to execute GrammarViz.
Baseline Algorithms.We compare AutoTSAD’s anomaly detec-
tion accuracy to six baselines: k-Means, Oracle, SELECT Vertical,
SELECTHorizontal, CAE-Ensemble, and TSADAMS. TheOracle base-
line is a perfect selection algorithm that “magically” selects the best
performing algorithm for every time series based on 71 carefully
optimized TimeEval algorithms [61]; because Oracle uses ground
truth information for the selection, it creates an upper bound for
the anomaly detection quality. k-Means [77] is a TSAD algorithm

with one of the overall best detection scores in the TimeEval study
and the best performing base algorithm in AutoTSAD. All baseline
algorithms and AutoTSAD’s internal algorithms use the manu-
ally and dynamically optimized TimeEval hyperparameter settings
(window sizes, for example, are set dynamically according to the
inputs’ period lengths). For its own hyperparameters, AutoTSAD
uses the proposed static default settings. SELECT [58] is an unsu-
pervised outlier ensembling technique that selects and aggregates
the results from its base components using two different selection
strategies: vertical and horizontal. We ported the author’s Matlab
implementation to Python and use AutoTSAD’s base algorithms
as the base components for the SELECT ensemble. CAE-Ensemble
is a deep-learning based ensemble of convolutional autoencoders
with a diversity-driven self-supervised learning scheme. We adapt
the author’s implementation to be able to use the test time se-
ries (without labels) during training and automatically execute
the unsupervised hyperparameter selection process with ten pa-
rameter settings. CAE-Ensemble uses an NVIDIA TITAN X GPU.
TSADAMS [29] is a state-of-the-art method selection technique for
TSAD. It selects the possibly best model using RRA and various
surrogate metrics. We use the author’s implementation, including
the proposed semi-supervised base algorithms. Because TSADAMS
requires forecasting approaches as base algorithms, it cannot use
AutoTSAD’s base algorithms that cover all algorithm families.

Datasets. Our evaluation uses 106 univariate time series from 12
different dataset collections with varying characteristics that are
available in our repository: SAND [10], GutenTAG [73], IOPS [59],
KDD-TSAD [39, 75], MGAB [69], NAB [2], NASA-MSL [33], NASA-
SMAP [33], WebscopeS5 [43], TSB-UAD-synthetic [52], TSB-UAD-
artificial [52], and NormA [9]. For the SAND datasets, we select 11
time series from the different SAND categories and include time
series, for which SAND performed particularly well and poor. For
the remaining collections, we use the preprocessed datasets from
TimeEval and sample 10 time series from each collection. We in-
clude all time series that (i) have at least one anomaly, (ii) have
a contamination < 0.1, and (iii) could be solved by at least one
algorithm with a RANGE-PR-AUC ≥ 0.6 in the TimeEval bench-
mark [61]. Some (filtered) collections contain fewer than 10 time
series, so we use all remaining time series.

5.1 Hyperparameter Optimization

In Section 4.3, we claim that the use of pre-optimized hyperparame-
ter values (e. g. TimeEval hyperparameter values) justifies skipping
HPO and its large runtime overhead. To support this claim, we first
exemplary show that the Optimizationmodule, despite our runtime
reduction efforts, makes up most of AutoTSAD’s runtime. Then,
we compare the anomaly detection quality of AutoTSAD with and
without HPO for different default hyperparameter settings.

In Figure 6 (left), we compare the runtime of AutoTSAD’ major
steps with HPO turned on (+𝑂) and off (−𝑂) for three different
datasets. The measurements show that executing AutoTSAD with-
out HPO can be orders of magnitude faster than running the full
HPO process. With HPO, the HPO steps in Algorithm Optimization

clearly dominate the runtime of the system, which is due to the
many algorithm executions caused by the Bayesian optimization;
the Algorithm Optimization causes some overhead even without

2996

+O −O +O −O +O −O
HPO Strategy

0

25

50

75

100

Ru
nt

im
e

(%
)

(A)
8h 6min

(B)
8h 2min

(C)
1d 32min

1 5 10 20
Parallelism

0

2

4

Ru
nt

im
e

(m
in

)

Median Over 106 Datasets −O

Scoring Ensembling (Step 2 & 3)
Scoring Ensembling (Step 1)
Algorithm Optimization
Data Generation

Figure 6: (left) runtime breakdown with optimization

(+𝑂) and without optimization (−𝑂) for the datasets (A)

TSB-UAD-artificial-69_2_0.02_15, (B) KDD-TSAD-022, and (C)
SAND-SED; (right) median runtime over all datasets without

optimization for different numbers of parallelism.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Δ Range-PR-AUC of AutoTSAD

TimeEval → naive-optim
naive → naive-optim

TimeEval → TimeEval-optim

Figure 7: Improvement in RANGE-PR-AUCwith and without

HPO over all datasets. We compare four versions of Auto-

TSAD: TimeEval and TimeEval-optim use the default pa-

rameter values of AutoTSAD with the TimeEval heuristics;

naive and naive-optim use random default values.

HPO due to the calculation of the proxy metrics. The Algorithm In-

stance Execution step, i. e., Scoring Ensembling (Step 1), takes up the
bulk of the remaining runtime. Note that this step also takes longer
with HPO because HPO generates more algorithm configurations
than just the TimeEval configurations. The Algorithm Instance Exe-

cution time with HPO turned off is the inevitable core activity of any
ensemble (automatic or manual). Figure 6 (right) plots the median
runtime of AutoTSAD over all datasets for different degrees of par-
allelism. The plot shows that AutoTSAD scales decently well with
increasing parallelism, although the more expensive algorithms in
the ensemble eventually cap the gains of additional processes.

Because the hyperparameter optimization is the by far most
expensive step, we analyze its relevance. Figure 7 shows the im-
provement in anomaly detection quality achieved via AutoTSAD
parameter optimization when using either the already well opti-
mized TimeEval parameterization strategy or naive default values.
The plots show that if we use TimeEval values, the mean RANGE-
PR-AUC gain is negligible. For this reason and because executing
AutoTSADwith HPO is about 40× slower than without HPO (mean
runtime over all datasets: 67,840s > 1,712s), we can skip the opti-
mization steps if the internal algorithms are executed with effective
parameter selection heuristics. For naive default hyperparameters,
though, HPO can significantly improve the detection quality. The
plot also shows that the quality achieved with HPO-optimized
naive values is on a par with non-HPO-optimized TimeEval values.
Hence, we recommend executingAutoTSADwith the optimization
steps, if new, not pre-optimized TSAD algorithms are used, and
skip the step otherwise (as we do for our remaining experiments).

0.0 0.2 0.4 0.6 0.8 1.0
Range-PR-AUC

105/106

106/106

106/106

105/106

104/106
080/106
036/040
102/106

105/106

AutoTSAD RRA Mean⊗

k-Means

Oracle ↑

AutoTSAD RRA Max⊗

SELECT Horizontal⊗
CAE-ENSEMBLE⊗

TSADAMS MIM ↑
SELECT Vertical⊗

AutoTSAD Top-1 Method ↑

Median
Mean

Baselines
AutoTSAD Ensemble

AutoTSAD Method Selection

Figure 8: Anomaly detection quality (RANGE-PR-AUC) of

AutoTSAD compared to the baselines over all successfully

processed datasets (after method name); ↑ marks method

selection approaches and ⊗ marks ensembling approaches.

RRA Mean
38.26%

AP Mean
89.39%

STOMP STOMP
kMeans Sub-KNN

Sub-KNN
Sub-LOF

0 500 1000 1500
Sub-IF

0 500 1000 1500

Timeseries Aggregated Scoring Anomalies

Figure 9: Two different rankings from AutoTSAD on the

A4Benchmark-2 dataset from the WebscopeS5 collection.

5.2 Anomaly Detection Quality

For the results shown in Figure 8, we executed all baseline algo-
rithms and AutoTSAD (without HPO) on all 106 datasets, and
measured the runs’ RANGE-PR-AUC anomaly detection quality.
Because TSADAMS’s base algorithms require anomaly-free train-
ing data, the approach was executed on only 40 datasets that offer
such training data. The box plots show the results for each algo-
rithm over all successfully processed datasets, including the median
(vertical line), the mean (vertical dashed line), and the minima and
maxima (whiskers).

The baseline that always uses the best algorithm for each dataset
(Oracle) solves the discovery task best, i. e., with a mean RANGE-
PR-AUC > 0.8, but under unrealistic assumptions. By using the
best base TSAD algorithm (k-Means) of AutoTSAD, we observe
on average rather low scores compared to the optimal results. This
is due to the algorithms’ focus on specific types of anomalies. The
SELECT ensembling baselines are (on average and by mean) worse
than k-Means, despite k-Means being one of the ensemble’s base
algorithms. This is because SELECT considers each individual data
point in the time series independently and, thus, looses the time con-
text during score selection and aggregation. Despite the increased
resource usage, CAE-Ensemble cannot achive competitive results.

AutoTSAD, which is shown with the two score aggregation
methods Mean and Max, achieves significantly better results than
the realistic baselines. Both variants have a mean and average
RANGE-PR-AUC > 0.7. This demonstrates that AutoTSAD’s rank-
ing and aggregation techniques, which are based on the individual
scores gathered from the semi-synthetic regimes, work well in

2997

practice. Overall, Mean is superior to Max aggregation, confirming
related work [1]. We note that, for a few time series, individual
AutoTSAD ranking strategies can still not reliably detect the anom-
alies (whiskers reaching as low as 0.08) because the anomalies in
these time series are particularly hard to detect. We display one
such time series in Figure 9. Alternative AutoTSAD ranking strate-
gies can usually detect these anomalies, though. Because users can
create and explore rankings in AutoTSAD efficiently, namely with-
out re-configuring and re-running TSAD algorithms, user-guided
AutoTSAD runs can achieve even higher performances.

For comparison, we also show two method selection approaches:
TSADAMS and AutoTSAD Top-1 Method, which simply uses the
top-ranked algorithm instance from our RRA ranking. TSADAMS
generally performs poorly because its base algorithms are very
similar and often miss the anomalies in our datasets, despite that
we share 1

4 of the datasets with the original paper [29]. AutoTSAD
Top-1 Method is significantly better than TSADAMS. AutoTSAD’s
aggregation techniques, however, show to be even more effective
than selecting the top algorithm instance from the rankings, espe-
cially in the mean and minimum quality because in this way the
system combines the strengths of different TSAD algorithms. Thus,
we suggest an ensembling instead of a selection strategy.

5.3 Data Generation

To assess AutoTSAD’s data generation process, we first evalu-
ate the Regime Cleaning step by measuring how many of the real
anomalous points it removes from a time series. On average, the
cleaning step achieves a recall of 0.63 (median 0.87) and a preci-
sion of 0.12, which is in line with average TSAD performances.
The cleaning step purposefully favors recall over precision because
removing more points than necessary is not harmful.

To evaluate the regiming process, we executed AutoTSAD with
Dataset Analysis, Regime Extraction, and Regime Cleaning turned
on and off. When the steps are turned off, the average RANGE-
PR-AUC decreased only from 0.71 to 0.70. This is because almost
all datasets in existing benchmark collections exhibit only a single
base oscillation. Hence, we also consider three specific datasets
with actual regime shifts, from [73], [10], [39] respectively, and
measure much higher RANGE-PR-AUC scores with the regiming
steps (0.76, 0.63, 0.99) than without these steps (0.03, 0.43, 0.84).

To demonstrate the generalizability of the Anomaly Injection

step, the next experiment samples 69 additional random datasets
from our collections. With the additional dataset, AutoTSAD’s
average RANGE-PR-AUC decreases slightly from 0.71 (original 106
datasets) to 0.70 (all 175 datasets) while keeping the same relative
improvement over its competitor approaches.

5.4 Ensembling Strategies

The next set of experiments investigates AutoTSAD’s different
ensembling strategies. The proposed eight ranking methods and
two aggregation methods result in 16 different ensembling strate-
gies. In addition, AutoTSAD uses RRA to combine all rankings
into a single ranking for the two aggregation methods. We show
all 18 ensembling strategies of AutoTSAD in Figure 10. The RRA
strategies are highlighted in a darker color (see also Figure 8).

TR
 M

ea
n

RR
A

Mea
n

TQ
 M

ea
n

MMQ AO
D M

ea
n

AP
 M

ax

MMQ ES
D M

ax
MMQ AO

D M
ax

RR
A

Max
TQ

 M
ax

TR
 M

ax

GD ES
D M

ax

KM
 M

ax

GD AO
D M

ax

MMQ ES
D M

ea
n

KM
 M

ea
n

GD ES
D M

ea
n

GD AO
D M

ea
n

AP
 M

ea
n0.00

0.25

0.50

0.75

1.00

Ra
ng

e-
PR

-A
UC

Median
Mean

AutoTSAD Rankings
AutoTSAD Ensemble

Figure 10: Comparison of the different ensembling strategies

supported by AutoTSAD over all datasets.

The results confirm that Mean aggregation is on average and for
most rankings superior to Max aggregation [1]. Mean aggregation,
in general, has a significantly higher median performance than Max
aggregation. In agreement with related work [29, 58], RRA Mean
is better in mean and median over all datasets than the individual
rankings that it combines. It, therefore, serves as our default setting.

We can see that some ensemblingmethods have specific strengths
for some datasets, but overall, their performance is comparable. In
Figure 9, we show a ranking of AutoTSAD RRA Mean that pro-
duces poor results and AutoTSAD AP Mean that produces much
better results. Note that AP automatically determines the number of
algorithm instances based on scoring similarities and, thus, chooses
only two representatives. Because ranking strategies produce scor-
ings of varying quality, their presence inAutoTSAD is an important
feature for the user to find relevant anomalies. AutoTSAD makes
this easy by providing an interactive user interface that displays
not only the final scoring but also the ranked individual scores.

6 CONCLUSION

AutoTSAD is an unsupervised anomaly detection ensembling sys-
tem that does not require labeled training data. It still offers various
configuration and exploration options that either let the user trade
precision for runtime or provide means to interactively ensem-
ble the ranked scoring results. Due to the regime extraction and
anomaly injection, AutoTSAD can deal with different motifs and
anomaly types in the same input time series. The internal ensem-
ble of TSAD algorithms covers an effective selection of anomaly
detection approaches, which can easily be extended with additional
algorithms, including future ones. We tested AutoTSAD for uni-
variate time series with excellent results and plan to extend it for
multivariate time series in future work. The most challenging part
for this extension is the non-trivial extraction of regimes in multi-
variate data; with correlation anomalies [72] and multivariate TSAD
algorithms [27, 71], the remaining steps work very similar.

ACKNOWLEDGMENTS

This work was funded by the German Federated Ministry for Eco-
nomic Affairs and Climate Action (grant number 020E-100511083).

2998

REFERENCES

[1] Charu C. Aggarwal and Saket Sathe. 2017. Outlier Ensembles.
Springer International Publishing. isbn: 978-3-319-54764-0.
doi: 10.1007/978-3-319-54765-7.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha
Agha. 2017. Unsupervised real-time anomaly detection for
streaming data. Neurocomputing, 262, 134–147. doi: 10.1016/
j.neucom.2017.04.070.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta,
and Masanori Koyama. 2019. Optuna: a next-generation hy-
perparameter optimization framework. In Proceedings of the

International Conference on Knowledge Discovery and Data

Mining (SIGKDD).
[4] Sardar Ansari, Negar Farzaneh, Marlena Duda, Kelsey Horan,

Hedvig B. Andersson, Zachary D. Goldberger, Brahmajee K.
Nallamothu, and Kayvan Najarian. 2017. A Review of Auto-
mated Methods for Detection of Myocardial Ischemia and
Infarction Using Electrocardiogram and Electronic Health
Records. IEEE Reviews in Biomedical Engineering, 10, 264–298.
doi: 10.1109/RBME.2017.2757953.

[5] Luis Basora, Xavier Olive, and Thomas Dubot. 2019. Recent
Advances in Anomaly Detection Methods Applied to Avia-
tion. Aerospace, 6, 11, 117. doi: 10.3390/aerospace6110117.

[6] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. 2011. Algorithms for Hyper-Parameter Optimization.
In Proceedings of the International Conference on Neural In-

formation Processing Systems (NeurIPS).
[7] James Bergstra and Yoshua Bengio. 2012. Random search for

hyper-parameter optimization. Journal of Machine Learning

Research (JMLR), 13, 1.
[8] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A.

Lozano. A review on outlier/anomaly detection in time series
data. (2020). arXiv: 2002.04236 [cs, stat].

[9] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Pal-
panas, Mohammed Meftah, and Emmanuel Remy. 2021. Un-
supervised and Scalable Subsequence Anomaly Detection in
Large Data Series. The VLDB Journal. doi: 10.1007/s00778-
021-00655-8.

[10] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael
J Franklin. 2021. SAND: Streaming Subsequence Anomaly
Detection. Proceedings of the VLDB Endowment (PVLDB), 14,
10, 1717–1729. doi: 10.14778/3467861.3467863.

[11] Mohammad Braei and SebastianWagner. AnomalyDetection
in Univariate Time-series: A Survey on the State-of-the-Art.
(2020). arXiv: 2004.00433 [cs, stat].

[12] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng,
and Jörg Sander. 2000. LOF: identifying density-based local
outliers. In Proceedings of the International Conference on

Management of Data (SIGMOD), 93–104. doi: 10.1145/342009.
335388.

[13] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang,
Kai Zheng, Bin Yang, and Christian S. Jensen. 2021. Un-
supervised Time Series Outlier Detection with Diversity-
Driven Convolutional Ensembles. Proceedings of the VLDB
Endowment (PVLDB), 15, 3, 611–623. doi: 10.14778/3494124.
3494142.

[14] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR,
diversity-based reranking for reordering documents and pro-
ducing summaries. In Proceedings of the International Con-

ference on Research and Development in Information Retrieval

(SIGIR), 335–336. doi: 10.1145/290941.291025.
[15] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009.

Anomaly detection: A survey. ACM Computing Surveys, 41,
3, 1–58. doi: 10.1145/1541880.1541882.

[16] Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven
Klooster. 2009. Detection and Characterization of Anomalies
in Multivariate Time Series. In Proceedings of the SIAM In-

ternational Conference on Data Mining (SDM), 413–424. doi:
10.1137/1.9781611972795.36.

[17] Zhangyu Cheng, Chengming Zou, and Jianwei Dong. 2019.
Outlier detection using isolation forest and local outlier fac-
tor. In Proceedings of the Conference on Research in Adap-

tive and Convergent Systems (RACS), 161–168. doi: 10.1145/
3338840.3355641.

[18] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas
W. Kempa-Liehr. 2018. Time Series FeatuRe Extraction on
basis of Scalable Hypothesis tests (tsfresh – A Python pack-
age). Neurocomputing, 307, 72–77. doi: 10.1016/j.neucom.
2018.03.067.

[19] AndrewA. Cook, GokselMisirli, and Zhong Fan. 2020. Anom-
aly Detection for IoT Time-Series Data: A Survey. IEEE In-

ternet of Things Journal, 7, 7, 6481–6494. doi: 10.1109/JIOT.
2019.2958185.

[20] Jessamyn Dahmen and Diane J Cook. 2021. Indirectly su-
pervised anomaly detection of clinically meaningful health
events from smart home data. ACM Transactions on Intelli-

gent Systems and Technology (TIST), 12, 2.
[21] Jesse Davis and Mark Goadrich. 2006. The relationship be-

tween Precision-Recall and ROC curves. In Proceedings of

the International Conference on Machine Learning (ICML),
233–240. doi: 10.1145/1143844.1143874.

[22] Theekshana Dissanayake, Tharindu Fernando, Simon Den-
man, Sridha Sridharan, Houman Ghaemmaghami, and Clin-
ton Fookes. 2021. A robust interpretable deep learning classi-
fier for heart anomaly detection without segmentation. IEEE
Journal of Biomedical and Health Informatics, 25, 6, 2162–
2171. doi: 10.1109/JBHI.2020.3027910.

[23] Y. Eldar, M. Lindenbaum, M. Porat, and Y.Y. Zeevi. 1997.
The farthest point strategy for progressive image sampling.
IEEE Transactions on Image Processing, 6, 9, 1305–1315. doi:
10.1109/83.623193.

[24] 2019.Hyperparameter optimization.AutomaticMachine Learn-

ing: Methods, Systems, Challenges. Springer Berlin Heidel-
berg.

[25] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost
Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015.
Efficient and robust automated machine learning. In Proceed-

ings of the International Conference on Neural Information

Processing Systems (NeurIPS), 2755–2763.
[26] Brendan J. Frey and Delbert Dueck. 2007. Clustering by Pass-

ing Messages Between Data Points. Science, 315, 5814, 972–
976. doi: 10.1126/science.1136800.

2999

https://doi.org/10.1007/978-3-319-54765-7
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1109/RBME.2017.2757953
https://doi.org/10.3390/aerospace6110117
https://arxiv.org/abs/2002.04236
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.14778/3467861.3467863
https://arxiv.org/abs/2004.00433
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.14778/3494124.3494142
https://doi.org/10.14778/3494124.3494142
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1137/1.9781611972795.36
https://doi.org/10.1145/3338840.3355641
https://doi.org/10.1145/3338840.3355641
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/JBHI.2020.3027910
https://doi.org/10.1109/83.623193
https://doi.org/10.1126/science.1136800

[27] AsthaGarg,WenyuZhang, Jules Samaran, Ramasamy Savitha,
and Chuan-Sheng Foo. 2022. An Evaluation of Anomaly
Detection and Diagnosis in Multivariate Time Series. IEEE
Transactions on Neural Networks and Learning Systems, 33, 6,
2508–2517. doi: 10.1109/TNNLS.2021.3105827.

[28] ShaghayeghGharghabi, Shima Imani, Anthony Bagnall, Ami-
rali Darvishzadeh, and Eamonn Keogh. 2020. An ultra-fast
time series distance measure to allow data mining in more
complex real-world deployments. Data Mining and Knowl-

edge Discovery, 34, 4, 1104–1135. doi: 10.1007/s10618-020-
00695-8.

[29] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon
Minorics, and Andrey Kan. 2023. Unsupervised Model Se-
lection for Time-series Anomaly Detection. In Proceedings

of the International Conference on Learning Representations

(ICLR). arXiv: 2210.01078 [cs].
[30] Nikolaus Hansen. 2023. The CMA Evolution Strategy: A Tu-

torial. arXiv: 1604.00772 [cs, stat]. Retrieved 09/13/2023
from http://arxiv.org/abs/1604.00772. preprint.

[31] Niklas Heim and James E. Avery. Adaptive Anomaly Detec-
tion in Chaotic Time Series with a Spatially Aware Echo
State Network. (2019). arXiv: 1909.01709 [cs, stat].

[32] 2012. A practical guide to training restricted boltzmann ma-

chines. Neural networks: Tricks of the trade. Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-35289-8_32.

[33] Kyle Hundman, Valentino Constantinou, Christopher La-
porte, Ian Colwell, and Tom Soderstrom. 2018. Detecting
Spacecraft Anomalies Using LSTMs and Nonparametric Dy-
namic Thresholding. In Proceedings of the International Con-

ference on Knowledge Discovery and Data Mining (SIGKDD),
387–395. doi: 10.1145/3219819.3219845.

[34] Shima Imani, Frank Madrid, Wei Ding, Scott Crouter, and Ea-
monn Keogh. 2018. Matrix Profile XIII: Time Series Snippets:
A New Primitive for Time Series Data Mining. In Proceed-

ings of the International Conference on Big Knowledge (ICBK),
382–389. doi: 10.1109/ICBK.2018.00058.

[35] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei
Diao, and Nesime Tatbul. 2021. Exathlon: A Benchmark for
Explainable Anomaly Detection over Time Series. Proceed-
ings of the VLDB Endowment (PVLDB), 14, 2613–2626. doi:
10.14778/3476249.3476307.

[36] Yungi Jeong, Eunseok Yang, Jung Hyun Ryu, Imseong Park,
and Myungjoo Kang. 2023. AnomalyBERT: Self-Supervised
Transformer for Time Series Anomaly Detection using Data
Degradation Scheme. arXiv: 2305 . 04468 [cs]. Retrieved
04/03/2024 from http://arxiv.org/abs/2305.04468. preprint.

[37] Sheo Yon Jhin, Jaehoon Lee, andNoseong Park. 2023. Precursor-
of-Anomaly Detection for Irregular Time Series. In Proceed-

ings of the International Conference on Knowledge Discovery

and Data Mining (SIGKDD), 917–929. doi: 10.1145/3580305.
3599469.

[38] E. Keogh, J. Lin, and A. Fu. 2005. HOT SAX: efficiently finding
the most unusual time series subsequence. In Proceedings

of the International Conference on Data Mining (ICDM). doi:
10.1109/ICDM.2005.79.

[39] Eamonn Keogh, T Dutta Roy, U Naik, and Ankit Agrawal.
2021. Multi-dataset Time-Series Anomaly Detection Compe-
tition. (2021).

[40] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder
Kamruzzaman. 2019. Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity, 2, 20. doi:
10.1186/s42400-019-0038-7.

[41] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen.
2019. Outlier Detection for Time Series with Recurrent Au-
toencoder Ensembles. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2725–2732. doi:
10.24963/ijcai.2019/378.

[42] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur
Zimek. 2011. Interpreting and Unifying Outlier Scores. In
Proceedings of the SIAM International Conference on Data

Mining (SDM), 13–24. doi: 10.1137/1.9781611972818.2.
[43] N Laptev, S Amizadeh, and Y Billawala. 2015. S5 - A labeled

anomaly detection dataset, version 1.0 (16M). Yahoo, (2015).
[44] 2012. Efficient backprop. Neural networks: Tricks of the trade.

Springer Berlin Heidelberg. doi: 10.1007/978-3-642-35289-
8_3.

[45] Jingtao Li, Jian Zhou, Yan Xiong, Xing Chen, and Chaitali
Chakrabarti. 2022. An Adjustable Farthest Point Sampling
Method for Approximately-sorted Point Cloud Data. In Pro-

ceedings of the IEEE Workshop on Signal Processing Systems

(SiPS), 1–6. doi: 10.1109/SiPS55645.2022.9919246.
[46] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang

Hu. 2020. COPOD: Copula-Based Outlier Detection. In Pro-

ceedings of the International Conference onDataMining (ICDM).
[47] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan

Pei, Jiao Luo, Xiaowei Jing, and Mei Feng. 2015. Opprentice:
towards practical and automatic anomaly detection through
machine learning. In Proceedings of the Internet Measurement

Conference (IMC).
[48] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isola-

tion Forest. In Proceedings of the International Conference on

Data Mining (ICDM), 413–422. doi: 10.1109/ICDM.2008.17.
[49] Carsten Moenning and Neil A Dodgson. 2003. Fast Marching

Farthest Point Sampling. 562. University of Cambridge.
[50] Antonios Ntroumpogiannis, Michail Giannoulis, Nikolaos

Myrtakis, Vassilis Christophides, Eric Simon, and Ioannis
Tsamardinos. 2023. A meta-level analysis of online anomaly
detectors. The VLDB Journal, 32, 4, 845–886. doi: 10.1007/
s00778-022-00773-x.

[51] John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S. Tsay,
Aaron Elmore, and Michael J. Franklin. 2022. Volume under
the surface: a new accuracy evaluation measure for time-
series anomaly detection. Proceedings of the VLDB Endow-

ment (PVLDB), 15, 11, 2774–2787. doi: 10.14778/3551793.
3551830.

[52] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay,
Themis Palpanas, and Michael J Franklin. 2022. TSB-UAD:
An End-to-End Benchmark Suite for Univariate Time-Series
Anomaly Detection. In Proceedings of the VLDB Endowment

(PVLDB), 2150–8097. doi: 10.14778/3529337.3529354.
[53] Hae-Sang Park and Chi-Hyuck Jun. 2009. A simple and fast

algorithm for K-medoids clustering. Expert Systems with Ap-

plications, 36, 2, 3336–3341. doi: 10.1016/j.eswa.2008.01.039.

3000

https://doi.org/10.1109/TNNLS.2021.3105827
https://doi.org/10.1007/s10618-020-00695-8
https://doi.org/10.1007/s10618-020-00695-8
https://arxiv.org/abs/2210.01078
https://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1909.01709
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1109/ICBK.2018.00058
https://doi.org/10.14778/3476249.3476307
https://arxiv.org/abs/2305.04468
http://arxiv.org/abs/2305.04468
https://doi.org/10.1145/3580305.3599469
https://doi.org/10.1145/3580305.3599469
https://doi.org/10.1109/ICDM.2005.79
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.1137/1.9781611972818.2
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1109/SiPS55645.2022.9919246
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1007/s00778-022-00773-x
https://doi.org/10.1007/s00778-022-00773-x
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1016/j.eswa.2008.01.039

[54] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al.
1999. Boa: the bayesian optimization algorithm. In Proceed-

ings the Genetic and Evolutionary Computation Conference

(GECCO).
[55] Vijay Raghavan, Peter Bollmann, and Gwang S. Jung. 1989.

A critical investigation of recall and precision as measures
of retrieval system performance. ACM Transactions on Infor-

mation Systems, 7, 3, 205–229. doi: 10.1145/65943.65945.
[56] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim.

2000. Efficient algorithms for mining outliers from large data
sets. In Proceedings of the International Conference on Man-

agement of Data (SIGMOD), 427–438. doi: 10.1145/342009.
335437.

[57] Faraz Rasheed, Peter Peng, Reda Alhajj, and Jon Rokne. 2009.
Fourier transform based spatial outlier mining. In Proceedings
of the International Conference on Intelligent Data Engineering

and Automated Learning (IDEAL), 317–324.
[58] Shebuti Rayana and Leman Akoglu. 2016. Less is More: Build-

ing Selective Anomaly Ensembles. ACM Transactions on

Knowledge Discovery from Data, 10, 4, 1–33. doi: 10.1145/
2890508.

[59] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui
Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, and
Qi Zhang. 2019. Time-Series Anomaly Detection Service at
Microsoft. In Proceedings of the International Conference on

Knowledge Discovery and Data Mining (SIGKDD), 3009–3017.
doi: 10.1145/3292500.3330680.

[60] John R. Rice. 1976. The algorithm selection problem. In Ad-
vances in Computers. Volume 15. Morris Rubinoff and Mar-
shall C. Yovits, editors. Elsevier, 65–118. doi: https://doi.org/
10.1016/S0065-2458(08)60520-3.

[61] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock.
2022. Anomaly Detection in Time Series: A Comprehensive
Evaluation. Proceedings of the VLDB Endowment (PVLDB),
15, 9, 1779–1797. doi: 10.14778/3538598.3538602.

[62] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock.
2023. HYPEX: Hyperparameter Optimization in Time Series
Anomaly Detection. Proceedings of the Conference Daten-
banksysteme in Business, Technologie und Web (BTW), 461–
483. doi: 10.18420/BTW2023-22.

[63] Pavel Senin, Jessica Lin, XingWang, TimOates, Sunil Gandhi,
Arnold P. Boedihardjo, Crystal Chen, and Susan Franken-
stein. Time series anomaly discovery with grammar-based
compression. OpenProceedings.org. doi: 10.5441/002/edbt.
2015.42.

[64] ChangMin Seong, YoungRok Song, Jiwung Hyun, and Yun-
Gyung Cheong. 2022. Towards building intrusion detection
systems for multivariate time-series data. In Silicon Valley

Cybersecurity Conference (SVCC).
[65] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams,

and Nando De Freitas. 2015. Taking the human out of the
loop: a review of bayesian optimization. In Proceedings of the

IEEE.
[66] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012.

Practical bayesian optimization of machine learning algo-
rithms. In Proceedings of the International Conference on Neu-

ral Information Processing Systems (NeurIPS).

[67] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and
Dan Pei. 2019. Robust Anomaly Detection for Multivariate
Time Series through Stochastic Recurrent Neural Network.
In Proceedings of the International Conference on Knowledge

Discovery and Data Mining (SIGKDD), 2828–2837. doi: 10.
1145/3292500.3330672.

[68] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos
Trahanias, and Themis Palpanas. 2023. Choose Wisely: An
Extensive Evaluation of Model Selection for Anomaly De-
tection in Time Series. Proceedings of the VLDB Endowment,
16, 11, 3418–3432. doi: 10.14778/3611479.3611536.

[69] Markus Thill, Wolfgang Konen, and Thomas Bäck. Markus-
Thill / MGAB: The Mackey-Glass Anomaly Benchmark. Ver-
sion v1.0.1. Zenodo. doi: 10.5281/ZENODO.3762385.

[70] Markus Thill, Wolfgang Konen, and Thomas Bäck. 2017.
Time Series Anomaly Detectionwith DiscreteWavelet Trans-
forms and Maximum Likelihood Estimation. In Proceedings

of the International Conference on Time Series (ITISE).
[71] Dennis Wagner, Tobias Michels, Florian C F Schulz, Arjun

Nair, Maja Rudolph, and Marius Kloft. 2023. TimeSeAD:
Benchmarking Deep Multivariate Time-Series Anomaly De-
tection. Transactions on Machine Learning Research (TMLR).

[72] Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock.
2024. Anomaly Detectors for Multivariate Time Series: The
Proof of the Pudding is in the Eating. In Proceedings of

the International Conference on Data Engineering Workshops

(ICDEW). doi: 10.1109/ICDEW61823.2024.00018.
[73] Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock.

2022. TimeEval: a benchmarking toolkit for time series anom-
aly detection algorithms. Proceedings of the VLDB Endowment

(PVLDB), 15, 12, 3678–3681. doi: 10.14778/3554821.3554873.
[74] MarkWoike, Ali Abdul-Aziz, and Michelle Clem. 2014. Struc-

tural health monitoring on turbine engines using microwave
blade tip clearance sensors. In Proceedings of the International
Conference on Smart Sensor Phenomena, Technology, Networks,

and Systems Integration (SPIE). doi: 10.1117/12.2044967.
[75] RenjieWu and Eamonn J. Keogh. Current Time Series Anom-

aly Detection Benchmarks are Flawed and are Creating the
Illusion of Progress. (2020). arXiv: 2009.13807 [cs, stat].

[76] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jia-
hao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang
Feng, et al. 2018. Unsupervised anomaly detection via varia-
tional auto-encoder for seasonal KPIs in web applications.
In Proceedings of the International Conference on World Wide

Web (WWW). International World Wide Web Conferences
Steering Committee, 187–196. doi: 10.1145/3178876.3185996.

[77] Takehisa Yairi, Yoshikiyo Kato, and Koichi Hori. 2001. Fault
detection by mining association rules from house-keeping
data. In Proceedings of the International Symposium on Artifi-

cial Intelligence, Robotics and Automation in Space (SAIRAS).
[78] Yuanxiang Ying, Juanyong Duan, Chunlei Wang, Yujing

Wang, Congrui Huang, and Bixiong Xu. 2020. Automated
Model Selection for Time-Series Anomaly Detection. arXiv:
2009.04395 [cs, eess]. Retrieved 07/17/2023 from http:
//arxiv.org/abs/2009.04395. preprint.

3001

https://doi.org/10.1145/65943.65945
https://doi.org/10.1145/342009.335437
https://doi.org/10.1145/342009.335437
https://doi.org/10.1145/2890508
https://doi.org/10.1145/2890508
https://doi.org/10.1145/3292500.3330680
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.18420/BTW2023-22
https://doi.org/10.5441/002/edbt.2015.42
https://doi.org/10.5441/002/edbt.2015.42
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.14778/3611479.3611536
https://doi.org/10.5281/ZENODO.3762385
https://doi.org/10.1109/ICDEW61823.2024.00018
https://doi.org/10.14778/3554821.3554873
https://doi.org/10.1117/12.2044967
https://arxiv.org/abs/2009.13807
https://doi.org/10.1145/3178876.3185996
https://arxiv.org/abs/2009.04395
http://arxiv.org/abs/2009.04395
http://arxiv.org/abs/2009.04395

[79] Aoqian Zhang, Shuqing Deng, Dongping Cui, Ye Yuan, and
Guoren Wang. 2024. An Experimental Evaluation of Anom-
aly Detection in Time Series. Proceedings of the VLDB En-

dowment (PVLDB), 17, 3, 483–496. doi: 10.14778/3632093.
3632110.

[80] Peiyi Zhang, Xiaodong Jiang, Ginger Holt, Nikolay Pavlovich
Laptev, Caner Komurlu, Peng Gao, and Yang Yu. 2021. Self-
supervised learning for fast and scalable time series hyper-
parameter tuning. CoRR, abs/2102.05740. ArXiv: 2102.05740.

[81] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari,
Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen,
Philip Brisk, and Eamonn Keogh. 2016. Matrix Profile II:
Exploiting a Novel Algorithm and GPUs to Break the One
Hundred Million Barrier for Time Series Motifs and Joins. In
Proceedings of the International Conference on Data Mining

(ICDM), 739–748. doi: 10.1109/ICDM.2016.0085.

3002

https://doi.org/10.14778/3632093.3632110
https://doi.org/10.14778/3632093.3632110
2102.05740
https://doi.org/10.1109/ICDM.2016.0085

	Abstract
	1 Anomaly Detection in Time Series
	2 Related Work
	3 Time Series and Anomalies
	4 AutoTSAD
	4.1 Architecture
	4.2 Data Generation
	4.3 Algorithm Optimization
	4.4 Scoring Ensembling

	5 Experimental Evaluation
	5.1 Hyperparameter Optimization
	5.2 Anomaly Detection Quality
	5.3 Data Generation
	5.4 Ensembling Strategies

	6 Conclusion
	Acknowledgments

