Noname manuscript No.
(will be inserted by the editor)

Parallel Patterns for Window-based Stateful Operators on
Data Streams: an Algorithmic Skeleton Approach

Tiziano De Matteis - Gabriele Mencagli

Received: date / Accepted: date

Abstract The topic of Data Stream Processing is a recent and highly active
research area dealing with the in-memory, tuple-by-tuple analysis of stream-
ing data. Continuous queries typically consume huge volumes of data received
at a great velocity. Solutions that persistently store all the input tuples and
then perform off-line computation are impractical. Rather, queries must be
executed continuously as data cross the streams. The goal of this paper is to
present parallel patterns for window-based stateful operators, which are the
most representative class of stateful data stream operators. Parallel patterns
are presented “a la” Algorithmic Skeleton, by explaining the rationale of each
pattern, the preconditions to safely apply it, and the outcome in terms of
throughput, latency and memory consumption. The patterns have been im-
plemented in the FastFlow framework targeting off-the-shelf multicores. To
the best of our knowledge this is the first time that a similar effort to merge
the Data Stream Processing domain and the field of Structured Parallelism
has been made.

Keywords Parallel Patterns - Algorithmic Skeletons - Data Stream
Processing - Multi-/Many-core Architectures

1 Introduction

The recent years have been characterized by an explosion of data streams gen-
erated by a variety of sources like social media, sensors, network and mobile
devices, stock tickers, and many others. Technologies to extract greater value
from the data have proliferated accordingly, by translating information into

T. De Matteis and G. Mencagli

Department of Computer Science, University of Pisa
Largo B. Pontecorvo 3, I-56127, Pisa, Italy

Phone: +39-050-221-3132

E-mail: dematteis@di.unipi.it, mencagliQdi.unipi.it

2 T. De Matteis and G. Mencagli

decisions in real-time. Traditional store-and-process data management archi-
tectures are not capable of offering the combination of latency and throughput
requirements needed by the new applications. Even map-reduce frameworks
like Hadoop, in their original form, still do not provide the needed answers [13].

More adequate models have been proposed both in academic and com-
mercial frameworks [3,2,1]. Data Stream Processing [9] (briefly, DaSP) is the
paradigm enabling new ways to deal with and work with the streaming data.
Data are seen as transient continuous streams rather than being modeled as
traditional permanent, in-memory data structures or relations. Streams convey
single elements or segments belonging to the same logical data structure (e.g.
relational tables). The defined computation is a continuous query [8,9] whose
operators must be executed “on the fly”. The goal is usually to extract action-
able intelligence from raw data, and to react to operational exceptions through
real-time alerts and automated actions in order to correct/solve problems.

We claim that in the DaSP literature there is a use of incoherent terminol-
ogy in explaining intra-operator parallelism for continuous queries, which in
some cases contrasts with the classic view of Algorithmic Skeletons [16]. Just
to clarify this sentence, in the DaSP domain data parallelism is exemplified by
splitting the input stream into multiple outbound streams routed to different
replicas of the same operator that work on distinct input elements in paral-
lel [17]. For researchers expert in algorithmic skeletons [16,12], this pattern is
the classic farm skeleton belonging to the task parallelism paradigm.

The goal of this paper is to show how the parallelization issues of DaSP
computations can be dealt with the algorithmic skeleton methodology based
on the usage and composition of a limited set of parallel patterns. W.r.t the
traditional patterns, the DaSP domain requires proper specializations and en-
hanced features in terms of data distribution and management policies and
windowing methods. The contributions of this paper are the following;:

— the identification of the features of parallel patterns in relation to the
distribution policy, the presence of an internal state, and the role of parallel
executors in the window management;

— the description of four patterns for window-based stateful operators that
are the most representative class of stateful operators for continuous queries;

— our parallel patterns are implemented in the FastFlow framework [4] for
high-level pattern-based parallel programming on multicores.

The paper is organized as follows. Sect. 2 briefly recalls the fundamental
features of DaSP. Sect. 3 presents the parallel patterns which will be exper-
imentally evaluated in Sect. 4. Sect. 5 summarizes related works and their
binding with our work. Finally, Sect. 6 concludes this paper.

2 Data Stream Processing

In the last years data management architectures known as Data Stream Man-
agement Systems [13] (DSMSs) have been proposed as a response to the in-
creasing volume and velocity of streaming data. Extensions of DaSP have been

Parallel Patterns for Window-based Stateful Operators 3

developed in specific application domains. For example Complex Event Pro-
cessing Systems [13] (CEPSs) focus on the detection of complex events through
pattern matching algorithms applied on transient data. In this paper we use
the general term Stream Processing Engine (SPE) to refer to the recent stream
processing frameworks. A review of them is presented in Sect. 5.

Modern SPEs allow the programmer to express applications as composi-
tions of core functionalities in directed flow graphs [13], where vertices are
operators and arcs model streams, i.e. unbounded sequences of data items (tu-
ples) sharing the same schema in terms of name and type of attributes. Flow
graphs represent continuous queries [13], i.e. standing queries that run contin-
uously on transient data. In the sequel, we discuss the nature of the operators
and the parallelism recognized in the execution of continuous queries.

2.1 Operators and Windowing Mechanisms

The internal processing logic of an operator consumes input data and applies
transformations on them. The number of output tuples produced per tuples
consumed is called selectivity of the operator.

The nature of operators is wide and varied. DSMSs provide relational al-
gebra operators such as map, filters, aggregates (sum, count, max), sort, joins
and many others. Recently, they have been enhanced with preference oper-
ators like skyline, top-k and operators employing data mining and machine
learning techniques [21]. In CEPSs the focus is on pattern-matching operators
programmed by a set of reactive rules “a4 1a” active databases [13]. Finally, the
most recent SPEs like Storm [2] and IBM InfoSphere [17] support customizable
operators implemented in general-purpose programming languages.

According to the literature [9] we distinguish between:

— stateless operators (e.g. selection, projection and filtering) work on a item-
by-item basis without maintaining data structures created as a result of
the computation on earlier data;

— stateful operators maintain and update a set of internal data structures
while processing input data. The result of the internal processing logic is
affected by the current value of the internal state. Examples are sorting,
join, cartesian product, grouping, intersection as so forth.

In many application cases, the physical input stream conveys tuples belong-
ing to multiple logical substreams multiplexed together. Stateful operators can
require to maintain a separated data structure for each substream, and to up-
date it on the basis of the computation applied only to the tuples belonging to
that substream. The correspondence between tuples and substreams is usually
made by applying a predicate on a partitioning attribute called key, e.g. the
distinction is the result of a partition-by predicate. Examples are operators
that process network traces partitioned by IP address, or trades and quotes
from financial markets partitioned by stock symbol. We refer to the case of a
partitionable state as a multi-keyed stateful operator with cardinality |K| > 1.
The case |K| = 1 refers to the special case of a single-keyed stateful operator.

4 T. De Matteis and G. Mencagli

On data streams the semantics of stateful operators requires special atten-
tion. Due to the unbounded nature of the stream, it is not possible to apply
the computation over the entire stream history. The literature suggests two
possible solutions:

— the state can be implemented by succinct data structures such as synopses,
sketches, histograms and wavelets [5] used to maintain aggregate statistics
of the tuples received so far;

— in applications like pattern detection and time-series analysis the internal
processing logic must inspect the input tuples that need to be maintained
as a whole in the internal state. Fortunately, in realistic applications the
significance of each tuple is time-decaying, and it is often possible to buffer
only a subset of the input data by obtaining well approximate results with
limited memory occupancy. A solution consists in implementing the state
as a window buffer [9] in which only the most recent tuples are kept.

Windows are the predominant abstraction used to implement the internal
state of operators in DaSP. The window semantics is specified by the eviction
policy, i.e. when data in the window can be safely removed, and the triggering
policy, i.e. when the internal logic can be applied on the actual content of the
window buffer. Two parameters are important:

— the window size |W| is expressed in time units (seconds, minutes, hours)
in time-based windows or in number of tuples in count-based windows;

— the sliding factor 0 expresses how the window moves and its content gets
processed by operator’s algorithm. Analogously to the window size, the
sliding factor is expressed in time units or in number of tuples.

A crucial aspect for the discussion of Sect. 3 is that consecutive windows
may have overlapping regions. This situation is true for sliding windows in
which ¢ < |[W|. However, a window at a given time instant contains also tuples
not belonging to the preceding windows. In general, the window-based process-
ing is non-monotonic [20], since the results can not be produced incrementally
due to the expiration of old tuples exiting from the current window. Cases
of tumbling windows (disjoint, i.e. § = |W|) and hopping windows (6 > |W|)
are studied in the literature for specific problems [9], but in general are less
common than sliding windows.

2.2 Optimizations, Parallelism and our Vision

From the performance standpoint, SPEs are aimed at executing continuous
queries submitted by the users in such a way as to maximize throughput (out-
put rate), i.e. the speed at which results are delivered to the users, and min-
imize latency (response time), i.e. the time elapsed from the reception of a
tuple triggering a new activation of query’s internal processing logic and the
production of the first corresponding output.

To this end, parallelism has become an unavoidable opportunity to speedup
the query execution by relying on underlying parallel architectures such as

Parallel Patterns for Window-based Stateful Operators 5

multi/manycores or clusters of multicores. Parallelism in existing SPEs is ex-
pressed at two different levels:

— inter-query parallelism consists in supporting the execution of multiple flow
graphs in parallel. It is used to increase the overall throughput;

— intra-query parallelism makes it possible to increase throughput and to
reduce the response time. It is further classified into inter-operator paral-
lelism, by exploiting the inherent parallelism between operators that run
concurrently, and intra-operator parallelism, in which a single operator in-
stance (generally a hotspot) can be internally parallelized if necessary.

We claim that a methodology for intra-operator parallelism is still lacking.
As it will be described in Sect. 5, most of the existing frameworks express intra-
operator parallelism in very simple forms. For stateless ones the most common
solution consists in replicating the operator and assigning input tuples to the
replicas in a load balanced fashion. For multi-keyed stateful operators the
parallel solution consists in using replicas each one working on a subset of
the keys. Although recurrent [15] these two approaches are far from being
exhaustive of all the possible parallel solutions.

We advocate that the algorithmic skeleton methodology [12,16] is particu-
larly suitable to be integrated in SPE environments. It is a solid methodology
to develop parallel applications as compositions, interweaving and nesting of
reusable parallel patterns parameterized by the programmer to generate spe-
cific parallel programs. Besides being a methodology to reduce the effort and
complexity of parallel programming, algorithmic skeletons simplify the reason-
ing about the properties of a parallel solution in terms of throughput, latency
and memory occupancy [11]. Ezactly what is needed by intra-operator paral-
lelism in continuous queries.

In the next section we get into the core of the discussion. We tackle the
problem of operators working with windows that, as we have seen, are the
most widely used abstraction to model the concept of internal state in DaSP.

3 Parallel Patterns

In the ensuing discussion we assume a generic window-based stateful operator
working on a single input stream and producing one output stream. The treat-
ment can be easily generalized. With more than one input stream the usual
semantics is the non-deterministic one, i.e. the operator receives input items
available from any streams. With more than one output stream the results
can be transmitted to one of them, selected according to a given predicate on
the results’ attributes, or to all the output streams through a multicast.

A window is a very special case of internal state, consisting in a subsequence
of input tuples. In the context of window-based computations task parallelism
assumes a special characterization. A task is not a single input element as
in the traditional stream processing. Rather, a task is now a segment of the
input stream corresponding to all the tuples belonging to the same window.
According to this interpretation of task, we distinguish between:

6 T. De Matteis and G. Mencagli

— window parallel patterns are skeletons capable of executing in parallel mul-
tiple windows at the same time instant;

— data parallel patterns are skeletons in which the execution of each single
window is parallelized by partitioning it among a set of identical executors.

All the relevant characteristics of a skeleton can be easily derived from
its definition and structure: throughput, latency, utilization of resources and
memory consumption. Due to the dynamic nature of the windows, the distri-
bution phase is particularly important. We focus on two orthogonal aspects:

— the granularity at which input elements are distributed by an Emitter
functionality to a set of parallel executors called Workers, e.g. the unit of
distribution can be a single tuple, a group of tuples or entire windows;

— the assignment policy, i.e. how consecutive windows are assigned to the
parallel workers of the pattern.

Distribution strategies lead to several possible optimizations of the same pat-
tern or, in some cases, to the identification of new patterns. The distribution
may also influence memory occupancy and the way in which the window man-
agement is performed. About this point, we identify patterns with:

— agnostic workers: the executors are just in charge of applying the compu-
tation to the received data. All the processing/storing actions needed to
build and to update the windows are performed by the distribution logic;

— active workers: the window management is partially or entirely delegated
to the workers that receive elementary stream items from the emitter and
manage the window boundaries by adding/removing tuples.

Tab. 1 shows the features of the patterns in terms of parallelism paradigms,
window management and if they can be used in single-keyed or multi-keyed
scenarios. Each pattern will be presented in a section by itself including dif-
ferent parts: a figure giving a quick intuition of its behavior, applicability lists
the conditions to apply the pattern, profitability shows the advantages de-
rived from the pattern usage, issues describes the drawbacks, and variations
lists possible optimizations. The patterns will be exemplified in the case of
count-based windows but they can be easily adapted to time-based windows.

Name Paradigm Single Multi Win. Man.
Keyed Keyed
Window Window v v Agnostic/
Farming Parallelism Active
Key Window X v Agnostic/
Partitioning Parallelism Active
Window
Pane Farming v 4 Agnostic
Parallelism
Windows Data
v v Active
Partitioning Parallelism

Table 1: Parallel patterns. *the distinction between agnostic/active workers depends on
the granularity of the distribution and the assignment policy performed by the emitter.

Parallel Patterns for Window-based Stateful Operators 7

In this paper the patterns will be presented by abstracting the the target
architecture, i.e. they can be instantiated both on shared-memory machines
and on distributed-memory architectures provided that proper thread/process
cooperation mechanisms are used. For the experiments the patterns have been
implemented on multi-core architectures only, using the FastFlow runtime.

3.1 Window Farming

The first pattern exploits a simple intuition. Each activation of the computa-
tion (let say a function F) is applied to a subset of the input stream called
window. Each window can be processed independently, that is the result of
the computation on a window does not depend on the results of the previous
windows. Therefore, a simple solution is to adapt the classic farm skeleton to
this domain, as sketched in Fig. 1.

The emitter is in charge of buffering tuples coming from the stream and
building and updating the canonical copy of the windows, one for each logical
substream. In the figure we show an example of two keys X and Y. Tuples
and windows are marked with unique identifiers. Once a window has been
completely buffered, it is transmitted (copied) to a worker. The assignment is
aimed at balancing the workload, e.g. the round-robin policy can be adopted in
the case of an internal function with low variance processing time depending on
the data values, otherwise an on-demand assignment can be a better solution.
In the figure we adopt a round-robin strategy: windows w? and w; are assigned
to worker j s.t. j = (¢ mod n)+ 1 where n is the number of workers.

o F() Flt) Fled)
—_—

oz \
/ F(w2) re-ordering of
F(wd) results

Fwi)
F(t)

:

/
canonical copy of the

(O]
windows w3 [@EEIE]

Fig. 1: Window farming with two workers, two substreams X (square) and Y (circle) and
[W|=3 and 6=1. w? the i-th window of substream X. F is the processing function.

It is worth noting that multiple windows (of the same and of different
substreams) are executed in parallel by different workers that are completely
agnostic of the window management. Workers receive a bulk of data (three
tuples per task in the example), apply the function F, and discard the data.
The emitter is responsible for receiving new tuples and removing expired ones

8 T. De Matteis and G. Mencagli

according to the window size and the sliding factor. A Collector functionality
receives the results and may be responsible for reordering them. For brevity we
denote window farming as follows: W-Farm(F, [W)|,d). An application of this
pattern in the field of system biology has been implemented using FastFlow
in [6], however without some of the optimizations discussed in this section.

As a first optimization, instead of buffering entire windows and then trans-
mit them, the distribution can be performed with a finer granularity. Single
tuples (or small groups of consecutive tuples) can be transmitted by the emit-
ter to the workers as they arrive from the input stream without buffering the
whole window. Each tuple is routed to one or more workers depending on the
values of the window size and slide parameters and the assignment policy of
windows to workers. Fig. 2a shows an example with three workers, window size
|[W|=3 and slide §=2. The distribution is performed on-the-fly by transmitting
a tuple at a time.

[OEEE
o, (w)

4 EEEE
N DEEEE

—_—

[3mme (W)
ilanan;

(a) Fine-grained distribution (|W|=3, §=2). (b) Batching (|W]|=4, §=1, |B|=2).

—
- OME]

Fig. 2: Optimizations of the window farming pattern (example with three workers).

Windows are assigned to the three workers in a round-robin fashion. Each
tuple can be transmitted to one or more workers. For example the tuple x4
is part only of window w3 which is assigned to the second worker. Tuple x5
belongs to windows w3 and wj and thus it is multicasted to the second and
the third worker. The window logic is still predominant in the emitter:

— it assigns windows to the workers;

— for each received tuple ¢, it determines the identifiers of the windows on
which this tuple belongs. The tuple is transmitted to the worker j if there
exists a window w; s.t. t € w; and w; is assigned to that worker;

— when the last tuple of a window is received, it is marked with a special
metadata to make aware the worker assigned to that window that the
evaluation of F can be triggered.

With this distribution the workers remove the tuples that are no longer needed,
thus they become partially active in the window logic. Each worker removes
the oldest nd tuples before starting the computation on a new window.

Parallel Patterns for Window-based Stateful Operators 9

This optimization reduces the buffering space in the emitter and its ser-
vice time. The latter is important if the distribution of a window as a whole
makes the emitter a bottleneck. Furthermore, fine-grained distributions can
be useful to reduce latency and improve throughput if F is incrementally
computable (e.g. distributive or algebraic aggregates). For example a worker
performs the following steps: while (EOW) {receive t; s.update(t);}
s.output () ;, where EOW denotes the end of a window and s is a data struc-
ture maintained incrementally. The workers can start the computation as new
tuples arrive without needing to have the whole window. Complex statistics
and processing like interpolation, regression or sorting may need the entire
window in the worst case, and do not benefit from this optimization.

It is important to observe that tuples are replicated! in the workers due
to the fact that consecutive windows overlap. A further optimization consists
in assigning batches to workers, i.e. a set of B > 1 consecutive windows of the
same substream. A tuple present in more than one window in the same batch is
transmitted just one time to the corresponding worker. The goal is to reduce
data replication. Fig. 2b shows an example with three workers and batches
of two windows assigned in a round-robin fashion. Each tuple is multicasted
to two workers instead of three as in the case of the standard assignment of
single windows. Batching can increase latency and the buffering space in the
emitter. This can still be mitigated by using fine-grained distributions. Tab. 2
summarizes the main features of window farming.

Window Farming

Applicability The pattern can be applied to any window-based stateful operator.
No particular property is required for the function F.

Profitability The pattern is able to optimize throughput by using a number
of workers such that the stream speed can be sustained without
being bottleneck. Load balancing can be easily obtained through
proper assignment policies of windows to workers.

Issues The emitter manages the window logic and may be bottleneck for
very fine-grained F. Based on the sliding factor, the same tuple
can be replicated in several workers by potentially increasing the
overall memory consumption. Results may arrive to the collec-
tor potentially unordered. This pattern does not optimize latency
since the function F is applied serially on each window.

Variations Distributions with finer granularity (on-the-fly) reduce the buffer-
ing space in the emitter and improve its service time. This can be
also profitable to reduce latency and improve throughput if the
function F is incrementally computable. Batch-based assignments
can be used to reduce data replication.

Table 2: Summary of the features and properties of window farming.

1 replicated in a hypothetical message-passing abstract model. On multicores, based on

the used run-time support, tuples replication can be avoided by sharing data, i.e. by passing
memory pointers to the input tuples.

10 T. De Matteis and G. Mencagli

3.2 Key Partitioning

Key partitioning is a variant of window farming with a constrained assign-
ment policy. This pattern expresses a limited parallelism: only the windows
belonging to different substreams can be executed in parallel, while the win-
dows of the same substream are processed serially by the same worker. The
idea is to split the set of keys IC into n partitions, where n is the number of
workers. An emitter assigns windows to the workers based on the value of the
key attribute. If windows are distributed as a whole, workers are agnostic of
the window management. With fine-grained distributions the workers become
active, i.e they manage the window boundaries for the assigned keys. We de-
note the pattern as KP(F, KC, [W)|, §). This variant deserves to be considered a
pattern per se due to its wide diffusion in the literature [15].

Intuitively, load balancing becomes a problem when there is skew in the
distribution of the keys. If p™%* denotes the highest frequency of a key, the
parallel pattern can scale up to 1/p™**. Only with a uniform distribution of
keys the maximum scalability is equal to the number of distinct keys |K],
which is also the highest parallelism degree exploitable by this pattern. Tab. 3
summarizes the pros and cons of key partitioning.

Key Partitioning

Applicability The pattern can be applied to any multi-keyed stateful operator
(based on windows or not). Multiple logical substreams must exist.

Profitability The pattern improves throughput. Windows are assigned to work-
ers such that no data replication is necessary. Results with the
same key arrive to the collector ordered.

Issues Load balancing can be difficult or even impossible if the key dis-
tribution is very skewed. The pattern does not optimize latency.

Variations As for window farming, distributions with finer granularity (on-
the-fly) reduce the buffering space in the emitter and improve its
service time. This can be also profitable to reduce latency and im-
prove throughput if the function F is incrementally computable.

Table 3: Summary of the features and properties of key partitioning.

This pattern is useful also when the data structure for each substream is
not a window. An example are synopsis-based operators, where a synopsis is
used to make statistics over the the entire history of a substream. In that case
key partitioning is the only solution to preserve consistency of data structures,
since all the tuples with the same key are assigned to the same worker.

3.3 Pane Farming

The pane-based approach has been proposed for the centralized processing of
sliding window aggregates in [18]. Its generalization identifies a parallel pat-

Parallel Patterns for Window-based Stateful Operators 11

tern with interesting properties in terms of throughput, latency and memory
occupancy. The idea is to divide each window into non-overlapping contiguous
partitions called panes of size o, = ged(|W], §). Each window w is composed
of r panes w = {Py,...,Pr} with r = [W|/o,. This pattern can be applied
if the internal processing function F can be decomposed into two functions
G and H used as follows: F(w) = H(G(P1),...,G(P;)), i.e. G is applied to
each pane and H is computed by combining the pane results. Examples of
computations that can be modeled in this way are holistic aggregates (e.g.
median, mode, quantile), bounded aggregates (e.g. count and sum), complex
differential and pseudo-differential aggregates, and many others [18,10]. The
idea of this pattern is sketched in Fig. 3 exemplified in a single-keyed scenario.

The application of G and H can be viewed as a two-staged pipeline where
each stage can be parallelized using window farming. Panes are tumbling sub-
windows distributed to a set of agnostic workers applying the function G on
each received pane. Panes execution can be assigned in a round-robin fashion
or using an on-demand policy to achieve load balancing. The second stage
receives pane results and applies the function H on windows of pane results
with size r and slide 0, = 6/0,. If necessary this stage can be further paral-
lelized using window farming. In that case the whole pattern can be defined as
Pipe(W-Farm(G, 0,,, 0p), W-Farm(#H, 7, 6,,)). In multi-keyed scenarios key parti-
tioning can be applied in the second stage too. We can observe that, belonging
to the window parallel paradigm, more than one window is executed in parallel
in the workers of the pane farming pattern.

g G
‘ Flws)

PGPS g \F‘(:Jl)

G(Ps)G(Ps)
‘ 8 (cle) (¢)=

re-ordering of \
© oreseultsg @ W /]-‘Zu 'Z) re-ordering of

results

gP) G(P),G(Ps).G(Py) Flwa)
G(Ps)
G(P1).G(P3),G(P2)
N - _
first stage second stage

Fig. 3: Pane farming with one key. Window with [W|=6, §=2, op=2. The collector of the
first stage and the emitter of the second one have been merged in a single C|E functionality.

In the figure the first stage has been parallelized with three workers while
the second with two. For fine-grained H the second stage can be sequential,
i.e. Pipe(W-Farm(G, o, 0,), Seq(H,,0,)), and eventually collapsed in C/E.

Pane farming improves throughput. It also reduces latency by sharing over-
lapping pane results between consecutive windows. The latency reduction fac-
tor is given by the ratio £5°7/L£P%"¢ where £ ~ rTg + T3 is the latency
of the sequential version and L£P*"¢ ~ Ty + T3 the one with the pane ap-

12 T. De Matteis and G. Mencagli

proach (T3 and Tg are the processing times of the two functions). The ratio
approaches r as Ty — 0. Pane farming can also be used with multiple keys:
panes of different substreams are dispatched by E to the workers of the first
stage, while the corresponding windows are calculated in the second one.
The functionality C/E can be critical for latency and throughput. It merges
the pane results coming from the workers of the first stage and assigns windows
of pane results to the workers of the second stage. Shuffling can be used to
remove this potential bottleneck. Rather than merging back the pane results
and then distribute windows of them, workers of the first stage can multicast
their pane results directly to the workers of the second stage, see Fig. 4a.

|
F(w2) mardongor y
results re-ordering of

G(P1).G(P3).G(P2)

first stage second stage

(a) Pane farming with shuffling. (b) Pane farming on a ring topology.

Fig. 4: Variations of the pane farming pattern.

Alternatively, the two stages can be merged by organizing the workers on
a ring topology as suggested in [10] (see Fig. 4b). Workers now apply the
function G on the received panes and the function H on their pane results
and on the ones received by the previous worker on the ring. As explained
in [10], there is always a way to assign panes to the workers such that a pane
result can be transmitted at most to the next worker on the ring. However,
this static assignment can prevent load balancing if G has a high variance
processing time. Although elegant and interesting, this variant can not always
be applicable in algorithmic skeleton frameworks [16], where it is not always
possible to express explicit communications between workers by using pre-
defined skeletons. Tab. 4 summarizes the properties of pane farming.

3.4 Window Partitioning

Window partitioning is an adaptation of the map-reduce skeleton on data
streams. The current window is partitioned among n workers responsible for
computing the internal processing function on their partitions. A reduce phase
can be necessary to aggregate/combine the final results of the window. Accord-
ing to the data parallelism paradigm, exactly one window at a time is in exe-
cution on the parallel pattern. The emitter can buffer and scatter each window
as a whole or, more conveniently, single tuples are distributed to the workers

Parallel Patterns for Window-based Stateful Operators

13

Pane Farming

Applicability

Profitability

Issues

Variations

The pattern can be applied if the function F can be expressed as
F(w) = H(G(P1),...,G(P,)) on each window w.

We have no data replication in the first stage because panes are
disjoint (batching can be applied in the second stage). The pattern
improves throughput and latency. Load balancing can be easily
achieved through proper assignment policies of panes to workers.

The functionalities E and C/E are aware of the decomposition in
panes and how pane results must be combined to obtain the final
results of the windows. This pattern is not useful if the sliding
factor § is equal to one tuple, called slide-by-tuple queries. E.g.
“return the max price in the last 100 trades”.

Shuffling can be adopted to remove the C/E functionality. This
can be useful if C/E is bottleneck or it is hard to implement. Shuf-
fling comes at the expense of additional communication cost in
the workers of the first stage. The ring variant makes it possi-
ble to merge the two stages into a unique [E, {W},C] structure if
communications between workers can be expressed.

Table 4: Summary of the features and properties of pane farming.

one at a time. In this case the workers a fully active in the window man-
agement, since they are responsible for adding new tuples to their partitions
and removing expired ones according to the window size and slide parameters.
An example of this pattern is shown in Fig. 5. In the example the tuples are
distributed in a round-robin fashion to two workers. This is possible if the
internal processing function can be performed by the workers in parallel on
non-contiguous partitions of the same window. Otherwise, other distributions
preserving the contiguity of data can be used if necessary. In a multi-keyed
scenario the workers maintain a window partition per logical substream.

local partition

local partition

Fig. 5: Window partitioning with two workers and one key. |W|=8 and §=4.

Once the last tuple of the slide has been received, it is transmitted to one
worker and a special meta-tuple is multicasted to all the workers in order to
start in parallel the map function (let say F) on the partitions. The workers

14 T. De Matteis and G. Mencagli

execute the local reduce phase on their partitions and, in the implementation
depicted in Fig. 5, they communicate the local reduce results to the collector
which is in charge of computing the global reduce result. Depending on the
computation semantics the reduce phase (with an associative operator @,) can
be performed in two ways:

— asynchronously w.r.t the computation of the workers. In this case the global
reduce result is forwarded to the output stream and it is not needed by
the workers. An example is the computation of algebraic aggregates, e.g.
“finding the number of tuples in the last 1000 tuples such that the price
attribute is greater than a given threshold”. In this case F is the count
function and &, is the sum;

— synchronously w.r.t the computation of the workers, which need explicitly
to receive the global reduce result from the collector through the dashed
arrows in Fig. 5. Usually, the global reduce result needs to be multicasted
to all the workers for reasons related to the computation semantics, e.g. a
second map(-reduce) phase must be executed as in the query “finding the
tuples in the last 1000 tuples such that the price attribute is higher than
the average price in the window”.

In general the behavior of the pattern captures a computation defined as fol-
lows: Loopy,;(Map(F?, |[W)|,§), Reduce(®)), i.e. one or more map-reduce com-
putations applied repeatedly on the window data. It is worth noting that the
computations that can be parallelized through pane farming are a subset of
the ones on which window partitioning can be applied as well.

This pattern is able to improve throughput and optimize latency. The
latency reduction is proportional to the partition size, which depends on the
number of workers. This is an important difference with pane farming that
gives a latency reduction independent from the parallelism degree. Tab. 5
summarizes the pros and cons of this pattern.

Window Partitioning

Applicability The pattern can be applied when the computation is expressed
as a map followed by an optional reduce phase. The repetitive
application of maps and reduces can be captured as well.

Profitability The pattern improves throughput and optimizes latency. Tuples
are partitioned perfectly without data replication.

Issues Load balancing can be difficult to achieve if the internal processing
function has a high variance processing time depending on the
data values. Workers are fully active and need to know when the
activation of the internal processing must be triggered.

Variations Distribution can be performed with finer granularity (on-the-fly)
by reducing the buffering space in the emitter and its service time.
This can be also profitable to further reduce latency and improve
throughput if the function F is incrementally computable.

Table 5: Summary of the features and properties of window partitioning.

Parallel Patterns for Window-based Stateful Operators 15

3.5 Nesting of Patterns

As for the classic algorithmic skeletons, nesting can be considered a potential
solution to balance the pros and cons of the different patterns. Tab. 6 shows two
notable examples of nesting. A more detailed analysis of the possible schemes
and their advantages will be studied in our future work.

Notable cases of Pattern Nesting

Outer-level: Window farming with macroworkers internally implemented ac-
cording to the window partitioning pattern. This approach can be
useful to sustain the actual speed of the input stream with lower
Inner-level: latency than using window farming alone.

Other properties are: 2) it exploits the easier load balancing at the

Window Farming

Window Part. outermost level; i) batching can be used at the outermost level
to reduce data replication between macroworkers; i) no data
replication inside macroworkers; #w) the distribution (at both the
levels) can be performed with finer granularity (on-the-fly).

Outer-level: Key partitioning with macroworkers implemented using window

partitioning. This solution can be applied in multi-keyed scenar-
ios only. It increases throughput with lower latency and optimal
Inner-level: memory occupancy (no tuple replication at any level). Load bal-

Window Part. ancing can be hard as it is critical for both the parallel patterns.

Key Partitioning

Table 6: Notable nesting cases of parallel patterns for window-based stateful operators.

4 Experiments

This section describes a first evaluation of the patterns on shared-memory
machines. We leave to our future work the analysis on shared-nothing archi-
tectures. The parallel patterns have been implemented in FastFlow [4], a C++
framework for skeleton-based parallel programming. Its design principle is to
provide high-level parallel patterns to the programmers, implemented on top
of core skeletons (pipeline and farm) easily composable in cyclic networks.
FastFlow natively supports streaming contexts, thus it is a friendly environ-
ment on which provide a first implementation of our patterns.

As a proof-of-concept we have implemented our patterns in the FastFlow
runtime, by directly modifying the core skeletons with the required distri-
bution, collecting and windowing functionalities. Parallel entities (emitters,
workers and collectors) have been implemented as pthreads with fixed affin-
ity on the thread contexts of general-purpose multicores. According to the
FastFlow model, the interactions between threads consist in pop and push
operations on non-blocking lock-free shared queues [7].

The code of the experiments has been compiled with the gcc compiler
(version 4.8.1) and the —03 optimization flag. The target architecture is a
dual-CPU Intel Sandy-Bridge multicore with 16 hyperthreaded cores operating
at 2GHz with 32GB or RAM. Each core has a private L1d (32KB) and L2

16 T. De Matteis and G. Mencagli

(256KB) cache. Each CPU is equipped with a shared L3 cache of 20MB.
In the experiments threads have been fixed on the cores. The computation
is interfaced with a Generator and Consumer thread, both executed on the
same machine, through TCP/IP standard POSIX sockets. Thus, 12 is the max
number of workers without hyperthreading.

4.1 Synthetic Benchmarks

The benchmark computes a suite of complex statistical aggregates used for
algotrading [14], with |K| = 1000 stock symbols and count-based windows of
1000 tuples and slide of 200 tuples. Each tuple is a quote from the market
and is stored in a record of 64 bytes. To use pane farming (PF) the synthesized
computation is composed of a function G with Tg =~ 1500usec, and a function
‘H with Ty, =~ 20usec executed by the collector. Each test ran for 180 seconds.

For each parallelism degree we determine the highest input rate (through-
put) sustainable by the system. To detect it, we repeat the experiments several
times with growing input rates. The generator checks the TCP buffer of the
socket. If it is full for enough time, it stops the computation and the last sus-
tained rate is recorded. Figs. 6a, 6b and 6¢ show the results in three scenarios.
In the first one the keys probabilities are uniformly distributed (p = 1073). In
the second one we use a skewed distribution with the most frequent key with
p™® = 3%. The last case is a very skewed distribution with p** = 16%. We
also report the results with two worker threads per core (24), which is the best
hyperthreaded configuration found in our experimental setting. In the first two
scenarios key partitioning (KP) provides slightly higher throughput than win-
dow farming (WF) and window partitioning (WP) due to better reuse of window
data in cache. WF and WP are comparable. The best results are achieved with
PF: throughput is 5 times higher than the other patterns. The reason is that
PF uses a faster sequential algorithm that shares the pane results in common
between consecutive windows of the same key. Interesting is the very skewed
distribution (Fig. 6¢) where the rate with XP stops to increase with more than
6 workers. In fact, with p™* = 16% the scalability is limited to 6.25.

Fig. 6d shows the average latency for each elapsed second of execution in
a scenario with input rate of 200K tuples/sec. To not being bottleneck we use
10 workers for WF, KP and WP and two workers with PF. The latency is plotted
using two logarithmic scales: the one on the left is used for WP and PF, the
scale on the right for WF and KP. As expected WF and KP have similar latencies
because each window is processed serially. PF has latency 5 times lower than
WF and KP. As discussed in Sect. 3.3, the latency reduction factor is roughly
equal to the number of panes per window if T3 ~ 0 as in this benchmark. In
contrast WP produces a latency reduction proportional to the parallelism degree
(partition size). With 10 workers the latency is 27.53% lower than PF. Tab. 7
summarizes the best scalability results. In summary the achieved performance
is good, owning to the efficient FastFlow runtime and the data reuse in cache
enabled by the sliding-window nature of the computation.

Parallel Patterns for Window-based Stateful Operators

17

Max sustainable input rate (tuples/sec)

Max sustainable input rate (tuples/sec)

N
<

1.75M
1.5M
1.25M
M
750K
500K
250K

N
<

1.75M
1.5M
1.25M
™
750K
500K
250K

Synthetic benchmark - uniform distribution of keys

Synthetic benchmark - skewed distribution of keys

°
F W, mzzm PF. == kp. mmmmm WP. | % oM F
8 Probability K 1 2 1M |
£ 2
L T %% i =
o008 FT] 5 e 1M
1%
0.004 + i 1 :::: 1 = 1.25M
B 2
L0 R 1554 1 £ ™
0 500 1000 i s
r ; i £ 1 B 750K |
oo ©
is% c
[5% 000 4 g 500K
£ m
r i 1 3 250K |
1 g 0

12
Parallelism degree (number of Workers)

24

(a) Uniform distribution.

P

WF.

Probability

PF. =xxxx KP. mmmm WP. =58

ZRRRZT
otetetetete!

<3
tate!
X3
<

5%,
X
%
tate%s

RIRR
R

0%
oto%s

v,v.
%400%6%6%2
oo

—

%
oS

.
%

RZs
fatete

=
oS

%%
Pate%

%2

—
%4%ate%e?

ot

X

%
o5

%%
o2e%

e%%
o%es

%X
—~
539

S
o

%
%

55

%
35

SN
R

26262

k
12 24
arallelism degree (number of Workers)

(b) Skewed distribution.

Synthetic benchmark - very skewed distribution of keys

Synthetic benchmark - query latency (per second of execution)

I WF. zzza PF. ZZ=xa KP. mmmmm WP. e
I e
F Probability B3
6%
[So%
K
0.16 = K
[0.002 B K
%% s
0% K
9% 0%
o5 K
5% K
1 50 1000 B £
L o KX
o [
& K
e K
J
£<d %
kA
o5%
7w [k
;) b
)2 s

24
Parallelism degree (number of Workers)

12

(c) Very skewed distribution.

40

WF. —%— KP. —e— PF. —x— WP, —v—

1 32

1 24
1 20

1 16

Average latency (msec)

(d) Query lat

60
Elapsed execution time (sec)

80 100 120 140 160 180

ency per second of execution.

Fig. 6: Throughput and average latency with window farming (WF), key partitioning (KP),
pane farming (PF) and window partitioning (WP). Distribution granularity of 1 tuple.

Pattern Uniform Skewed Very Skewed
WF 12:11.85, 24:14.93 12:10.25, 24:12.95 12:10.37, 24:12.94
KP 12:12.02, 24:15.12 12:11.53, 24:14.46 12:6.08, 24:6.07
PF 12:11.77, 24:14.91 12:11.53, 24:14.76 12:11.61, 24:14.58
WP 12:11.83, 24:13.87 12:11.24, 24:13.24 12:11.61, 24:13.67

Table 7: Scalability with 12 and 24 workers. Syntax ParDegree:Scal.

In terms of memory occupancy the three patterns behave similarly. Accord-
ing to the FastFlow model, pointers are passed from the emitter to workers,
thus tuples are actually shared rather than physically replicated. Consequently,
no batching is necessary in WF. In conclusion, this benchmark shows that par-
allel patterns have different features. When applicable PF is preferable for
throughput optimization while WP is the one giving the best latency outcome.

4.2 Time-based Skyline Queries

In this concluding section we study a real-world continuous query computing
the skyline set [22] on the tuples received in the last |W| time units (slide-

18 T. De Matteis and G. Mencagli

by-tuple time-based window). Skyline is a class of preference queries used in
multi-criteria decision making to retrieve the most interesting points from a
given set. Formally, tuples are interpreted as d-dimensional points. A point
x ={x1,...,24} belongs to the skyline set if there exists no dominator in the
current window, i.e. a point y such that Vi € [1,d]y; < x;. The output is a set
of skyline updates (entering or exiting of a tuple from the skyline).

The computation can be described as a map-reduce in which a local skyline
is computed for each partition of the dataset and the final skyline is calculated
from the local ones. Thus, the natural parallel pattern for this computation
is Window Partitioning (WP). The skyline algorithm performs an intensive
pruning phase [22]: tuples in the current window can be safely removed before
their expiring time if they are dominated by a younger tuple in the window.
In fact, these points will never be able to be added to the skyline, since they
expire before their younger dominator. Pruning is fundamental to reduce the
computational burden and memory occupancy [22]. However, it produces a
severe load unbalance because the partition sizes can change very quickly at
run-time, even if the distribution evenly assigns new tuples to the workers.

Fig. 7a shows the maximum sustainable input rate with the three point
distributions studied in [22]: correlated, anticorrelated and independent.
Each distribution (represented in Fig. 7b) is characterized by a different prun-
ing probability (higher in the correlated case, lower in the anticorrelated one).

Skyline query - max sustainable input rate

300K

" Correlated. —%— |
Independent. —e—
250K - Anticorrelated. —8—

200K -

150K

100K +

I3
=}
~

o

Max sustainable input rate (tuples/sec)

1 2 3 4 5 6 7 8 9 10 11 12
Parallelism degree (number of Workers)

(a) Max sustainable input rate. (b) Point distributions.

Fig. 7: Skyline query: distributions of points and maximum sustainable input rate per
g Y y
parallelism degree with the window partitioning pattern (WP). Windows of 10 seconds.

Each new tuple is assigned to the worker with the smallest partition to bal-
ance the workload. The correlated case is the one with the highest max rate,
since partitions are smaller (due to pruning) and the computation has a finer
grain. Load balancing is the most critical issue: the scalability with 12 work-
ers is 8.16, 10.7 and 11.65 in the correlated, independent and anticorrelated
cases. With a higher pruning probability it is harder to keep the partitions
evenly sized. Hyperthreaded configurations are not effective. We omit them
for brevity.

Parallel Patterns for Window-based Stateful Operators 19

5 Related Work

This paper presented four parallel patterns targeting window-based DaSP
computations. They represent an extension and specialization of the classic
algorithmic skeletons [16] (notably, pipeline, farm, map and reduce). Existing
SPEs allow the programmer to express only a subset of these patterns, usually
without some of the possible optimizations and variants.

Storm [2] provides two primitive concepts: spouts (data sources) and bolts
(operators). Storm does not have built-in stream operators and windowing
concepts: users have to define the operator logic and the windowing mecha-
nisms from scratch. Parallel patterns can be expressed by specifying how the
input stream tuples are partitioned among multiple replicas of an operator
(grouping). For multi-keyed stateful operators field grouping can be used for
assuring that tuples with the same key are sent to same replica. Compared
with our work this is similar to key partitioning, in which bolts are essentially
active workers. The other parallel patterns introduced in this paper could be
probably implemented on top of Storm by using active workers and custom
grouping policies implementing user-defined distributions.

IBM InfoSphere [3] (IIS) is a commercial product by IBM. It provides a
rich set of built-in operators and the possibility to implement user-defined
operators. Like Storm, data can be routed at different operator replicas by
means of hashing. Windowing is primitive in IIS, thus key partitioning can
be easily implemented. In contrast, there is no support for customizable tuple
routing, thus there is no direct possibility to mimic the other patterns.

Spark Streaming [1] runs applications as a series of deterministic batch
computations (micro-batching) on small time intervals. It supports various
built-in operators and a limited set of window-based operators working with
associative functions (currently only time-based windows are implemented).
While in Storm and IIS the operators are continuously running and tuples
are processed as long as they appear, the Spark execution engine is essentially
a task scheduler. Each operator is translated into a set of tasks with proper
precedences/dependencies. The count/reduce ByWindow operators are similar
to the window partitioning pattern, while count/reduce ByKeyAndWindow re-
calls the nesting of key and window partitioning.

6 Conclusions

This paper presented four parallel patterns targeting DaSP computations, de-
fined as extensions of the classic algorithmic skeletons [16]. For each pattern
we outlined the pros and cons and optimizations. We implemented the pat-
terns in the FastFlow [4] framework for multicores. Extensions of our work
consist in the integration of the patterns as high-level patterns in FastFlow
with the support for distributed-memory architectures. In the future we plan
to enhance the patterns with autonomic capabilities [19].

20

T. De Matteis and G. Mencagli

Acknowledgements This work has been partially supported by the EU H2020 project
RePhrase (EC-RIA, H2020, ICT-2014-1).

References

W=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Apache spark streaming. https://spark.apache.org/streaming

Apache storm. https://storm.apache.org

Ibm infosphere streams. http://www-03.ibm.com/software/products/en/infosphere-
streams

Fastflow (ff) (2015). URL http://http://calvados.di.unipi.it /fastflow/

Aggarwal, C., Yu, P.: A survey of synopsis construction in data streams. In: C. Aggarwal
(ed.) Data Streams, Advances in Database Systems, vol. 31. Springer US (2007)
Aldinucci, M., Calcagno, C., Coppo, M., Damiani, F., Drocco, M., Sciacca, E., Spinella,
S., Torquati, M., Troina, A.: On designing multicore-aware simulators for systems biol-
ogy endowed with on-line statistics. BioMed Research International (2014)

Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An efficient
unbounded lock-free queue for multi-core systems. In: Proceedings of the 18th Inter-
national Conference on Parallel Processing, Euro-Par’12, pp. 662—673. Springer-Verlag,
Berlin, Heidelberg (2012)

Arasu, A., Babu, S., Widom, J.: The cql continuous query language: Semantic founda-
tions and query execution. The VLDB Journal 15(2), 121-142 (2006)

. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data

stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 02, pp. 1-16. ACM, New York,
NY, USA (2002)

Balkesen, C., Tatbul, N.: Scalable Data Partitioning Techniques for Parallel Sliding
Window Processing over Data Streams. In: VLDB International Workshop on Data
Management for Sensor Networks (DMSN’11). Seattle, WA, USA (2011)

Bertolli, C., Mencagli, G., Vanneschi, M.: Analyzing memory requirements for per-
vasive grid applications. In: Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on, pp. 297-301 (2010). DOI
10.1109/PDP.2010.71

Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Computing 30(3), 389 — 406 (2004)

Cugola, G., Margara, A.: Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv. 44(3), 15:1-15:62 (2012)

Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing complex aggregate
queries over data streams. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02. ACM, New York, NY, USA (2002)
Gedik, B.: Partitioning functions for stateful data parallelism in stream processing. The
VLDB Journal 23(4), 517-539 (2014)

Gonzalez-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers. Software: Practice and Experience 40(12),
1135-1160 (2010)

Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream processing
optimizations. ACM Comput. Surv. 46(4), 46:1-46:34 (2014)

Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: Efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1), 3944
2005

1(\/[enc.zyugli7 G., Vanneschi, M.: Towards a systematic approach to the dynamic adaptation
of structured parallel computations using model predictive control. Cluster Computing
17(4), 1443-1463 (2014)

Patroumpas, K., Sellis, T.: Maintaining consistent results of continuous queries under
diverse window specifications. Inf. Syst. 36(1), 4261 (2011)

Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Sliding window-based frequent
pattern mining over data streams. Information Sciences 179(22), 3843 — 3865 (2009)
Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. Knowledge
and Data Engineering, IEEE Transactions on 18(3), 377-391 (2006)

