跳至內容

維基百科,自由的百科全書

這是本頁的一個歷史版本,由Lzong對話 | 貢獻2019年10月2日 (三) 09:07 top編輯。這可能和目前版本存在着巨大的差異。

鋯 40Zr
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




外觀
銀白色
概況
名稱·符號·序數鋯(zirconium)·Zr·40
元素類別過渡金屬
·週期·4·5·d
標準原子質量91.224(2)
電子排布[Kr] 4d2 5s2
2, 8, 18, 10, 2
鋯的電子層(2, 8, 18, 10, 2)
鋯的電子層(2, 8, 18, 10, 2)
歷史
發現馬丁·克拉普羅特(1789年)
分離永斯·貝采利烏斯(1824年)
物理性質
物態固體
密度(接近室溫
6.52 g·cm−3
熔點時液體密度5.8 g·cm−3
熔點2128 K,1855 °C,3371 °F
沸點4650 K,4377 °C,7911 °F
熔化熱14 kJ·mol−1
汽化熱591 kJ·mol−1
比熱容25.36 J·mol−1·K−1
蒸氣壓
壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 2639 2891 3197 3575 4053 4678
原子性質
氧化態4, 3, 2, 1, −2
兩性氧化物)
電負性1.33(鮑林標度)
電離能第一:640.1 kJ·mol−1
第二:1270 kJ·mol−1
第三:2218 kJ·mol−1
原子半徑160 pm
共價半徑175±7 pm
鋯的原子譜線
雜項
晶體結構六方密堆積
磁序順磁性
電阻率(20 °C)421 nΩ·m
熱導率22.6 W·m−1·K−1
膨脹系數(25 °C)5.7 µm·m−1·K−1
聲速(細棒)(20 °C)3800 m·s−1
楊氏模量88 GPa
剪切模量33 GPa
體積模量91.1 GPa
泊松比0.34
莫氏硬度5.0
維氏硬度820–1800 MPa
布氏硬度638–1880 MPa
CAS號7440-67-7
同位素
主條目:鋯的同位素
同位素 豐度 半衰期t1/2 衰變
方式 能量MeV 產物
88Zr syn 83.4 天 ε - 88Y
γ 0.392D -
89Zr syn 78.4 小時 ε - 89Y
β+ 0.902 89Y
γ 0.909D -
90Zr 51.45% 穩定,帶50粒中子
91Zr 11.22% 穩定,帶51粒中子
92Zr 17.15% 穩定,帶52粒中子
93Zr 痕量 1.53×106 年 β 0.060 93Nb
94Zr 17.38% >1.1×1017 年 ββ 1.144 94Mo
96Zr 2.8% 2.0×1019 年[4] ββ 3.348 96Mo
β - 96Nb

gou3為一元素列表為Zr的化學元素原子序數40。鋯的原文名稱zirconium來自鋯石(德語:Zirkon),為鋯元素的主要來源[5]。鋯石的字源來自波斯語:زرگون‎(zargun),字面意思為「似金」。這是一種灰白色、堅硬且帶有光澤的過渡金屬,與極為相似,與的相似性稍低。 鋯主要作為耐熱劑英語refractory遮光劑英語opacifier,而少量的鋯則基於它的高度抗腐蝕性作為合金用劑。鋯可以形成多種不同的無機化合物有機金屬化學,如二氧化鋯雙環戊二烯基二氯化鋯英語zirconocene dichloride等。大自然中存在五種鋯的同位素,其中三種能夠穩定存在。鋯的化合物在生物體內沒有已知的功用

字源

的名稱來自鋯石(德語:Zirkon),鋯石的字源來自波斯語زرگون‎(zargun),字面意思為「金色之光」。

發現

1787年,利用來自斯里蘭卡的黃鋯石,馬丁·克拉普羅特抽取出一種新的氧化物,根據鋯石的名稱,命名為德語:Zirkonerde。1824年貝采利烏斯用金屬,還原該氧化物,分離出鋯金屬。

特性

鋯在室溫時為具延展性,有光澤(礦物)的灰白色金屬;但在純度較低時則硬且易碎的[6][7]。粉末狀時極易燃,固體則否。鋯對於酸、鹼、鹽水及其他物質具有高度的抗腐蝕性[8],但會溶解於鹽酸硫酸,尤其是當存在時[9]。其與合金在低於35K(攝氏-238°,華氏-396.67°)時具有 [8]。 鉻的熔點沸點各為攝氏1855 ° (華氏3371 °)與攝氏4371 ° (華氏7900 °) [8]。鉻的電負度為1.33,在d區元素裏排名倒數第五,在之前[10]。室溫時鋯呈六方最密堆積的結晶,稱為α-鋯;而在攝氏863°時則會轉變為體心立方結晶的β-鋯。鋯會處於β-鋯狀態直到溫度上升至熔點[11]

同位素

自然界中存在五種鋯的同位素,其中鋯90、鋯91、鋯92和鋯94是穩定的,雖然鋯94預測將會以多於1.10×1017年的半衰期進行雙貝他衰變,但目前在實驗中並未觀測到此變化。鋯96的半衰期為2.4×1019年,是鋯最長壽的放射性同位素。鋯90是鋯的同位素中最為常見的,佔51.45%;鋯96的含量最少,只佔2.80%[12]。 目前已合成出28種鋯的人工同位素,原子量從78到110。 鋯的同位素的半衰期為1.35×106,為最長壽的人工同位素。最重的人工鋯同位素鋯110則具有最強的放射性,半衰期約為30毫秒。質量數大於等於93的放射性同位素以電子發射英語electron emission衰變,而質量數小於等於89的放射性同位素則以正子發射英語positron emission衰變。唯一的例外是鋯88,以電子捕獲英語electron capture衰變[12]。另有五種鋯的同位素(鋯83m、鋯85m、鋯89m、鋯90m1、鋯90m2和鋯91m)以核同質異能素存在。其中,鋯90m2的半衰期最短,只有131納秒,鋯89m最長,有4.161分鐘[12]

礦藏

鋯在地殼中每公斤約有130毫克的含量,海水 [13]中則每升約含有0.026微克。自然中找不到鋯的天然金屬英語native metal,反映其對水的不穩定性。鋯的主要商品來源為鋯石(ZrSiO4),一種主要出產於澳洲、巴西、印度、俄羅斯、南美洲和美國的矽酸鹽礦物 [6],在世界各地也有少量分佈[7]。根據2013年的資料顯示,三分之二的鋯石開採來自澳洲和南美洲[14]。 全球鋯石含量約有六千萬公噸 [15],而每年生產約九十萬噸[13]。鋯元素也出現在其他140種礦物中,包括具商業價值的礦物如斜鋯石英語Baddeleyitekosnarite英語kosnarite[16]。 鋯元素在S-型星中的含量相對豐富,且在太陽及隕石中皆可檢測出。數次阿波羅任務所帶回的月球岩石樣本含有相對於地球岩石較高的氧化鋯含量[8]

用途

鋯不易腐蝕,主要在核子反應堆用作燃料棒的護套材料,以及用作抗腐蝕的合金。由於鋯的中子截面積非常小,中子幾乎可以完全透過鋯,因此鋯合金在核裂變反應堆中可以作為核燃料的包覆管結構材料,如鋯2和鋯4合金。唯一的壞處是到攝氏1260度以上時會跟水蒸汽反應產生氫氣,造成氫爆。

鋯也用在X光繞射儀器,當使用的為靶時,則利用鋯以過濾其他不需要的頻率。

在有機化學,鋯是過渡金屬參與的有機合成方法學研究中比較新穎的一種金屬,鋯可以和形成五元環或者六元環,然後被其他基團進攻而離去,從而構築有機物的骨架。利用鋯化學的方法可以合成很多新奇的化合物,比如中國科學院上海有機所劉元紅研究組曾經通過鋯化學的方法合成和分離出連五烯結構的化合物立方氧化鋯莫氏硬度可達8.5。

鋯合金常用於金屬之切割,白色的二氧化鋯陶瓷刀的主要成分,非常硬,但不耐摔,一摔即碎。

參考文獻

  1. ^ Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  2. ^ Zirconium: zirconium(I) fluoride compound data. OpenMOPAC.net. [2007-12-10]. (原始內容存檔於2011-07-21). 
  3. ^ Lide, D. R. (編). Magnetic susceptibility of the elements and inorganic compounds. CRC Handbook of Chemistry and Physics (PDF) 86th. Boca Raton (FL): CRC Press. 2005. ISBN 0-8493-0486-5. (原始內容 (PDF)存檔於2011-03-03). 
  4. ^ Pritychenko, Boris; Tretyak, V. Adopted Double Beta Decay Data. National Nuclear Data Center. [2008-02-11]. 
  5. ^ Harper, Douglas. zircon. Online Etymology Dictionary. 
  6. ^ 6.0 6.1 引用錯誤:沒有為名為nbb的參考文獻提供內容
  7. ^ 7.0 7.1 引用錯誤:沒有為名為madehow的參考文獻提供內容
  8. ^ 8.0 8.1 8.2 8.3 Lide, David R. (編). Zirconium. CRC Handbook of Chemistry and Physics 4. New York: CRC Press. 2007–2008: 42. ISBN 978-0-8493-0488-0. 
  9. ^ Considine, Glenn D. (編). Zirconium. Van Nostrand's Encyclopedia of Chemistry. New York: Wylie-Interscience. 2005: 1778–1779. ISBN 978-0-471-61525-5. 
  10. ^ Winter, Mark. Electronegativity (Pauling). University of Sheffield. 2007 [2008-03-05]. 
  11. ^ Schnell I & Albers RC. Zirconium under pressure: phase transitions and thermodynamics. Journal of Physics: Condensed Matter. January 2006, 18 (5): 16. Bibcode:2006JPCM...18.1483S. doi:10.1088/0953-8984/18/5/001. 
  12. ^ 12.0 12.1 12.2 Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A. 2003, 729: 3–128. Bibcode:2003NuPhA.729....3A. ISSN 0375-9474. doi:10.1016/j.nuclphysa.2003.11.001. 
  13. ^ 13.0 13.1 Peterson, John; MacDonell, Margaret. Zirconium. Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas (PDF). Argonne National Laboratory. 2007: 64–65 [2008-02-26]. (原始內容 (PDF)存檔於2008-05-28). 
  14. ^ Zirconium and Hafnium - Mineral resources (PDF). 2014. 
  15. ^ Zirconium and Hafnium (PDF). Mineral Commodity Summaries. January 2008: 192–193 [2008-02-24]. 
  16. ^ Ralph, Jolyon & Ralph, Ida. Minerals that include Zr. Mindat.org. 2008 [2008-02-23]. 

外部連結