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Overview

I Deductive verifiers require annotations (e.g., loop invariants)
from user

I Fortunately, many techniques that can automatically learn
loop invariants

I A common framework for this purpose is Abstract
Interpretation (AI)

I Abstract interpretation forms the basis of most static analyzers
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Key Idea: Over-approximation

I Abstract interpretation is a framework for computing
over-approximations of program states

I Cannot reason about the exact program behavior due to
undecidability (and also for scalability reasons)

I But we can obtain a conservative over-approximation and this
can be enough to prove program correctness
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Motivating Example

I What does this function do?

I Annotations computed automatically using an AI tool (Apron)
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The AI Recipe

Abstract interpretation provides a recipe for computing
over-approximations of program behavior

1. Define abstract domain – fixes “shape” of the invariants
I e.g., c1 ≤ x ≤ c2 (intervals) or ±x ± y ≤ c (octagons)

2. Define abstract semantics (transformers)
I Define how to symbolically execute each statement in the

chosen abstract domain

I Must be sound wrt to concrete semantics

3. Iterate abstract transformers until fixed point
I The fixed-point is an over-approximation of program behavior
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Simple Example: Sign Domain

I Suppose we want to infer invariants of the form x on 0 where
on∈ {≥,=, >,<} (i.e., zero, non-negative, positive, negative)

I This corresponds to the following abstract domain represented
as lattice:

non-neg

neg

pos zero

Each element in 
this lattice is an
"abstract value"

I Lattice is a partially ordered set (S ,v) where each pair of
elements has a least upper bound (i.e., join t) and a greatest
lower bound (i.e., meet u )
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Concretization and Abstraction Functions

I The “meaning” of abstract domain is given by abstraction
and concretization functions that relate concrete and
abstract values

I Concretization function (γ) maps each abstract value to
sets of concrete elements

I γ(pos) = {x | x ∈ Z ∧ x > 0}

I Abstraction function (α) maps sets of concrete elements to
the most precise value in the abstract domain

I α({2, 10, 0}) = non-neg

I α({3, 99}) = pos

I α({−3, 2}) = >
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Requirement: Galois Connection

I Important requirement: concrete domain D and abstract
domain D̂ must be related through Galois connection:

∀x ∈ D ,∀x̂ ∈ D̂ . α(x ) v x̂ ⇔ x v γ(x̂ )

I Intuitively, this says that α, γ respect the orderings of D , D̂
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Step 2: Abstract Semantics

I Given abstract domain, α, γ, need to define abstract
transformers (i.e., semantics) for each statement

I Describes how statements affect our abstraction

I Abstract counter-part of operational semantics rules

x = y op z

S: Var    Concrete value

S': Var    Concrete value

Operational Semantics

x = y op z

A: Var    Abstract value

A': Var    Abstract value

Abstract Semantics
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Back to Our Example

I For our sign analysis, we can define abstract transformer for
x = y+ z as follows:

pos neg zero non-neg > ⊥
pos pos > pos pos > ⊥
neg > neg neg > > ⊥
zero pos neg zero non-neg > ⊥

non-neg pos > non-neg non-neg > ⊥
> > > > > > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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Soundness of Abstract Transformers

I Important requirement: Abstract semantics must be sound
wrt (i.e., faithfully models) the concrete semantics

I If F is the concrete transformer and F̂ is its abstract
counterpart, soundness of F̂ means:

∀x ∈ D ,∀x ∈ D̂ . α(x ) v x̂ ⇒ α(F (x )) v F̂ (x̂ )

I If x̂ is an overapproximation of x , then F̂ (x̂ ) is an
over-approximation of F (x )

Işıl Dillig, Abstract Interpretation 11/27

Putting It All Together

Fixed-point 
    engine

Abstract domain

 Abstract 
semantics

P
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Fixed-point Computations
I Fixed-point computation: Repeated symbolic execution of

the program using abstract semantics until our approximation
of the program reaches an equilibrium:

⊔

i∈N
F̂ i(⊥)

I Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

I Assuming correctness of your abstract semantics, the
least fixed point is an overapproximation of the program!
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Performing Least Fixed Point Computation

I Represent program as a control-flow
graph

I Want to compute abstract values at
every program point

I Initialize all abstract states to ⊥

I Repeat until no abstract state changes
at any program point:

I Compute abstract state on entry to a
basic block B by taking the join of
B’s predecessors

I Symbolically execute each basic
block using abstract semantics

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1
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An Example

x = 0;
y =0;

while(y <= n) 
{
   if (z == 0) {
      x = x+1;
   }
   else {
      x = x + y;
   }
   y = y+1 
}

Is x always
non-negative 

inside the loop?

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1
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Fixed-Point Computation

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x = , y = 

x = , y = 
x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x = , y = 

x = Z , y = 
x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P x = P , y = P 

x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x = NN , y = P x = NN , y = P 

x = NN , y = P x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x = NN , y = P x = NN , y = P 

x = NN , y = P x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x = NN , y = P x = NN , y = P 

x = NN , y = P x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x = NN , y = P x = NN , y = P 

x = NN , y = P x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P Fixed point!

y = y+1

x = , y = 

x = Z , y = 

x = P , y = P x = P , y = P 

x = P , y = P 

x = P , y = P 

x = P , y = P 

x = NN , y = P 

x = NN , y = P x = NN , y = P 

x = NN , y = P x = NN , y = P 
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Termination of Fixed Point Computation

I In this example, we quickly reached least fixed point – but
does this computation always terminate?

I Yes if the lattice has finite height; otherwise, it might not

I Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.
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Interval Analysis

I In the interval domain, abstract values are of the form [c1, c2]
where c1 is a lower bound and c2 has an upper bound

I If the abstract value for x is [1, 3] at some program point P ,
this means 1 ≤ x ≤ 3 is an invariant of P

Does not have
finite-height
property!
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Widening

I If abstract domain does not have this property, we need a
widening ∇ operator that forces convergence

I Conditions on ∇:

1. ∀a, b ∈ D̂ . a t b v a∇b

2. For all increasing chains d0 v d1 v . . ., the ascending chaing
d∇
0 v d∇

1 v . . . eventually stabilizes where d∇
0 = d0 and

d∇
i+1 = d∇

i ∇di+1

I Overapproximate lfp by using widening operator rather than
join ⇒ sound and guaranteed to terminate

I This is called post-fixed-point
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Widening in Interval Domain

I For the interval domain, we can define the following simple
widening operator:

[a, b]∇⊥ = [a, b]
⊥∇[a, b] = [a, b]

[a, b]∇[c, d ] = [(c < a?−∞ : a), (b < d? +∞ : b)]

I [1, 2]∇[0, 2] =

I [0, 2]∇[1, 2] =

I [1, 5]∇[1, 5] =

I [2, 3]∇[2, 4] =
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Example with Widening

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5 
y =7

loop head

exit block

Fixed point!

i = *

y = y+1
i = i-1

i >=0i <0
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Motivation for Narrowing

I In many cases, widening overshoots and generates imprecise
results

I Consider this example:

x=1;

while(*) {

x = 2;

}

I After widening, x ’s abstract value will be [1,∞] after the
loop; but more precise value is [1, 2]
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Narrowing

I Idea: After finding a post-fixed-point (using widening), have
a second pass using a narrowing operator

I Narrowing operator 4 must satisfy the following conditions:

1. ∀x , y ∈ D̂ . (y v x ) ⇒ y v (x 4 y) v x

2. For all decreasing chains x0 w x1 w . . ., the sequence
y0 = x0, . . . yi+1 = yi 4 xi+1 converges

I For interval domain, we can define 4 as follows:

[a, b]4⊥ = ⊥
⊥4 [a, b] = ⊥

[a, b]4 [c, d ] = [(a = −∞?c : a), (b =∞?d : b)]
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Example with Narrowing

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block

Fixed point!

x=2
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Relational Abstract Domains

I Both the sign and interval domain are non-relational
domains (i.e., do not relate different program variables)

I Relational domains track relationships between variables and
are more powerful

I A motivating example:

x=0; y=0;

while(*) {

x = x+1; y = y+1;

}

assert(x=y);

I Cannot prove this assertion using interval domain
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Examples of Relational Domains

I Karr’s domain: Tracks equalities between variables (e.g.,
x = 2y + z )

I Octagon domain: Constraints of the form ±x ± y ≤ c

I Polyhedra domain: Constraints of the form
c1x1 + . . . cnxn ≤ c

I Polyhedra domain most precise among these, but can be
expensive (exponential complexity)

I Octagons less precise but cubic time complexity

Işıl Dillig, Abstract Interpretation 26/27

Message from Patrick Cousot
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