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Weakest Preconditions for Loops

I Last lecture: To prove {P}S{Q}, compute wp(S ,Q) and
check if it is implied by P

I Unfortunately, we can’t compute weakest preconditions for
loops exactly.

I Idea: approximate it using awp(S ,Q)

I awp(S ,Q) may be stronger than wp(S ,Q) but not weaker

I To verify {P}S{Q}, show P ⇒ awp(S ,Q)

I Hope is that awp(S ,Q) is weak enough to be implied by P
although it may not be the weakest
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Approximate Weakest Preconditions

I For all statements except for while loops, computation of
awp(S ,Q) same as wp(S ,Q)

I To compute, awp(S ,Q) for loops, we will rely on loop
invariants provided by oracle (human or static analysis)

I Assume all loops are annotated with invariants
while C do [I ] S

I Now, we’ll just define awp(while C do [I ] S ,Q) ≡ I
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Verification with Approximate Weakest Preconditions

I If P ⇒ awp(S ,Q), does this mean {P}S{Q} is valid?

I 1.

2.

I For each statement S , generate verification condition
VC (S ,Q) that encodes additional conditions to prove
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Generating Verification Conditions

I Most interesting VC generation rule is for loops:

VC (while C do [I ] S ,Q) =?

I To ensure Q is satisfied after loop, what condition must hold?

I Assuming I holds initially, need to check I is loop invariant

I i.e., need to prove {I ∧ C}S{I }

I How can we prove this?
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Verification Condition for Loops

I To summarize, to show I is preserved in loop, need:

I ∧ C ⇒ awp(S , I ) ∧VC (S , I )

I To show I is strong enough to establish Q , need:

I ∧ ¬C ⇒ Q

I Putting this together, verification condition for a while loop
S ′ = while C do {I } S is:

VC (S ′,Q) = (I∧C ⇒ awp(S , I )∧VC (S , I )) ∧ (I∧¬C ⇒ Q)
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Verification Condition for Other Statements

I We also need rules to generate VC’s for other statements
because there might be loops nested in them

I VC (x := E ,Q) = true

I VC (s1; s2,Q) = VC (s2,Q) ∧VC (s1, awp(s2,Q))

I VC (if C then s1 else s2,Q) = VC (s1,Q) ∧VC (s2,Q)
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Verification of Hoare Triple

I Thus, to show validity of {P}S{Q}, need to do following:

1. Compute awp(S ,Q)

2. Compute VC (S ,Q)

I Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Thus, if we can prove of validity of (∗), we have shown that
program obeys specification
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Discussion

Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Question: If {P}S{Q} is valid, is (∗) valid?

I 1.

2.

I Thus, even if program obeys specification, might not be able
to prove it b/c loop invariants we use are not strong enough
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Example

I Consider the following code:

i := 1; sum := 0;
while i ≤ n do [sum ≥ 0] {

j := 1;
while j ≤ i do [sum ≥ 0 ∧ j ≥ 0]

sum := sum+ j; j := j+ 1

i := i+ 1

}

I Show the VC’s generated for this program for post-condition
sum ≥ 0 – can it be verified?

I What is the post-condition we need to show for inner loop?
sum ≥ 0
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Example, cont.

I Generate VC’s for inner loop:

(1) (sum ≥ 0 ∧ j ≥ 0 ∧ j > i)⇒ sum ≥ 0
(2) (j ≤ i ∧ sum ≥ 0 ∧ j ≥ 0)⇒ (sum + j ≥ 0 ∧ j + 1 ≥ 0))

I Now, generate VC’s for outer loop:

(3) (i ≤ n ∧ sum ≥ 0)⇒ (sum ≥ 0 ∧ 1 ≥ 0)
(4) (i > n ∧ sum ≥ 0)⇒ sum ≥ 0

I Finally, compute awp for outer loop: (5) 0 ≥ 0

I Feed the formula (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) to SMT solver

I It’s valid; hence program is verified!
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Example: Variant

I Suppose annotated invariant for inner loop was sum ≥ 0
instead of sum ≥ 0 ∧ j ≥ 0

I Could the program be verified then? no, because loop
invariant not strong enough

I While VC generation handles many tedious aspects of the
proof, user must still come up with loop invariants (more on
this in next few lectures)
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IMP with functions and pointers

I The IMP language considered so far does not have many
features of realistics PLs

I Let’s enrich IMP with two features, namely functions and
pointers

I How to verify programs in this enriched language
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IMP with assertions and assumptions

I Before considering functions, we will first add assertions and
assumptions to IMP

I The statement assert(E ) fails if E evaluates to false

I The statement assume(E ) tells us that E is true
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Proof rules for Assert and Assume

I Proof rule for assertions:

P ⇒ E

` {P} assert(E ) {P ∧ E}

I Proof rule for assumption:

` {P} assume(E ) {P ∧ E}
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Weakest Precondition for Assert and Assume

I What is wp(assert(P), Q)?

I What is wp(assume(P), Q)?

I Given a statement S , how can we generate a statement S ′

such that {P}S{Q} is a valid Hoare triple iff {true}S ′{true}
is a valid Hoare triple?

I Prove this property!
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IMP+: IMP with functions

I IMP+ programs defined according to following grammar:

Program P := F+

Function F := function f(x1, . . . , xn) {S ; return e; }
Statement S := y := f (e1, . . . , en) | . . .
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Handling procedure calls

I How do we generate VCs if we encounter procedure calls?

y = f (x1, . . . , xn)

I Just like we asked programmer to provide loop invariants, also
ask them for method pre- and post- conditions

I Pre-condition specifies what is expected of f ’s arguments

I Post-condition describes f ’s return value (and side effects)
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Pre- and post- Example

I Consider a method get that takes an array arr of size n and
index i and returns the i ’th element

I Pre-condition: 0 ≤ i < n

I Post-condition: ret = a[i ]

I These pre- and post-conditions are referred to as the method
contract
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Generating VCs for method calls

I Contracts allow us to verify the program in a modular way –
generate VCs one function at a time!

I There are two questions we need to answer:

1. How do we verify that a method satisfies its contracts?

2. How do we handle method calls when generating VCs?
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Verifying Contract

I Consider the following function declaration:

function f(x1, ..., xn)

requires(Pre)

ensures(Post)

Body;

return e;

I Assuming that Post refers to variable ret, we can verify this
contract by checking the validity of this Hoare triple:

{Pre} Body; ret := e {Post}
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Verifying Calls

I Since method bodies now contain calls, we need to be able to
verify Hoare triples involving calls:

{P} y := f (e1, . . . , en) {Q}

I To verify this triple, we need to prove that f ’s precondition
Pre is satisfied

I But we can also assume that f ’s post-condition Post holds
after the call – why?

I Thus, we can model the function call as:

assert(Pre[e1/x1, ... en/xn]);

assume(Post[tmp/res,e1/x1, ... en/xn]);

y := tmp;

where tmp is a fresh temporary variable.
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Modular Verification: Recap

I When verifying a callee:

I We assume the precondition

I We assert the postcondition

I When verifying caller:

I We assert callee’s precondition

I We assume callee’s postcondition

I This is crucial for modular verification – decomposes
verification task into individual functions
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Exercise: Locking Protocol

I Suppose we represent locks as integers – 0 means locked; 1
means unlocked

I What are the contracts for methods lock and unlock?
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Exercise: Locking Protocol, cont.

I Show the verification conditions for the following caller of
lock and unlock:

assume(b=0 || b=1);

l:= b;

if(b != 0) l := lock(l);

else l := unlock(l);

if(b = 0) l:= lock(l);

else l:= unlock();
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One more complication: Global variables

I So far, we assumed function call does not have side effects

I But suppose that f can modify global variable glob

I Is the previous rule still correct?

I
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Havoc

I To deal with this difficulty, we introduce a new statement
called havoc

I The statement havoc(~x ) assigns every variable x ∈ ~x to an
unknown value

I What is wp(S , φ) where S is a havoc statement?
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Function calls with Side Effects

I To deal with side effects, we assume method contracts also
contain info about side effects

I New method contract:

Requires P

Ensures Q

Modifies v1, v2, ...

I In addition to checking {P} Body {Q}, also need to check
that the function only modifies variables mentioned in
modifies clause
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Function calls with Side Effects, cont.

I Given such a method contract, we can model call site
y := foo(x1, . . . , xn) as follows:

assert(Pre[e1/x1, ... en/xn]);

havoc(v1, ..., vn);

assume(Post[tmp/res, e1/x1, ... en/xn]);

y := tmp;
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IMP with Pointers

I Let’s also add pointers to IMP!

Program P := F+

Function F := function f(x1, . . . , xn) {S ; return e; }
Statement S := y := ∗x | ∗ x = e | . . .

I Does the old assignment rule still work with pointers?
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Counterexample

I To see why the old assignment rule does not work, consider
the following code snippet:

x := y; *y := 3;

*x := 2; z := *y;

assert(z = 3)

I Does this this assertion hold?

I What is the weakest precondition?
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Verification with Pointers

I As shown by previous example, we cannot deal with references
using the standard assignment rule

I Key problem: Due to pointer aliasing, *x := e can affect
values of expressions beyond *x

I Solution: Treat memory as a gigantic array M that maps
addresses to values

I Need to use theory of arrays & also need new rules for loads
and stores

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 32/35

Proof Rules for Loads and Stores

I Proof rule for loads:

` {Q [M [y ]/x ]} x := ∗y {Q}

I Proof rule for stores:

` {Q [M 〈x / e〉]/M } ∗ x := e {Q}
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Revisiting Example

I Let’s consider the previous example again

x := y; *y := 3;

*x := 2; z := *y;

assert(z = 3)

I What is the weakest precondition for this code snippet?
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Deductive Verifiers in Practice

I Deductive verification tools are based on these principles we
discussed

I Examples: Boogie, Dafny, Smack, ESC/Java, Why3, . . .

I They automate VC generation, but require human to provide
loop invariants and method pre- and post-conditions (tedious!)

I Fortunately, many techniques that can be used to
automatically synthesize these annotations!
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