
Predicate Abstraction and
Counterexample-Guided Abstraction Refinement

Işıl Dillig

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 1/30

Overview

I Previous lectures: deductive verification + automated
invariant inference

I If technique says “verified”, we are good; but if it says “not
verified”, we don’t know anything

I there might be a bug or maybe our loop invariants are not
good enough...

I This lecture: Software model checking based on
Counterexample-Guided Abstraction Refinement (CEGAR)

I Can verify but also give counterexamples (i.e., witnesses to
property violation)

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 2/30

Predicate Abstraction

I To understand CEGAR, good starting point is predicate
abstraction

I Given a set of predicates P = {p1, . . . , pn}, predicate
abstraction computes for every program location, an abstract
value [b1, . . . , bn] where:

I bi indicates whether pi holds or not at that location

I values of bi drawn from the set {0, 1, ∗} where ∗ indicates
unknown

I In other words, we have an abstract domain where each
element is a formula

∧
i li (sometimes called a cube)

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 3/30

Predicate Abstraction Lattice

I Given predicates P, (Cubes(P),⇒) forms a complete lattice

I Cubes(P) is any formula
∧

i pi where pi is a predicate or the
negation of a predicate in P

I In other words, we have ϕ1 v ϕ2 iff ϕ1 ⇒ ϕ2

I e.g., p1 ∧ p2 v p1

I Top element is true, and bottom is false

I Question: How do we compute ϕ1 t ϕ2?

I What is (p1 ∧ p2) t p1?

I What is (p1 ∧ p2) t ¬p1?

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 4/30

Abstract Transformers

I We defined our abstract domain, but still need abstract
transformers

I Given a statement S and cube ϕ, define abstract transformer
post#(S , ϕ) to be the strongest cube ϕ′ over P such that:

sp(S , ϕ)⇒ ϕ′

where sp is the strongest post-condition of S wrt to ϕ

I Example: Suppose P = {x = y , x 6= y , x ≥ y}. What is
post#(x := x + 1, x = y)?

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 5/30

Example

I Consider the program shown
on the right

I And the predicate set P =
{x ≤ 100, x = y , y = 100}

I Compute the abstraction of
this program wrt to P

x:=0; y:= 0;
while(x<100)
{
 x := x+1;
 y := y+1;
}
assert(y = 100);

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 6/30

Motivation for CEGAR

I Predicate abstraction is very sensitive to the set of predicates

I If you choose the right set, verification succeeds; otherwise, it
fails

I The CEGAR paradigm allows automatically and iteratively
discovering the right set of predicates

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 7/30

CEGAR

Abstract
interpretation Search

SMT
solving

Craig
interpolation

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 8/30

Model Checking Basics

I Intuitively, model checker explores
all states program can be in

I Operates over control-flow
automaton (CFA)

I Like CFG but nodes/edges are
flipped + explicit error locations

I Model checker performs exploration
using a so-called state transition
graph (STG)

o

1

2

3

4 err

p1 := *
p2 := *

p2 := 0

p1 := 1

p1 := 0

p2 := 1

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 9/30

State Space

I Given a program P , define its state to be a tuple
(l , v1, . . . , vn) where l is the control location and vi denotes
the value of i ’th variable

I The state space of the program is all the states it can be in

I Model checker constructs a state transition graph (STG),
where nodes are program states and an edge (s, s ′) indicates
that state s can transition to state s ′

I Program has a bug if the error state is reachable

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 10/30

Motivation for Boolean Programs

I In general, the STG for a program is infinite

I ... but a model checker will only terminate if the STG is finite

I To ensure that STG is finite, construct a so-called boolean
program via predicate abstraction

I All variables are booleans, so for a program with k locations
and n variables, the size of the STG is at most k × 2n

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 11/30

Generating Boolean Programs

I Given a set of predicates P and program S , we want to
generate a boolean program S ′ that has |P| boolean variables

I In particular, S ′ is the same as S except that each assignment
is replaced with assignments to the boolean variables

I Key question: How do we translate an assignment to our
boolean abstraction?

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 12/30

Modeling Statements in Boolean Program

I Consider stmt s and boolean b representing predicate p

I If wp(s, p) is true before s, then p should be assigned to true

I If wp(s,¬p) is true before s, then p should be assigned to
false (if neither, don’t know)

I But the exact wp may not be in our abstraction, so instead of
the exact wp, compute the weakest cubes P1,P2 over P such
that P1 ⇒ wp(s, p) and P2 ⇒ wp(s,¬p)

I Thus model statement s as:

if(P1) b := true

else if(P2) b := false

else b := *

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 13/30

Example

I Consider the predicates {x > 5, x < 5, y = 5}

I How do you model the statement x := y in the boolean
program with variables b1, b2, b3?

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 14/30

Back to Model Checking

I Now that we have boolean programs, we
can construct a finite STG

I For this program, there are four initial
states:

(0, p1, p2), (0, p1,¬p2), (0,¬p1, p2), (0,¬p1,¬p2)

I There is a transition from (l , b1, . . . , bn)
to (l ′, b′1, . . . , b

′
n) iff:

I There must be a transition from l to l ′

labeled with S

I The formula sp(S ,
∧

i bi) ∧
∧

i b
′
i must

be satisfiable (query SAT solver!)

o

1

2

3

4 err

p1 := *
p2 := *

p2 := 0

p1 := 1

p1 := 0

p2 := 1

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 15/30

STG for Our Boolean Program, cont.

I Which of these transition exist in the
state transition graph?

I (1, p1, p2) to (3,¬p1, p2)

I (1, p1, p2) to (3, p1, p2)

I (3,¬p1, p2) to (err ,¬p1,¬p2)

o

1

2

3

4 err

p1 := *
p2 := *

p2 := 0

p1 := 1

p1 := 0

p2 := 1

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 16/30

STG for Our Boolean Program, cont.

I Partial STG for our program:

(0, T, T) (0, T, F) (0, F, T) (0, F, F)

.

.

.

.

.

.

.

.

.
.
.
.

(1, T, T)

(2, T, T)

(3, F, T)

(Er, F, F)

I Verification fails because error state is reachable!

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 17/30

Need for Refinement

I To make the STG finite, we worked with boolean programs

I But if the error state is reachable, this could be due to
imprecision in the abstraction

I i.e., current set of predicates may not be fine-grain enough

I To decide how to proceed, we need to check if the property is
actually violated

I Fortunately, the model checker can provide a counterexample
in the form of a program trace!

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 18/30

Back to Running Example

(0, T, T)

.

.

.

(1, T, T)

(2, T, T)

(3, F, T)

(Er, F, F)

o

1

2

3

4 err

x=0;
y=0

assume(
x<100)

x++;
y++

assume(
x>=100)

assume(
y=100)

assume(
y!=100)

x := 0; y:=0;
assume(x>=100);
assume(y!=100);

STG: CFA: Cex trace:

Clearly spurious
because the trace
formula is UNSAT:

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 19/30

Goal of Refinement

I The goal of refinement is to prevent the model checker from
giving the same counterexample trace as before

I In our example, the cex trace is 0→ 1→ 3

I This corresponds to executing the loop zero times

I How do we find predicates that will rule out this spurious
trace?

I Most basic idea: Compute strongest postcondition for each
statement in the cex trace; add these to set of predicates!

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 20/30

Eliminating Counterexamples using SP

I Let l0 →s1 l1 →s2 . . .→sn ln be a spurious cex trace

I Let p0 be true, and define pi as sp(si , pi−1)

I Claim: Adding p1, . . . , pn to P will rule out this cex!

I Why is this true? Consider any potential path in the STG:

(l0, ϕ0)→s1 (l1, ϕ1)→s2 . . .→sn (ln , ϕn)

I Will show by induction on n that ϕi ⇒ pi

I Why does this imply that such a path cannot exist in the
STG?

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 21/30

Proof

For any STG path (l0, ϕ0)→s1 (l1, ϕ1)→s2 . . .→sn (ln , ϕn), we
have ϕi ⇒ pi

I Base case: Trivial since p0 is true

I Induction: By the IH, we have ϕi−1 ⇒ pi−1

I By STG construction, (li−1, ϕi−1)→si (li , ϕi) exists if:

SAT (sp(si , ϕi−1)∧ϕi) which implies SAT (sp(si , pi−1)∧ϕi)

I Furthermore, we have either ϕi ⇒ pi or ϕi ⇒ ¬pi – why?

I But if ϕi ⇒ ¬pi , we’d have UNSAT (sp(si , pi−1) ∧ ϕi)

I Thus, ϕi ⇒ pi

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 22/30

Back to the Big Picture

I Using sp’s in the cex trace removes the current
counterexample

I ... but only removes this counterexample trace

I Ideally, we want to learn predicates that allow us to remove
multiple spurious traces

I Trick: We can learn more general predicates using a
technique called Craig interpolation

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 23/30

Craig Interpolant

Given an unsatisfiable formula ϕ1 ∧ ϕ2 , a Craig interpolant is a
formula ψ such that:

1. ϕ1 ⇒ ψ

2. UNSAT(ϕ2 ∧ ψ)

3. ψ is over the common variables of ϕ1, ϕ2

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 24/30

Interpolant Examples

Consider the following formulas:

ϕ1 ≡ x ≤ w ∧ y ≥ w ∧ z = x
ϕ2 ≡ y < t ∧ t = z

I Which of the following formulas are interpolants for ϕ1 ∧ ϕ2?

1. y ≥ z

2. y ≥ x ∧ z = x

3. y > z

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 25/30

Do Interpolants Always Exist?

I Result from William Craig: For first-order formulas, such an
interpolant always exists (1957).

I Furthermore, this result extends to first-order theories :)

I However, even if ϕ1, ϕ2 are quantifier-free, the interpolant may
use quantifiers

I But for some theories (e.g., LRA, LIA), the interpolant is
always quantifier-free if original formula is quantifier-free

I Some SAT and SMT solvers can give you interpolants of
unsatisfiable formulas (beyond scope for this class)

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 26/30

Why Are Interpolants Useful for Abstraction Refinement?

I Consider a spurious counterexample trace:

l0 →s1 l1 →s2 . . .→sn ln

I For simplicity, suppose the trace is in SSA form and suppose
enc(si) gives logical encoding of si ’s semantics

I Then, we know that the following formula is UNSAT:

enc(s1) ∧ enc(s2) ∧ . . . enc(si)

I Now let ϕ−i denote the trace formula up to statement i and
ϕ+
i denote the formula after i

I Then, for each location li , we have UNSAT (ϕ−i ∧ϕ+) and the
interpolant gives predicates that are useful to track at li !

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 27/30

Example

I Consider the following counterexample trace that corresponds
to executing loop body once:

x0 := 0; y0:=0;
assume(x0<100);
x1 := x0 + 1;
y1 := y0 + 1;
assume(x1>=100);
assume(y1!=100);

}
}

I Interpolant: x1 = y1 ∧ x1 ≤ 100

I Using the predicates in the interpolant, we can now verify the
correctness of this program!

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 28/30

Per-location Abstraction

I In the basic form of predicate abstraction, we have a global
set of predicates that we ”track” everywhere

I But not all predicates are useful everywhere...

I Observation: The interpolant tells us which predicates are
useful where!

I Thus, rather than having a global set of predicates, we can
have a different predicate set for each different location

I Since the model checker is very sensitive to the number of
predicates, this is really important for scalability

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 29/30

CEGAR Summary

Abstract
interpretation Search

SMT
solving

Craig
interpolation

I Can both verify and give counterexamples, but no termination
guarantees...

Işıl Dillig, Predicate Abstraction and Counterexample-Guided Abstraction Refinement 30/30

