
Invariant Inference: Part II

Işıl Dillig

Işıl Dillig, Invariant Inference: Part II 1/26

Motivation

I Previous lecture: Abstract interpretation

I This lecture: Other annotation inference techniques

I Houdini Algorithm

I Abduction-based inference

Işıl Dillig, Invariant Inference: Part II 2/26

Houdini Overview

I Named after magician Harry
Houdini

I Originally proposed as annotation
assistant for ESC/Java

I Can generate both loop invariants
and method contracts

I ”Guess-and-check” approach:
Guess some annotations, then
check if they are correct

Işıl Dillig, Invariant Inference: Part II 3/26

Houdini Workflow

Program

Guesser

Candidate
annotations Checker

Annotated
program

Houdini
Architecture

I The annotations produced by Houdini are sound (i.e., true
loop invariants and method contracts)

I However, it is not complete ⇒ synthesized annotations may
not be sufficient to prove property

Işıl Dillig, Invariant Inference: Part II 4/26

Phase I: Guess Invariants

Many different techniques for guessing invariants:

I Mine candidates from source code based on heuristics

I Expressions of the form v1 op v2 or v1 op c, where v1, v2 are
variables used in source code and c is an “interesting” constant

I Use dynamic analysis (Daikon approach)

I Facts that have been observed while running the program

I All these techniques are heuristic in nature – not our main
focus...

Işıl Dillig, Invariant Inference: Part II 5/26

Phase II: Check Invariants

Candidate
annotations

A= {a1, ... an}

Checker

Largest subset
A' = {a1', ..., ak'} o� A
such that every ai �

a valid annotation for P

Program P

I The checker only throws out candidate annotations that are
refuted by the verifier

I Loop invariant I is refuted if (1) it is not implied by loop
precondition or (2) it is not preserved in the loop body

I Method precondition P is refuted if it does not hold at call site

I Method post-condition Q is refuted if P 6⇒ wp(M ,Q)

Işıl Dillig, Invariant Inference: Part II 6/26

1

The Checking Algorithm

Check(P, Candidates){

 A := Candidates;

 while(true) {
 rft:= Verify(P, A);
 if(rft =) break;
 A := A \ rft;
 }
 return A;
}

Initialization

Fixed-point
computation

Verify returns
refuted annotations

I Soundness: Upon termination, annotations in A are verified

I Termination: Terminates after ≤ |Candidates| iterations

Işıl Dillig, Invariant Inference: Part II 7/26

Example: Finding Loop Invariants
I Consider the following very simple code example :

i := 0; j := -1;
while(i<1000) {
 j := i;
 i := i+1 }

Candidate invariants:

(A) i >= 0 (B) i = j

(C) i < 1000 (D) i <= 1000

I Candidate (B) is immediately refuted because not implied by
pre-condition

I Candidate (C) is also refuted b/c

6` {(A) ∧ (C) ∧ (D)} Body {(C)}

I Algorithm terminates with inductive invariant:

i ≥ 0 ∧ i ≤ 1000

Işıl Dillig, Invariant Inference: Part II 8/26

A Nice Property

I Given a set of candidate loop invariants, Houdini finds the
largest subset that is inductive!

I Largest subset ⇒ Strongest invariant

I Why is this true?

I Suppose Houdini returns set A, but there exists a B ⊃ A such
that IB =

∧
bi∈B bi is inductive

I This means the algorithm must have eliminated some bi ∈ B

I But this only happens if either (a) Pre 6⇒ bi or (b)
6` {IB ∧ C}Body{bi}

I But neither option is possible since IB is inductive.

Işıl Dillig, Invariant Inference: Part II 9/26

Beyond Loops

I Houdini is not just limited to inferring loop invariants; can
also infer method contracts

I Suppose we have a set P of candidate pre-conditions and a
set Q of candidate post-conditions

I For every method, initialize pre-condition set to be P and
post-cost condition set to be Q

I When analyzing method M :

I If verification fails due to callee’s precondition p, remove p
from callee’s pre-condition set

I If verification fails because could not establish some
q ∈ Post(M), remove q from M ’s post-conditions

Işıl Dillig, Invariant Inference: Part II 10/26

Example

I Consider the following procedures:

main() { foo(5, 0); }

foo(x, y) {
 if(x<=0) z:= y;
 else z:= bar(x,y);
 return z;
}

bar(x, y) {
 x := x-1;
 y := y+1;
 return foo(x,y);
}

Candidate pre-conditions:
(P1) x>=0 (P2) y>=0

(P3) x=y

Candidate post-conditions:
(Q1) ret >= 0
(Q2) ret = 0 (P4) x>0

I What are the contracts computed for foo and bar?

Işıl Dillig, Invariant Inference: Part II 11/26

Example, cont.

main() { foo(5, 0); }

foo(x, y) {
 if(x<=0) z:= y;
 else z:= bar(x,y);
 return z;
}

bar(x, y) {
 x := x-1;
 y := y+1;
 return foo(x,y);
}

I When analyzing main, we eliminate P3 (x = y) for foo
because assert(5=0) fails

I When analyzing foo, we eliminate Q2 (ret = 0) for foo
because assert(z=0) fails

I When analyzing foo, we eliminate P3 (x = y) for bar
because assert(x=y) fails at call site

Işıl Dillig, Invariant Inference: Part II 12/26

2

Example, cont.
main() { foo(5, 0); }

foo(x, y) {
 if(x<=0) z:= y;
 else z:= bar(x,y);
 return z;
}

bar(x, y) {
 x := x-1;
 y := y+1;
 return foo(x,y);
}

I When analyzing bar, we eliminate P4 (x > 0) for foo

I When analyzing bar, we eliminate Q2 (ret = 0) for bar

I Inferred contract for foo:

requires(x ≥ 0 ∧ y ≥ 0)
ensures(ret ≥ 0)

I Inferred contract for bar:

requires(x > 0 ∧ y ≥ 0)
ensures(ret ≥ 0)

Işıl Dillig, Invariant Inference: Part II 13/26

Discussion: Pros and Cons of the Houdini Approach

I Pros:

I Can infer both loop invariants and method contracts

I Infers strongest invariants over the candidate set

I Conceptually simple; easy to implement

I Cons:

I Only infers conjunctions of predicates in the candidate set

I No guarantee that the inferred invariants are useful for
verifying property

Işıl Dillig, Invariant Inference: Part II 14/26

Motivation for Being Property-Directed

I Houdini does not leverage the property we are trying to prove

I But the property we are trying to prove gives strong hints
about what invariants are useful!

while(i<j)
{
 ...
}
assert(i>=100)

j>=100 would be
useful for proving

the assertion!

I Idea: Use the property we are trying to prove to guess
candidate invariants!

Işıl Dillig, Invariant Inference: Part II 15/26

Abductive Reasoning

I Making educated guesses that support some observation is
known as abductive reasoning

I Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that:

1. Γ ∧ ψ |= φ (i.e., explains conclusion)

2. SAT(Γ ∧ ψ) (i.e., it’s consistent with known facts)

I In our case, the “desired outcome” is the property we are
trying to prove

I “Known facts” can come from different sources – e.g.,
pre-condition, proven invariants, . . .

Işıl Dillig, Invariant Inference: Part II 16/26

Back to Previous Example

while(i<j) {...}
assert(i>=100)

I From loop condition, we have i ≥ j after the loop

I Want invariant that is strong enough to prove assertion

I Formulate this as an abduction problem:

(1) i ≥ j ∧ ? |= i ≥ 100
(2) SAT (i ≥ j ∧ ?)

I Condition (2) says our guess is non-trivial (i.e., doesn’t make
assertion unreachable)

I j ≥ 100 is a solution; so is i ≥ 100 – not unique!

Işıl Dillig, Invariant Inference: Part II 17/26

Desirable Properties

I An abductive reasoning problem has many solutions – what
makes a “good” solution?

I Occam’s razor principle: Want simplest explanation

I Many ways to define “simple”, but one option:

I Uses few variables (intuition: parsimonious invariants)

I Logically weakest – the weaker the explanation, the less
assumptions it makes

Işıl Dillig, Invariant Inference: Part II 18/26

3

Quantifier Elimination

I In some first-order theories, we can automate abduction using
quantifier elimination (QE)

I Given a quantified formula ϕ, quantifier elimination yields
quantifier-free formula ϕ′ such that ϕ⇔ ϕ′

I Example theories that admit quantifier elimination:

I Linear rational arithmetic

I Linear integer arithmetic (extended with mod operator)

Işıl Dillig, Invariant Inference: Part II 19/26

Automating Abduction via Quantifier Elimination

I Suppose we have premises ϕ and conclusion χ, and we want a
hypothesis containing only variables V

I Then, the logically weakest quantifier-free explanation over
variables V is given by:

ψ ≡ QE (∀V . ϕ→ χ)

I Why is this a solution?

I First, observe: ϕ ∧ (ϕ→ χ) |= χ

I Second, we have ψ ⇒ (ϕ→ χ)

I Thus, ϕ ∧ ψ |= χ

Işıl Dillig, Invariant Inference: Part II 20/26

Back to Example

while(i<j) {...}
assert(i>=100)

I Our abduction problem:

(1) i ≥ j ∧ ? |= i ≥ 100
(2) SAT (i ≥ j ∧ ?)

I Suppose we want solution containing just variable j :

QE (∀i . (i ≥ j → i ≥ 100))
≡

j ≥ 100

Işıl Dillig, Invariant Inference: Part II 21/26

Back to Invariant Generation

I We can conjecture candidate invariants using abduction; then
use Houdini as before

I See our PLDI’18 paper by Ferles et al.

I Advantages:

I Property-directed; conjectured invariants known to be useful

I Candidate invariants can have disjunctions; so not limited to
conjunctive invariants

Işıl Dillig, Invariant Inference: Part II 22/26

Can Do Even Better!

I This approach has some advantages, but it still suffers from
one shortcoming of the Houdini algorithm

I Houdini can discard true loop invariants if they are not
inductive

I Idea: Use abduction to strengthen loop invariants to make
them inductive!

Işıl Dillig, Invariant Inference: Part II 23/26

Motivating Example

I Using abduction, we can generate
j ≥ 100 as a candidate invariant

I But since it’s not inductive (why?),
Houdini will reject it

i:=1; j:=100;
while(i<j) {
 if(*) j := j+i;
 i:=i*2;
}
assert(i>=100)

I But now we can use abduction to figure out how to
strengthen it!

(i < j ∧ j ≥ 100∧ ?)⇒ wp(Body , j ≥ 100)

I Solution: i ≥ 0

I New candidate invariant is now j ≥ 100 ∧ i ≥ 0, which is
inductive!

Işıl Dillig, Invariant Inference: Part II 24/26

4

The Full Algorithm

Current
invariants

VCGen

Done
Abduction

No solution

Backtrack!

 Solution

Strengthened
invariant

Dillig et al. OOPSLA’13

Işıl Dillig, Invariant Inference: Part II 25/26

Comparison with Houdini

Similarities:

I Also guess-and-check approach

I Uses verifier to check correctness of annotations

Differences:

I Property-directed; guesses generated using abduction

I Generates new candidate invariants on-line rather than
statically up-front

I Does not have termination guarantees

I But can bound number of strengthening steps

Işıl Dillig, Invariant Inference: Part II 26/26

5

