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Işıl Dillig
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Motivation

I Last few lectures: Full first-order logic

I In FOL, functions/predicates are uninterpreted (i.e.,
structure can assign any meaning)

I But in many cases, we have a particular meaning in mind
(e.g., =,≤ etc.)

I First-order theories allow us to give meaning to the symbols
used in a first-order language
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Signature and Axioms of First-Order Theory

I A first-order theory T consists of:

1. Signature ΣT : set of constant, function, and predicate symbols

2. Axioms AT : A set of FOL sentences over ΣT

I ΣT formula: Formula constructed from symbols of ΣT and
variables, logical connectives, and quantifiers.

I Example: We could have a theory of heights TH with
signature ΣH : {taller} and axiom:

∀x , y . (taller(x , y)→ ¬taller(y , x ))

I Is ∃x .∀z .taller(x , z ) ∧ taller(y ,w) legal ΣH formula? Yes

I What about ∃x .∀z .taller(x , z ) ∧ taller(joe, tom)? No
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Axioms of First-Order Theory

I The axioms AT provide the meaning of symbols in ΣT .

I Specifically, axioms ensure that some interpretations legal in
standard FOL are not legal in T

I Example: Consider relation constant taller , and
U = {A,B ,C}

I In FOL, possible interpretation: I (taller) : {〈A,B〉, 〈B ,A〉}

I In our theory of heights, this interpretation is not legal b/c
does not satisfy axioms
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Models of T

I A structure M = 〈U , I 〉 is a model of theory T , or T -model,
if M |= A for every A ∈ AT .

I Example: Consider structure consisting of universe
U = {A,B} and interpretation I (taller) : {〈A,A〉, 〈B ,B〉}

I Is this a model of T? No

I Now, consider same U and interpretation {〈A,B〉}. Is this a
model? Yes

I Suppose our theory had another axiom:

∀x , y , z . (taller(x , y) ∧ taller(y , z )→ taller(x , z ))

I Consider I (taller) : {〈A,B〉, 〈B ,C 〉}. Is (U , I ) a model? No
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Satisfiability and Validity Modulo T

I Formula F is satisfiable modulo T if there exists a T -model
M and variable assignment σ such that M , σ |= F

I Formula F is valid modulo T if for all T -models M and
variable assignments σ, M , σ |= F

I Question: How is validity modulo T different from
FOL-validity?

I Answer: Disregards all structures that do not satisfy theory
axioms.

I If a formula F is valid modulo theory T , we will write T |= F .

I Theory T consists of all sentences that are valid in T .
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Questions

Consider some first order theory T :

I If a formula is valid in FOL, is it also valid modulo T? Yes

I If a formula is valid modulo T , is it also valid in FOL? No

I Counterexample: This formula is valid in “theory of heights”:

¬taller(x , x )
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Equivalence Modulo T

I Two formulas F1 and F2 are equivalent modulo theory T if
for every T -model M and for every variable assignment σ:

M , σ |= F1 iff M , σ |= F2

I Another way of stating equivalence of F1 and F2 modulo T :

T |= F1 ↔ F2

I Example: Consider a theory T= with predicate symbol = and
suppose AT gives the intended meaning of equality to =.

I Are x = y and y = x equivalent modulo T=? Yes

I Are they equivalent according to FOL semantics? No
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Completeness of Theory

I A theory T is complete if for every sentence F , if T entails F
or its negation:

T |= F or T |= ¬F

I Question: In first-order logic, for every closed formula F , is
either F or ¬F valid?

I Answer: No! Consider p(a): Neither p(a) nor ¬p(a) is valid.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 9/43

The Plan

I Remainder of this lecture: Introduction to commonly-used
first-order theories:

1. Theory of equality

2. Peano Arithmetic

3. Presburger Arithmetic

4. Theory of Rationals

5. Theory of Arrays

I In the following lectures, we will further explore these theories
and look at decision procedures.
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Overview of the Theory of Equality T=

I Extends first-order logic with a ”built-in” equality predicate =

I Signature:

Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q , r , · · · }

I =, a binary predicate, interpreted by axioms.

I all constant, function, and predicate symbols.
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Axioms of the Theory of Equality

I Axioms of T= define the meaning of equality predicate =

I Equality is reflexive, symmetric, and transitive:

1. ∀x . x = x (reflexivity)

2. ∀x , y . (x = y → y = x ) (symmetry)

3. ∀x , y , z . (x = y ∧ y = z → x = z ) (transitivity)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 12/43

2



Example

I Consider universe U = {◦, •}.

I Which interpretations of = are allowed according to axioms?

I I (=) : {〈◦, •〉, 〈•, ◦〉}?

I I (=) : {〈◦, ◦〉, 〈•, •〉}?

I I (=) : {〈◦, ◦〉, 〈◦, •〉, 〈•, •〉, 〈•, ◦〉}?
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Axioms of the Theory of Equality, cont.

I Function congruence:
For any n-ary function f , two terms f (~x ) and f (~y) are equal if
~x and ~y are equal:

∀x1, . . . , xn , y1, . . . , yn .
∧

i

xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

I Predicate congruence:
For any n-ary predicate p, two formulas p(~x ) and p(~y) are
equivalent if ~x and ~y are equal:

∀x1, . . . , xn , y1, . . . , yn .
∧

i

xi = yi → (p(x1, . . . , xn)↔ p(y1, . . . , yn))
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Congruence and Axiom Schemata

I Function/predicate congruence ”axioms” stand for a set of
axioms, instantiated for each function and predicate symbol.

I Thus, these are not really axioms, but axiom schemata.

I Example: For unary functions g and h, function congruence
axiom scheme stands for two axioms:

1. ∀x , y . (x = y → g(x ) = g(y))

2. ∀x , y . (x = y → h(x ) = h(y))
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Example

I Consider universe {◦, •, ?}, and

I (=) : {〈◦, ◦〉, 〈◦, •〉, 〈•, •〉, 〈•, ◦〉, 〈?, ?〉}

I Are the following valid interpretations?

I I (f ) = {• 7→ ◦, ◦ 7→ ?, ? 7→ ?}

I I (f ) = {• 7→ •, ◦ 7→ •, ? 7→ •}

I I (f ) = {• 7→ ◦, ◦ 7→ •, ? 7→ ?}
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Proving Validity in T= using Semantic Arguments

I Semantic argument method can be used to prove T= validity.

I In addition to proof rules for FOL, our proof can also use
axioms of T=.

I As before, if we derive contradiction in every branch, formula
is valid modulo T=.
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Example

Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a) TE -valid.

1. M , σ 6|= F assumption
2. M , σ |= a = b ∧ b = c 1, →
3. M , σ 6|= g(f (a), b) = g(f (c), a) 1, →
4. M , σ |= a = b 2, ∧
5. M , σ |= b = c 2, ∧
6. M , σ |= a = c 4, 5, (transitivity)
7. M , σ |= f (a) = f (c) 6, (congruence)
8. M , σ |= b = a 6, (symmetry)
9. M , σ |= g(f (a), b) = g(f (c), a) 7, 8, (congruence)
10. M , σ |= ⊥ 3,9
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Decidability and Completeness Results for T=

I Is the full theory of equality decidable?

I No, because it is an extension of FOL

I However, quantifier-free fragment of T= is decidable but
NP-complete

I Is T= complete? (i.e., for any F , T= |= F or T= |= ¬F?)

I
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Theories Involving Natural Numbers and Integers

I There are three major logical first-order theories involving
natural numbers and arithmetic.

I Peano arithmetic: Allows multiplication and addition over
natural numbers

I Presburger arithmetic: Allows only addition over natural
numbers

I Theory of integers: Equivalent in expressiveness to Presburger
arithmetic, but more convenient notation
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Peano Arithmetic Signature

I The theory of Peano arithmetic TPA has signature:

ΣPA : {0, 1,+, ·,=}

I 0, 1 are constants

I +, · binary functions

I = is a binary predicate
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Peano Arithmetic Examples

I Question: Is the following a well-formed formula in TPA?

x + y = 1 ∨ f (x ) = 1 + 1

I

I What about ∀x .∃y .∃z . x + y = 1 ∨ z · x = 1 + 1?

I What about 2x = y?

I But can be rewritten to equivalent TPA formula:

(1 + 1) · x = y
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The Axioms

I Includes equality axioms, reflexivity, symmetry, and transitivity

I In addition, axioms to give meaning to remaining symbols:

1. ∀x . ¬(x + 1 = 0): 0 minimal element of N (zero)

2. ∀x . x + 0 = x : 0 identity for addition (plus zero)

3. ∀x , y . x + 1 = y + 1 → x = y (successor)

4. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

5. ∀x . x · 0 = 0 (times zero)

6. ∀x , y . x · (y + 1) = x · y + x (times successor)
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Last Axiom

I One last axiom schema for induction:

(F [0] ∧ (∀x . F [x ] → F [x + 1])) → ∀x . F [x ]

I States that any valid interpretation must obey induction
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Inequalities and Peano Arithmetic

I The theory of Peano arithmetic doesn’t have inequality
symbols <,≤, <,≥

I But all of these are expressible in TPA

I Example: How can we express x · y ≥ z in TPA?

I Example: How can we express x · y < z in TPA?
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Decidability and Completeness Results for Peano
Arithmetic

I Validity in full TPA is undecidable. (Gödel)

I Validity in even the quantifier-free fragment of TPA is
undecidable. (Matiyasevitch, 1970)

I TPA is also incomplete. (Gödel)

I Implication of this: There are valid propositions of number
theory that are not valid according to TPA

I To get decidability and completeness, we need to drop
multiplication!
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Presburger Arithmetic

I The theory of Presburger arithmetic TN has signature:

ΣN : {0, 1,+,=}

I Axioms define meaning of symbols:

1. ∀x . ¬(x + 1 = 0) (zero)

2. ∀x . x + 0 = x (plus zero)

3. ∀x , y . x + 1 = y + 1 → x = y (successor)

4. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

5. F [0] ∧ (∀x . F [x ] → F [x + 1]) → ∀x . F [x ] (induction)
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Decidability and Completeness Results for Presburger
Arithmetic

I Validity in quantifier-free fragment of Presburger arithmetic is
decidable (coNP-complete).

I Validity in full Presburger arithmetic is also decidable
(Presburger, 1929)

I But super exponential complexity: O(22
n
)

I Presburger arithmetic is also complete: For any sentence F ,
TN |= F or TN |= ¬F

I Admits quantifier elimination: For any formula F in TN, there
exists an equivalent quantifier-free formula F ′.
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Theory of Integers TZ

I Signature:

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
I Also referred to as the theory of linear arithmetic over integers

I Equivalent in expressiveness to Presburger arithmetic (i.e.,
every TZ can be encoded as a formula in Presburger
arithmetic)
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Theory of Rationals

I So far, looked at theories involving arithmetic over integers

I Next: the theory of rationals TQ, which is much more
efficiently decidable

I Defined by signature:

ΣQ : {0, 1, +, −, =, ≥}

I Signature does not allow strict inequality, but easy to express:

∀x , y .∃z .x + y > z ⇒ ∀x , y .∃z .¬(x + y = z ) ∧ x + y ≥ z
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Distinction between Theory of Rationals and Presburger
Arithmetic

I TQ has too many axioms, so we won’t discuss them

I Distinction between TZ and TQ: Rational numbers do not
satisfy TZ axioms, but they satisfy TQ axioms

I Example: ∃x . (1 + 1)x = 1 + 1 + 1 Is this formula valid in TQ?

I Is it valid in TZ?

I In general, every formula valid in TZ is valid in TQ, but not
vice versa
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Decidability and Complexity Results for TQ

I Full theory of rationals is decidable, but doubly exponential

I Conjunctive quantifier-free fragment efficiently decidable
(polynomial time)
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Theories about Data Structures

I So far, we only considered first-order theories involving
numbers and arithmetic

I There are also theories that formalize data structures used in
programming

I We’ll look at one example: theory of arrays

I Commonly used in software verification
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Theory of Arrays

Signature
Σ: {·[·], ·〈· / ·〉, =}

where

I a[i ] binary function –
read array a at index i (“read(a,i)”)

I a〈i / v〉 ternary function –
write value v to index i of array a (“write(a,i ,e)”)

I a〈i / v〉 represents the resulting array after writing value v at
index i
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Example Formulas in Theory of Arrays

I Example: (a〈2 / 5〉)[2] = 5

I Says: “The value stored at position 2 of an array to whose
second position we wrote the value 5 is 5”

I Example: (a〈2 / 5〉)[2] = 3

I Says: “The value stored at position 2 of an array to whose
second position we wrote the value 5 is 3”

I According to the usual semantics of array read and write, is
the first formula valid/satisfiable/unsat?

I What about second formula?
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Axioms of TA

I To define ”intended semantics of array read and write”, we
need to provide axioms of TA.

I Axioms of TA include reflexivity, symmetry, and transitivity

I In addition, they include axioms unique to arrays:

1. ∀a, i , j . i = j → a[i ] = a[j ] (array congruence)

2. ∀a, v , i , j . i = j → a〈i / v〉[j ] = v (read-over-write 1)

3. ∀a, v , i , j . i 6= j → a〈i / v〉[j ] = a[j ] (read-over-write 2)
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Example

I Is the following TA formula valid?

F : a[i ] = e → (∀j . a〈i / e〉[j ] = a[j ])

I For any j = i , old value of j was already e, so its value didn’t
change

I Let’s prove its validity using the semantic argument method

I Assume there exists a model M and variable assignment σ
that does not satisfy F and derive contradiction.
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Example cont.

1. M , σ 6|= a[i ] = e → (∀j . a〈i / e〉[j ] = a[j ]) assumption
2. M , σ |= a[i ] = e 1, →
3. M , σ 6|= ∀j . a〈i / e〉[j ] = a[j ] 1, →
4. M , σ[j 7→ k ] 6|= a〈i / e〉[j ] = a[j ] 3, ∀
5. M , σ[j 7→ k ] |= a〈i / e〉[j ] 6= a[j ] 4, ¬
6. M , σ[j 7→ k ] |= i = j 5, r-o-w 2
7. M , σ[j 7→ k ] |= a[i ] = a[j ] 6, cong
8. M , σ[j 7→ k ] |= a〈i / e〉[j ] = e 6, r-o-w 1
9. M , σ[j 7→ k ] |= a〈i / e〉[j ] = a[i ] 2,8,trans
10. M , σ[j 7→ k ] |= a〈i / e〉[j ] = a[j ] 9,7,trans
11. M , σ[j 7→ k ] |= ⊥ 5,10
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Decidability Results for TA

I The full theory of arrays if not decidable.

I The quantifier-free fragment of TA is decidable.

I Unfortunately, the quantifier-free fragment not sufficiently
expressive in many contexts

I Thus, people have studied other richer fragments that are still
decidable.

I Example: array property fragment (disallows nested arrays,
restrictions on where quantified variables can occur)
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Combination of Theories

I So far, we only talked about individual first-order theories.

I Examples: T=,TPA,TZ,TA, . . .

I But in many applications, we need combined reasoning about
several of these theories

I Example: The formula f (x ) + 3 = y isn’t a well-formed
formula in any individual theory, but belongs to combined
theory TZ ∪ T=
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Combined Theories

I Given two theories T1 and T2 that have the = predicate, we
define a combined theory T1 ∪ T2

I Signature of T1 ∪ T2: Σ1 ∪ Σ2

I Axioms of T1 ∪ T2: A1 ∪A2

I Is this a well-formed T= ∪ TZ formula?

1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)

I Is this formula satisfiable according to axioms AZ ∪A=?
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Decision Procedures for Combined Theories

I Given decision procedures for individual theories T1 and T2,
can we decide satisfiability of formulas in T1 ∪ T2?

I In the early 80s, Nelson and Oppen showed this is possible

I Specifically, if

1. quantifier-free fragment of T1 is decidable

2. quantifier-free fragment of T2 is decidable

3. and T1 and T2 meet certain technical requirements

I then quantifier-free fragment of T1 ∪ T2 is also decidable

I Also, given decision procedures for T1 and T2, Nelson and
Oppen’s technique allows deciding satisfiability T1 ∪ T2
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Plan for Next Few Lectures

I We’ll talk about decision procedures for some interesting first
order-theories

I Next lecture: Quantifier-free theory of equality

I Later: Theory of rationals, Presburger arithmetic

I Initially, we’ll only focus on decision procedures for formulas
without disjunctions

I Ok because we can always convert to DNF to deal with
disjunctions – just not very efficient!

I Later in the course, we’ll see about how to handle disjunctions
much more efficiently
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