CS389L: Automated Logical Reasoning
Lecture 10: Overview of First-Order Theories

Isil Dillig

Motivation

> Last few lectures: Full first-order logic

> In FOL, functions/predicates are uninterpreted (i.e.,
structure can assign any meaning)

» But in many cases, we have a particular meaning in mind
(e.g., = < etc)

» First-order theories allow us to give meaning to the symbols
used in a first-order language
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Signature and Axioms of First-Order Theory

> A first-order theory T consists of:

1. Signature X7 set of constant, function, and predicate symbols
2. Axioms Ar: A set of FOL sentences over X1

» Y7 formula: Formula constructed from symbols of ¥ 7 and
variables, logical connectives, and quantifiers.

» Example: We could have a theory of heights Ty with
signature X : {taller} and axiom:

YV, y. (taller(z, y) — —taller(y, z))
> s Jz.Vz.taller(z, z) A taller(y, w) legal Xy formula? Yes

» What about 32.Vz.taller(z, z) A taller(joe, tom)? No

Axioms of First-Order Theory

» The axioms Ar provide the meaning of symbols in X 7.

» Specifically, axioms ensure that some interpretations legal in
standard FOL are not legal in T

» Example: Consider relation constant taller, and

U={4,B,C}
> In FOL, possible interpretation: I(taller): {(4, B), (B, A)}

> In our theory of heights, this interpretation is not legal b/c
does not satisfy axioms
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Models of T

» A structure M = (U, I) is a model of theory T', or T-model,
if M |= A forevery Ae Ap.

» Example: Consider structure consisting of universe
U = {A, B} and interpretation I(taller) : {(4, A), (B, B)}

» |Is this a model of T'? No

» Now, consider same U and interpretation {(4, B)}. Is this a
model? Yes

» Suppose our theory had another axiom:

Yz, y, z. (taller(z,y) A taller(y, z) — taller(z, z))

» Consider I(taller) : {(A, B),(B,C)}. Is (U,I) a model? No

Satisfiability and Validity Modulo T’

> Formula F' is satisfiable modulo 7' if there exists a T-model
M and variable assignment ¢ such that M,o E F

» Formula F' is valid modulo T if for all T-models M and
variable assignments o, M,o = F

> Question: How is validity modulo T different from
FOL-validity?

» Answer: Disregards all structures that do not satisfy theory
axioms.

> If a formula F is valid modulo theory T', we will write 7' |= F.

» Theory T consists of all sentences that are valid in T'.
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Questions

Consider some first order theory 7"

» If a formula is valid in FOL, is it also valid modulo 7?7 Yes
» If a formula is valid modulo 7', is it also valid in FOL? No
» Counterexample: This formula is valid in “theory of heights™

—taller(z, )

Equivalence Modulo T

» Two formulas F; and Fy are equivalent modulo theory 7' if
for every T-model M and for every variable assignment o:

| M,o | Fiiff M0 = P

v

Another way of stating equivalence of F; and F» modulo T':
T ': F1 <~ FQ

» Example: Consider a theory T— with predicate symbol = and
suppose At gives the intended meaning of equality to =.

» Are z = y and y = z equivalent modulo T-7 Yes

v

Are they equivalent according to FOL semantics? No
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Completeness of Theory

> A theory T is complete if for every sentence F, if T entails F'
or its negation:

| TEFor TE-F |

» Question: In first-order logic, for every closed formula F', is
either F' or —F valid?

> Answer: Nol Consider p(a): Neither p(a) nor —p(a) is valid.

The Plan

» Remainder of this lecture: Introduction to commonly-used
first-order theories:

1. Theory of equality

2. Peano Arithmetic

3. Presburger Arithmetic
4. Theory of Rationals

5. Theory of Arrays

> In the following lectures, we will further explore these theories
and look at decision procedures.
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Overview of the Theory of Equality 7—

» Extends first-order logic with a "built-in" equality predicate =
» Signature:

E::{:,a,b,c,“- 7f7g7h7"'7paqvlr7"'}

» =, a binary predicate, interpreted by axioms.

> all constant, function, and predicate symbols.

Axioms of the Theory of Equality

» Axioms of T_ define the meaning of equality predicate =

» Equality is reflexive, symmetric, and transitive:

1. Ve.z=x (reflexivity)
2. Vz,y. (z=y — y=u1) (symmetry)
3. Ve, y,z.(z=y Ny=2z = =2) (transitivity)
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Example

» Consider universe U = {o, o}.

» Which interpretations of = are allowed according to axioms?
> I(=): {(0,9),(e,0)}7
> I(=): {(0,0), (e, 0)}7
> I(=):{(0,0),(0,9),(e,0), (e, 0)}7

Axioms of the Theory of Equality, cont.

» Function congruence:
For any n-ary function f, two terms f(Z) and f(%) are equal if
Z and ¥ are equal:

Var, oty e Na= 0 = Flan,m) = F( )
i

» Predicate congruence:
For any n-ary predicate p, two formulas p(Z) and p(%) are
equivalent if Z and ¥ are equal:

Vﬂ?h---vﬁmyl,---ayn- /\xi:yi - (p(xla---vxn)Hp(yla"'vyﬂ))
i
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Congruence and Axiom Schemata

» Function/predicate congruence "axioms” stand for a set of
axioms, instantiated for each function and predicate symbol.

» Thus, these are not really axioms, but axiom schemata.

» Example: For unary functions g and h, function congruence
axiom scheme stands for two axioms:

1 Ve,y. (z=y— g(z) = g(y))

2. Vz,y. (z =y — h(z) = h(y))

Example

» Consider universe {o,

1(=) : {{0,0), (0, ), (e, 0), (,0), (x, %) }

e %}, and

> Are the following valid interpretations?
> I(f) = {0 0,0 x5 %)
s I(f)={o s 0,00 o x50}

> I(f) ={e+> 0,0 & %> *x}
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Proving Validity in 7_ using Semantic Arguments

» Semantic argument method can be used to prove T validity.

» |n addition to proof rules for FOL, our proof can also use
axioms of T_.

» As before, if we derive contradiction in every branch, formula
is valid modulo 7—.

Example
Prove
F:a=bANb=c — g(f(a),b)=9g(f(c),a) Tg-valid.
1. M,o ¥ F assumption
2. Mo E a=bAb=c 1, —
3. Mo = g(f(a),b) =g(f(c)ya) 1, —
4. M,0 E a=0) 2, A
5. M,0 E b=c 2, A
6. M,0 E a=c 4, 5, (transitivity)
7. M,o E f(a)=f(c) 6, (congruence)
8 M,o E b=ua 6, (symmetry)
9. M,o = g(f(a),b) =9g(f(c),a) 7 8, (congruence)
10. Mo E L 3,9
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Decidability and Completeness Results for T_

v

Is the full theory of equality decidable?

v

No, because it is an extension of FOL

v

However, quantifier-free fragment of 7- is decidable but
NP-complete

> Is T_ complete? (i.e., for any F, T— = F or T_ = —F?)

Theories Involving Natural Numbers and Integers

> There are three major logical first-order theories involving
natural numbers and arithmetic.

» Peano arithmetic: Allows multiplication and addition over
natural numbers

» Presburger arithmetic: Allows only addition over natural
numbers

» Theory of integers: Equivalent in expressiveness to Presburger
arithmetic, but more convenient notation
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Peano Arithmetic Signature

v

The theory of Peano arithmetic T'py has signature:

2PA : {07 17 =+, :}

v

0,1 are constants

v

+, - binary functions

» = is a binary predicate

Peano Arithmetic Examples

» Question: Is the following a well-formed formula in Tps?

z+y=1Vf(z)=1+1

> What about Vz. 3y 3z. e +y=1Vz- -2 =1+17
» What about 2z = y?

» But can be rewritten to equivalent Tpy formula:

(1+1)-z=y
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The Axioms

> Includes equality axioms, reflexivity, symmetry, and transitivity

> In addition, axioms to give meaning to remaining symbols:

1. Vz. =(z +1=0): 0 minimal element of N (zero)
2. Vz. x4 0 = z: 0 identity for addition (plus zero)
3 Ve,y.z+l=y+1 - z=y (successor)

4 Ve,y. o+ (y+1)=(z+y)+1 (plus successor)

5. Ve.z-0=0 (times zero)

6. Vz,y.z-(y+1)=z-y+=z (times successor)

Last Axiom

> One last axiom schema for induction:
(F[0] A (Vz. Flz] — Flz+1])) — Va. Flz]

> States that any valid interpretation must obey induction
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Inequalities and Peano Arithmetic

v

The theory of Peano arithmetic doesn't have inequality
symbols <, <, <, >

v

But all of these are expressible in Tpy

v

Example: How can we express z -y > z in Tpa?

v

Example: How can we express z -y < z in Tpa?

Decidability and Completeness Results for Peano
Arithmetic
» Validity in full Tpy is undecidable. (Gddel)

» Validity in even the quantifier-free fragment of T'py is
undecidable. (Matiyasevitch, 1970)

> Tpa is also incomplete. (Godel)

» Implication of this: There are valid propositions of number
theory that are not valid according to Tpa

> To get decidability and completeness, we need to drop
multiplication!
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Presburger Arithmetic

» The theory of Presburger arithmetic Ty has signature:
¥y :{0,1,+,=}

» Axioms define meaning of symbols:

1. Vz. =(z+1=0) (zero)
2. Vz.24+0=z (plus zero)
3.Vo,y.z+l=y+1 - z=y (successor)

4 Vr,y. o+ (y+1)=(z+y)+1 (plus successor)

Decidability and Completeness Results for Presburger
Arithmetic

> Validity in quantifier-free fragment of Presburger arithmetic is
decidable (coNP-complete).

» Validity in full Presburger arithmetic is also decidable
(Presburger, 1929)

» But super exponential complexity: 0(22")

> Presburger arithmetic is also complete: For any sentence F,
TN |= F or TN |= -F

» Admits quantifier elimination: For any formula F' in Ty, there

5. F[0] A (Va. Fla] = Flz+1]) — V¥z. Flg]  (induction) exists an equivalent quantifier-free formula F’.
Theory of Integers Ty, Theory of Rationals
» So far, looked at theories involving arithmetic over integers
» Signature: > Next: the theory of rationals T, which is much more
efficiently decidable
Szt {.,=2,-1,0,1,2, ..., —3,-2,2. 3 ... +, —, = >}

» Also referred to as the theory of linear arithmetic over integers

» Equivalent in expressiveness to Presburger arithmetic (i.e.,
every Ty can be encoded as a formula in Presburger
arithmetic)

v

Defined by signature:

EQ: {07 17 +7 T T >}

v

Signature does not allow strict inequality, but easy to express:

Ve,y3zx+y>z=Ve,yIzo(z+y=2)ANz+y >z
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Distinction between Theory of Rationals and Presburger
Arithmetic

» Tp has too many axioms, so we won't discuss them

» Distinction between 77 and Tg: Rational numbers do not
satisfy 17 axioms, but they satisfy Tg axioms

» Example: 3z. (1+1)z =14+ 1+1 Is this formula valid in T?
» Is it valid in T%?

> In general, every formula valid in 77 is valid in Tg, but not
vice versa

Decidability and Complexity Results for T

» Full theory of rationals is decidable, but doubly exponential

» Conjunctive quantifier-free fragment efficiently decidable
(polynomial time)
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Theories about Data Structures

v

So far, we only considered first-order theories involving
numbers and arithmetic

» There are also theories that formalize data structures used in
programming

v

We'll look at one example: theory of arrays

v

Commonly used in software verification

Theory of Arrays

Signature
PO {H: '<'<]'>> :}
where
> ali] binary function —

read array a at index ¢ (“read(a,i)")

> a(i<v) ternary function —
write value v to index i of array a (“write(a,i,e)”)

> a(i <) represents the resulting array after writing value v at
index 14
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Example Formulas in Theory of Arrays

» Example: (a(2<5))[2] =5

» Says: “The value stored at position 2 of an array to whose
second position we wrote the value 5 is 5"

» Example: (a(2<5))[2] =3

» Says: “The value stored at position 2 of an array to whose
second position we wrote the value 5 is 3"

> According to the usual semantics of array read and write, is
the first formula valid/satisfiable/unsat?

» What about second formula?

Axioms of T4

» To define "intended semantics of array read and write”, we
need to provide axioms of T4.

> Axioms of T4 include reflexivity, symmetry, and transitivity

> In addition, they include axioms unique to arrays:

1. Va,i,j. i =37 — ali] = alj] (array congruence)

2. Va,v,i,j.i=j — a(i<v)jjl=v (read-over-write 1)

3. Va,v,i,j. i #j — ali<v)[j] = alj] (read-over-write 2)
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Example

» Is the following T4 formula valid?
F:alil]=e— (V). a(iqe)j] = alj])
» For any j = i, old value of j was already e, so its value didn't

change

> Let's prove its validity using the semantic argument method

v

Assume there exists a model M and variable assignment o
that does not satisfy F' and derive contradiction.

Example cont.

1. M,o [ ali]=e¢— (V). ali<e)]j] = alj]) assumption
2. M,oc [ alil=¢e 1, —

3. M,o ¥ Vj. a(i<e)[j] = alj] 1, —

4. M,olj—kl K  a(i<e)j] = alj] 3,V

5. M,oj—k] [E a(i<e)]j] # alj] 4, ~

6. M,olj—kl E i=j 5, r-o-w 2
7. M,oj—k E  ali] = a]j] 6, cong
8. M,oj—k] [E a(i<e)j]=c¢ 6, r-o-w 1
9. M,o[j—=k] E a(i<e)]j] = ali 2,8,trans
10. M,o[j— k] E a(i<e)j] = alj] 9,7,trans
1. Myo[j—k = L 5,10
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Decidability Results for T4

» The full theory of arrays if not decidable.
» The quantifier-free fragment of T4 is decidable.

» Unfortunately, the quantifier-free fragment not sufficiently
expressive in many contexts

» Thus, people have studied other richer fragments that are still
decidable.

» Example: array property fragment (disallows nested arrays,
restrictions on where quantified variables can occur)

Combination of Theories

» So far, we only talked about individual first-order theories.
> Examples: T—, Tpa, Tz, Ta, . ..

> But in many applications, we need combined reasoning about
several of these theories

» Example: The formula f(z) + 3 = y isn't a well-formed
formula in any individual theory, but belongs to combined
theory Ty U T—
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Combined Theories
» Given two theories 77 and T, that have the = predicate, we
define a combined theory 77 U T
» Signature of 77 U Ty: ¥ U X,

» Axioms of Tq U Ty: A1 U Ag

v

Is this a well-formed T_ U Ty formula?

<oz <2Af(2) # F) A f(2) # £(2)

v

Is this formula satisfiable according to axioms Az U A_7?

Decision Procedures for Combined Theories

> Given decision procedures for individual theories T} and T,
can we decide satisfiability of formulas in Ty U T5?

v

In the early 80s, Nelson and Oppen showed this is possible

v

Specifically, if
1. quantifier-free fragment of T; is decidable

2. quantifier-free fragment of 75 is decidable
3. and T} and T5 meet certain technical requirements
> then quantifier-free fragment of 77 U T is also decidable

> Also, given decision procedures for 71 and T3, Nelson and
Oppen'’s technique allows deciding satisfiability 73 U T5
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Plan for Next Few Lectures

» We'll talk about decision procedures for some interesting first
order-theories

» Next lecture: Quantifier-free theory of equality
> Later: Theory of rationals, Presburger arithmetic

» Initially, we'll only focus on decision procedures for formulas
without disjunctions

» Ok because we can always convert to DNF to deal with
disjunctions — just not very efficient!

» Later in the course, we'll see about how to handle disjunctions
much more efficiently

Isil Dillg, €5389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories 43/43




