
CS389L: Automated Logical Reasoning

Lecture 17: SMT Solvers and
the DPPL(T) Framework

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 1/28

Motivation

I In previous lectures, we looked at decision procedures for
conjunctive formulas in various first-order theories

I This lecture: How to handle boolean structure when deciding
satisfiability modulo theories

I In practice, cannot convert to DNF because causes
exponential blow-up in formula size

I SMT (satisfiability modulo theory) solvers use clever
techniques to handle boolean structure

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 2/28

SMT solvers

I Key idea underlying SMT solvers: Combine theory solvers
with SAT solvers

I Theory solver: Decision procedure for checking satisfiability in
conjunctive fragment

I SAT solver handles boolean structure, and theory solver
handles theory-specific reasoning

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 3/28

The Basic Idea

I To use SAT solver, we construct a propositional formula,
called boolean abstraction, that overapproximates satisfiability

I If boolean abstraction is UNSAT, we are done ⇒ also unsat
modulo theory

I If boolean abstraction is SAT, doesn’t necessarily mean
original formula is SAT

I Use theory solver to check if assignment returned by SAT
solver is satisfiable modulo theory

I If not, add additional boolean constraints (called theory
conflict clauses) to guide the search for an assignment that is
satisfiable modulo theory

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 4/28

Boolean Abstraction

I SMT formula in theory T formed according to CFG:

F := aT | F1 ∧ F2 | F1 ∨ F2 | ¬F

I For each SMT formula, define a bijective function B, called
boolean abstraction function, that maps SMT formula to
overapproximate SAT formula

I Function B defined inductively as follows:

B(aT) = b (b fresh)
B(F1 ∧ F2) = B(F1) ∧ B(F2)
B(F1 ∨ F2) = B(F1) ∨ B(F2)
B(¬F) = ¬B(F1)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 5/28

Example

I What is the boolean abstraction of this formula?

F : x = z ∧ ((y = z ∧ x < z) ∨ ¬(x = z))

I

I Boolean abstraction is also called boolean skeleton

I Since B is a bijective function, B−1 also exists

I What is B−1(b2 ∨ ¬b1)?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 6/28

1

Boolean Abstraction as Overapproximation

I Observe: The boolean abstraction constructed this way
overapproximates satisfiability of the formula

I Is this formula satisfiable?

F : x = z ∧ ((y = z ∧ x < z) ∨ ¬(x = z))

I Boolean abstraction: B(F) = b1 ∧ ((b2 ∧ b3) ∨ ¬b1)

I Is this satisfiable?

I What is a sat assignment?

I What is B−1(A) ?

I Is B−1(A) satisfiable?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 7/28

Need for Theory Conflict Clauses

I SAT solver may yield assignments that are not sat modulo T
because boolean abstraction is an over-approximation

I In this case, we need to learn theory conflict clauses

I Two different approaches for learning theory conflict clauses

I Off-line (eager): Use SAT solver as black-box

I On-line (lazy): Integrate theory solver into the CDCL loop

I First look into off-line version because it’s easier

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 8/28

SMT Solving Off-line Version

OfflineSMT(φ){
ψ := B(φ)
while(true){

A := CDCL(φ)
if(A = ⊥) return UNSAT;
res := TheorySolve(B−1(A));
if(res) return SAT;
ψ := ψ ∧ ¬A

}
}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 9/28

Example

I Consider example from before:

F : x = z ∧ ((y = z ∧ x < z) ∨ ¬(x = z))

I B(F) : b1 ∧ ((b2 ∧ b3) ∨ ¬b1)

I Sat assignment to B(F) A : b1 ∧ b2 ∧ b3

I B−1(A) is unsat

I What is new boolean abstraction?

(b1 ∧ ((b2 ∧ b3) ∨ ¬b1)) ∧ ¬(b1 ∧ b2 ∧ b3)

I Is this formula SAT?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 10/28

Shortcoming of This Approach
I So far, we just add negation of current assignment as theory

conflict clause

I Unfortunately, conflict clauses obtained this way are too weak

I Suppose A is a conjunction of 100 literals such that

B−1(A) = x = y ∧ x < y ∧ a1 ∧ a2 ∧ . . . ∧ a98

I Theory conflict clause ¬A prevents exact same assignment

I But it doesn’t prevent many other bad assignments involving
x = y ∧ x 6= y such as:

B−1(A) = x = y ∧ x < y ∧ a1 ∧ a2 ∧ . . . ∧ ¬a98

I In fact, there are 298 unsat assignments containing
x = y ∧ x 6= y but ¬A prevents only one of them!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 11/28

Improvement to Off-line SMT

I Rather than adding ¬A as a conflict clause, better idea is to
find an unsatisfiable core of B−1(A)

I Given a set S of clauses, an unsat core of S ′ is a subset S ′

such that S ′ is also unsat

I Ideally, we would like to find the minimal unsatisfiable core

I Minimal unsatisfiable core C ∗ has property that if you drop
any single atom of C ∗, result is satisfiable

I What is a minimal unsat core of
x = y ∧ x < y ∧ a1 ∧ a2 ∧ . . . ∧ a98? x = y ∧ x < y

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 12/28

2

Computing Minimal Unsat Core

I How can we compute minimal unsat core of conjunctive T
formula without modifying theory solver?

I Let φ be original unsatisfiable conjunct

I Drop one atom from φ, call this φ′

I If φ′ is still unsat, φ := φ′

I Repeat this for every atom in φ

I Clearly, resulting φ is minimal unsat core of original formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 13/28

Example

I Let’s compute minimal unsat core of

φ : x = y ∧ f (x) + z = 5 ∧ f (x) 6= f (y) ∧ y ≤ 3

I Drop x = y from φ. Is result unsat?

I Drop f (x) + z = 5. Is result unsat?

I New formula: φ : x = y ∧ f (x) 6= f (y) ∧ y ≤ 3

I Drop f (x) 6= f (y). Is result unsat?

I Finally, drop y ≤ 3. Is result unsat?

I So, minimal unsat core is x = y ∧ f (x) 6= f (y)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 14/28

SMT Improved Off-line Version

OfflineSMT(φ){
ψ := B(φ)
while(true){

A := CDCL(φ)
if(A = ⊥) return UNSAT;
res := TheorySolve(B−1(A));
if(res) return SAT;
χ := UnsatCore(B−1(A))
ψ := ψ ∧ ¬B(χ)

}
}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 15/28

Motivation for On-line SMT

I This strategy is much better than simple strategy where we
add ¬A as theory conflict clause.

I But still need to wait for full assignment from the SAT solver,
which can be problematic

I Consider very large formula F containing x = y and x < y
with corresponding boolean variables b1 and b2

I As soon as sat solver makes assignment b1 = >, b2 = >, we
are doomed because this is unsatisfiable in theory

I Thus, no need to continue with SAT solving after this bad
partial assignment

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 16/28

On-line SMT

I Idea: Don’t use SAT solver as “blackbox”

I Integrate theory solver right into the CDCL

I In other words, theory conflict clauses become another kind of
conflict clause that SAT solvers already learn...

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 17/28

DPLL-Based SAT Solver Architecture

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

I Idea: Integrate theory solver right into this SAT solving loop!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 18/28

3

DPLL(T) Framework

Decide

SAT

BCP

no conflict, theory propagation lemma(s)

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Theory
Solveconflict clause

C(A)

I Combination of DPLL-based SAT solver and decision
procedure for conjunctive T formula called DPLL(T)
framework

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 19/28

DPLL(T) Framework

I Suppose SAT solver has made assignment in Decide step and
performed BCP

I If no conflict detected, immediately invoke theory solver

I Specifically, suppose A is current partial assignment to
boolean abstraction

I Use theory solver to decide if B−1(A) is unsat

I If B−1(A) unsat, add theory conflict clause ¬A to clause
database

I Or better, add negation of unsat core of A to clause database

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 20/28

DPLL(T) Framework

Decide

SAT

BCP

no conflict, theory propagation lemma(s)

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Theory
Solveconflict clause

C(A)

I Add theory conflict clause and continue doing BCP, which will
detect conflict

I As before, AnalyzeConflict decides what level to backtrack to

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 21/28

Theory Propagation

I What we described so far is sufficient to solve SMT formula,
but we can be even more clever!

I Suppose original formula contains literals x = y , y = z , x < z
with corresponding boolean variables b1, b2, b3

I Suppose SAT solver makes partial assignment b1 : >, b2 : >

I In next Decide step, free to assign b3 : > or b3 : ⊥

I But assignment b3 : > is stupid b/c will lead to conflict in T

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 22/28

Theory Propagation Lemma, cont

I Idea: Theory solver can communicate which literals are
implied by current partial assignment

I In our example, ¬x < z implied by current partial assignment
x = y ∧ y = z

I Thus, can safely add b1 ∧ b2 → b3 to clause database

I These kinds of clauses implied by theory are called theory
propagation lemmas

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 23/28

DPLL(T) Framework

Decide

SAT

BCP

no conflict, theory propagation lemma(s)

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Theory
Solveconflict clause

C(A)

I Adding theory propagation lemmas prevents bad assignments
to boolean abstraction

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 24/28

4

Inferring Theory Propagation Lemmas

I How do we obtain theory propagation lemmas?

I Option #1: Treat theory solver as blackbox, query whether
particular literal a is implied by current partial assisgnment?

I Option #2: Modify theory solver so that it can figure out
implied literals

I Second option is considered more efficient, but have to figure
out how to do this for each different theory

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 25/28

Which Theory Propagation Lemmas to Add

I Which theory propagation lemmas do we add?

I Option #1: Figure out and add all literals implied by current
partial assignment; called exhaustive theory propagation

I Option #2: Only figure out literals “obviously” implied by
current partial assignment

I Exhaustive theory propagation can be very expensive; second
option considered preferable

I There isn’t much of a science behind which literals are
“obviously” implied

I Solvers use different strategies to obtain simple-to-find
implications

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 26/28

SMT Solvers Today

I All competitive SMT solvers today are based on the on-line
version

I Many existing off-the-shelf SMT solvers: Z3, CVC3, Yices,
MathSAT, etc.

I Lots of on-going research on SMT, esp. related to quantifier
support

I Annual competition SMT-COMP between solvers; tools
ranked in various categories

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 27/28

Summary

I SMT solvers decide satisfiability in boolean combinations of
different theories

I Instead of converting to DNF, they handle boolean structure
using SAT solving technqiues

I Competitive solvers are based on DPLL(T) framework

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 17: SMT Solvers and the DPPL(T) Framework 28/28

5

