CS389L: Automated Logical Reasoning

Lecture 17: SMT Solvers and
the DPPL(7") Framework

Isil Dillig

Motivation

> In previous lectures, we looked at decision procedures for
conjunctive formulas in various first-order theories

> This lecture: How to handle boolean structure when deciding
satisfiability modulo theories

> In practice, cannot convert to DNF because causes
exponential blow-up in formula size

» SMT (satisfiability modulo theory) solvers use clever
techniques to handle boolean structure

Isil Dillg, C5380L: Automated Logical Reasoning _Lecture 17: SMT Solvers and _the DPPL(T") Framewor «

Isil Dillg,

C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and_the DPPL(T") Framewor « 2/28

SMT solvers

» Key idea underlying SMT solvers: Combine theory solvers
with SAT solvers

» Theory solver: Decision procedure for checking satisfiability in
conjunctive fragment

» SAT solver handles boolean structure, and theory solver
handles theory-specific reasoning

The Basic |dea

» To use SAT solver, we construct a propositional formula,
called boolean abstraction, that overapproximates satisfiability

> If boolean abstraction is UNSAT, we are done = also unsat
modulo theory

> If boolean abstraction is SAT, doesn’t necessarily mean
original formula is SAT

» Use theory solver to check if assignment returned by SAT
solver is satisfiable modulo theory

> |If not, add additional boolean constraints (called theory
conflict clauses) to guide the search for an assignment that is
satisfiable modulo theory

I5i Dillg, C5389L: Automated Logical Reasoning _Lecture 17: ST Solvers and_the DPPL(T") Framevior i

Isil Dillg,

C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framevir « 428

Boolean Abstraction

» SMT formula in theory 7 formed according to CFG:
F::U/T‘Fl/\FQ ‘ F1V Fy ‘ -F
» For each SMT formula, define a bijective function 13, called
boolean abstraction function, that maps SMT formula to

overapproximate SAT formula

» Function B defined inductively as follows:

B(ar) = b (b fresh)
B(Fl/\Fz) = B(Fl)/\B(Fz)
B(F VvV Fp) = B(F)VB(F)

B(=F) = -B(F)

Example

What is the boolean abstraction of this formula?

v

F: z=z2AN((y=zhz<z)V-(z=2))

Boolean abstraction is also called boolean skeleton

v

v

Since B is a bijective function, B! also exists

v

What is B~ (by \/ —b;)?

I5i Dillg, C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T') Framework

Isil Dillg,

C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framevir « 6/28

Boolean Abstraction as Overapproximation

» Observe: The boolean abstraction constructed this way
overapproximates satisfiability of the formula

» |Is this formula satisfiable?

F: z=z2AN((y=z2Az<2)V-(z=2))
» Boolean abstraction: B(F) = by A ((ba A b3) V —by)

» Is this satisfiable?
» What is a sat assignment?
» What is B71(4) ?

> Is B~1(A) satisfiable?

Need for Theory Conflict Clauses

v

SAT solver may yield assignments that are not sat modulo T'
because boolean abstraction is an over-approximation

v

In this case, we need to learn theory conflict clauses

v

Two different approaches for learning theory conflict clauses

> Off-line (eager): Use SAT solver as black-box
> On-line (lazy): Integrate theory solver into the CDCL loop

First look into off-line version because it's easier

v

Isi Dillg, C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and_ the DPPL(T") Framevir i 728

151 Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and_the DPPL(T") Framewor « 8/28

SMT Solving Off-line Version

OfflineSMT (¢){
¥ = B(¢)
while(true){
A := CDCL(¢)
if(A= 1) return UNSAT;
res := TheorySolve(B~1(A));
if(res) return SAT;
Y=y A-A4A
}
}

Example

» Consider example from before:

F: z=z2AN((y=2zhNz<z2)V-(z=2))
> B(F): by A((ba A b3) V—by)

> Sat assignment to B(F) A: by A by A by

» B71(A) is unsat

v

What is new boolean abstraction?
(bl A ((b2 A })3) \ ﬁbl)) A ‘\(bl A by A b3)

» Is this formula SAT?

I5i Dillg, C5389L: Automated Logical Reasoning _Lecture 17: ST Solvers and_the DPPL(T") Framevior i 9/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and_the DPPL(T") Framevior i« 10/26

Shortcoming of This Approach

» So far, we just add negation of current assignment as theory
conflict clause

» Unfortunately, conflict clauses obtained this way are too weak

» Suppose A is a conjunction of 100 literals such that

Bfl(A) =r=yAz<yAagANagA...A agg
» Theory conflict clause = A prevents exact same assignment

» But it doesn’t prevent many other bad assignments involving
z =y Ax #ysuch as:

BlA)=z=yrz<yAaAaA.. A-as

> In fact, there are 29% unsat assignments containing
z =1y Az # 1y but A prevents only one of them!

Improvement to Off-line SMT

> Rather than adding = A as a conflict clause, better idea is to
find an unsatisfiable core of B71(4)

» Given a set 9 of clauses, an unsat core of S’ is a subset S’
such that 9’ is also unsat

> ldeally, we would like to find the minimal unsatisfiable core

» Minimal unsatisfiable core C* has property that if you drop
any single atom of C*, result is satisfiable

» What is a minimal unsat core of
r=yANz<yAamAaA...Nag? t=yAz <y

I5i Dillg, C5369L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T') Framework 11/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: ST Solvers and_the DPPL(T") Framevior i« 12/28

Computing Minimal Unsat Core

» How can we compute minimal unsat core of conjunctive 7
formula without modifying theory solver?

v

Let ¢ be original unsatisfiable conjunct

v

Drop one atom from ¢, call this ¢’

v

If ¢/ is still unsat, ¢ := ¢/

v

Repeat this for every atom in ¢

v

Clearly, resulting ¢ is minimal unsat core of original formula

Example

> Let's compute minimal unsat core of

pra=yAfl@)+2=5Af(z)#flyY) ANy<3

v

Drop z = y from ¢. Is result unsat?

v

Drop f(z)+ z = 5. Is result unsat?

v

New formula: ¢: z =y Af(z)# f(y) ANy <3

v

Drop f(z) # f(y). Is result unsat?

v

Finally, drop y < 3. Is result unsat?

v

So, minimal unsat core is z = y A f(z) # f(y)

I5i Dillg, C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and. the DPPL(T") Framework 13/28

151 Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framework 14/28

SMT Improved Off-line Version

OfflineSMT (¢){

b = B(6)

while(true){
A := CDCL(¢)
if(A= 1) return UNSAT;
res := TheorySolve(B~1(A));
if(res) return SAT;
x := UnsatCore(B1(4))
Y =1 A =B(x)

Motivation for On-line SMT

> This strategy is much better than simple strategy where we
add — A as theory conflict clause.

» But still need to wait for full assignment from the SAT solver,
which can be problematic

> Consider very large formula F' containing z =y and z < y
with corresponding boolean variables b; and by

> As soon as sat solver makes assignment by = T,by = T, we
are doomed because this is unsatisfiable in theory

» Thus, no need to continue with SAT solving after this bad
partial assignment

I5i Dillg, C5369L: Automated Logical Reasoning _Lecture 17: SMT Solvers and.the DPPL(T') Framework 15/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T') Framework 16/26

On-line SMT

» |dea: Don't use SAT solver as “blackbox”
» Integrate theory solver right into the CDCL

» In other words, theory conflict clauses become another kind of
conflict clause that SAT solvers already learn...

DPLL-Based SAT Solver Architecture

BCP

no conflict

backtrack conflict

ifd>0

Y

Analyze
Conflict

» |dea: Integrate theory solver right into this SAT solving loop!

I5i Dillg, C5369L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T") Framework 17/28

Isi Dillig, CS389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framewor a 18/28

DPLL(7") Framework

no conflict, theory propagation lemma(s)

C(A)
Decide
conflict clause
backtrack conflict
ifd>0
SAT
Analyze
Conflict

» Combination of DPLL-based SAT solver and decision
procedure for conjunctive 7 formula called DPLL(T7)
framework

DPLL(T") Framework

> Suppose SAT solver has made assignment in Decide step and
performed BCP

> If no conflict detected, immediately invoke theory solver

> Specifically, suppose A is current partial assignment to
boolean abstraction

» Use theory solver to decide if B71(A) is unsat

» If B71(A) unsat, add theory conflict clause —A to clause
database

» Or better, add negation of unsat core of A to clause database

Isi Dillig, C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and_the DPPL(7") Framewor k 19/28

151 Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and _the DPPL(T") Framework 20/28

DPLL(T") Framework

no conflict, theory propagation lemma(s)

C(A)

) conflict clause

backtrack conflict

ifd>0

SAT

Analyze
Conflict

» Add theory conflict clause and continue doing BCP, which will
detect conflict

» As before, AnalyzeConflict decides what level to backtrack to

Theory Propagation

» What we described so far is sufficient to solve SMT formula,
but we can be even more clever!

» Suppose original formula contains literals © =y, y = z,2 < z
with corresponding boolean variables by, by, b3

» Suppose SAT solver makes partial assignment b : T, 0y : T
> In next Decide step, free to assign b3 : T or b3y : L

> But assignment b3 : T is stupid b/c will lead to conflict in T

Isi Dillig, C5389L: Automated Logi ning _Lecture 17: SMT Solvers and_the DPPL(7T") Framework k 21/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T") Framevior i« 2/28

Theory Propagation Lemma, cont

v

Idea: Theory solver can communicate which literals are
implied by current partial assignment

> In our example, =z < z implied by current partial assignment
rT=yNy=z

» Thus, can safely add 0; A by — b3 to clause database

v

These kinds of clauses implied by theory are called theory
propagation lemmas

DPLL(7) Framework

no conflict, theory propagation lemma(s)

C(A)

SAT

) conflict clause

backtrack conflict
ifd>0

Analyze
Conflict

» Adding theory propagation lemmas prevents bad assignments
to boolean abstraction

I5i Dillg, C5369L: Automated Logical Reasoning _Lecture 17: SMT Solvers and.the DPPL(T') Framework 2328

24/28

Isi Dillig, CS389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framewor

Inferring Theory Propagation Lemmas

» How do we obtain theory propagation lemmas?

» Option #1: Treat theory solver as blackbox, query whether
particular literal a is implied by current partial assisgnment?

» Option #2: Modify theory solver so that it can figure out
implied literals

» Second option is considered more efficient, but have to figure
out how to do this for each different theory

Which Theory Propagation Lemmas to Add

» Which theory propagation lemmas do we add?

» Option #1: Figure out and add all literals implied by current
partial assignment; called exhaustive theory propagation

» Option #2: Only figure out literals “obviously” implied by
current partial assignment

» Exhaustive theory propagation can be very expensive; second
option considered preferable

» There isn't much of a science behind which literals are
"“obviously” implied

> Solvers use different strategies to obtain simple-to-find
implications

Isi Dillg, C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framewor «

25/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T') Framework 26/28

SMT Solvers Today

> All competitive SMT solvers today are based on the on-line
version

» Many existing off-the-shelf SMT solvers: Z3, CVC3, Yices,
MathSAT, etc.

» Lots of on-going research on SMT, esp. related to quantifier
support

> Annual competition SMT-COMP between solvers; tools
ranked in various categories

Summary

> SMT solvers decide satisfiability in boolean combinations of
different theories

> Instead of converting to DNF, they handle boolean structure
using SAT solving technqiues

» Competitive solvers are based on DPLL(7") framework

Isi Dillg, C5369L: Automated Logcal Reasoning _Lecture 17: SMT Solvers and the DPPL(T") Framewor «

27/28

Isi Dillg C5389L: Automated Logical Reasoning _Lecture 17: SMT Solvers and._the DPPL(T') Framework 2/28

