
CS389L: Automated Logical Reasoning

Lecture 3: Practical SAT solving

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 1/46

Overview

I Today: How state-of-the-art SAT solvers work

I Many competitive solvers based on DPLL, but extend it in
three important ways:

1. Non-chronological backtracking

2. Learning from past “mistakes”

3. Heuristics for choosing variables and assignments

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 2/46

Non-Chronological Backtracking

I Recall basic DPLL: First try assigning p to >; if doesn’t work,
backtrack to most recent decision level and try p = ⊥

I Called chronological backtracking but often sub-optimal

I Suppose made assignments p1, p2, . . . p100 but discovered p4
was a bad choice

I Backtracking to decision level associated with p100 is stupid...

I In non-chronological backtracking, can go back to earlier
decision levels

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 3/46

Learning

I Learning = acquisition of new clauses to prevent similar bad
assignments

I For instance, suppose we discover p5 = >, p32 = ⊥, p100 = >
is inconsistent, i.e.,

φ⇒ ¬(p5 ∧ ¬p32 ∧ p100)

I Can add this clause without changing satisfiability (why?)

I Such clauses called conflict clauses ⇒ SAT solver has
database of conflict clauses

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 4/46

Decision Heuristics

I Basic DPLL chooses variables in random order

I But making assignment to certain variables can make formula
much easier to solve!

I Modern solvers use more sophisticated heuristics

I This is something of a black art, but one of the most
important elements in SAT solving . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 5/46

Architecture of DPLL-Based SAT Solvers

Search Deduction

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 6/46

1



The Plan

I We will talk about BCP and AnalyzeConflict first (related)

I Then: common decision heuristics used in the Decide step

I Finally: Implementation tricks to make all this fast

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 7/46

BCP in SAT Solvers

I Recall: BCP is all possible applications of unit resolution

I SAT solvers remember deductions performed in the BCP
process ⇒ recorded as implication graph

I First some terminology . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 8/46

Some Terminology and Conventions

I Decision variable: variable assigned in the Decide step

I The decision level of a decision variable is the level (order) in
which it was assigned

I The decision level of a variable assigned due to BCP is the
decision level of the last assigned decision variable

I Important note: Think of assignments as literals: Assignment
p = > is literal p; assignment p = ⊥ as literal ¬p

I Also: An assignment corresponds to a new unit clause added
to our set of clauses

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 9/46

Decision Level Example

(¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x4)

I Decide assigns x1 = > ⇒ x1 decision var at level 1

I BCP yields:

I Decision level of x2?

I Decide next assigns x4 = >. BCP deduces:

I x4 decision variable with decision level:

I x3’s decision level:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 10/46

Implication Graph

I An implication graph is a labeled directed acyclic graph

I Nodes: literals in the current partial assignment

I Node labels: Indicate assignment and decision level.

I Example: Node labeled ¬x : 3 means variable x was assigned
to ⊥ at decision level 3

I Edges from l1, . . . lk to l labeled with c: Assignments
l1, . . . , lk caused assignment l due to clause c during BCP

I A special node C is called the conflict node.

I Edge to conflict node labeled with c: current partial
assignment contradicts clause c.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 11/46

Implication Graph Example

I Consider the following set of clauses:

c1 : (¬a ∨ c) c2 : (¬a ∨ ¬b) c3 : (¬c ∨ b)

I Assume Decide assigned a = > at decision level 2

I BCP yields:

I Assignment contradicts c3!

a:2

c:2

¬b:2

C

c1

c2

c3

c3

Root node

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 12/46

2



Another Example

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨¬b)

I Suppose Decide assigned a = > at decision level 1

I Using clause c1, BCP yields:

I Using clause c2, BCP yields:

I Using clause c3, BCP yields:

I Assignment b = >, d = > contradicts:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 13/46

Example cont.

I Consider the following clauses:

c1 : (¬a ∨ c) c2 : (¬c ∨¬a ∨ b) c3 : (¬c ∨ d) c4 : (¬d ∨¬b)

I Suppose Decide assigned a = > at decision level 1

I Resulting implication graph:

a:1

c:1

b:2 C

c1

c2

c3

c4

c2

d:1

c4

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 14/46

Example 3

I Based on this implication graph, what is c4?

I What is c3?

I What is c1?

I What is c2?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 15/46

Implication Graph Properties

I Root nodes in the implication graph correspond to what kind
of variables?

I Edges and internal nodes arise due to BCP

I If literal l has incoming edge labeled c, what do we know
about c?

I If literal l has outgoing edge labeled c, what do we know
about c?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 16/46

Analyzing Conflicts

I Point of implication graph: analyze conflict

I AnalyzeConflict has two goals:

1. Learn new conflict clauses

2. Figure out what level to backtrack to

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 17/46

Conflict Clauses

I A conflict clause is a clause implied by the original formula

I Point of conflict clause: Prevent bad partial assignments by
deriving contradiction as quickly as possible

I Question: To achieve this goal, are small or large conflict
clauses better?

I Answer: Small ones because the smaller the clause, the
quicker BCP forces variable assignments, and the quicker we
derive contradictions!

I The implication graph is very useful for deriving small clauses
implied by the original formula!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 18/46

3



Using Implication Graph to Analyze Conflicts

C

I What can we say about source of conflict based on this
(partial) implication graph?

I

I Are other decision variables relevant to conflict?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 19/46

Simple Strategies to Derive Conflict Clause

I One way to derive conflict clause: The negation of current
partial assignment

I Another way: Conjoin all literals associated with root nodes
reaching conflict node, use negation as conflict clause

I Question: Which one is better?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 20/46

Using Implication Graph to Analyze Conflicts

C

I In this example, this would yield:

I c′ prevents the same partial assignment in the next step

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 21/46

Analyzing Conflicts

I This strategy is one of the earliest strategies proposed for
inferring conflict clauses (e.g., the GRASP SAT solver)

I But people have improved upon this; possible to derive even
better conflict clauses!

I A key concept is unique implication points

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 22/46

Unique Implication Point

I A node N in the implication graph is a unique implication
point (UIP) if all paths from current decision node to the
conflict node must go through N

I Is the current decision node a UIP?

I Can there be multiple unique implication points?

I First unique implication point: UIP closest to conflict node

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 23/46

UIP Example

CCurrent
decision
node

I Which nodes are UIP’s?

I Which node is first UIP?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 24/46

4



Using UIP and Resolution for Deriving Conflict Clause

I Common heuristic to infer conflict clauses: Start with clause
labeling incoming edge to conflict node, derive new clauses via
resolution until we find literal in first UIP

I Specifically: In current clause c, find last assigned literal l in c.

I Pick any incoming edge to l labeled with clause c′.

I Resolve c and c′.

I Set current clause be resolvent of c and c′.

I Repeat until current clause contains negation of the first UIP
literal (as the single literal at current decision level)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 25/46

Analyzing Conflict via Resolution Example

C

First UIP

I What is c1?

I Last assigned literal in c1:

I Clause c3 labeling incoming edge:

I Resolve c1 and c3:

I ¬x4 only literal from decision level 8 ⇒ x2∨¬x4 conflict clause

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 26/46

Another Example

I What is the first UIP?

I Start with clause c4:

I Suppose we pick ¬x7

I Clause on incoming edge to ¬x7:

I Resolve c3, c4:

I Suppose x6 assigned later, pick x6

I Clause on incoming edge:

I Resolve current clause with c2:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 27/46

Another Example, cont.

I Current clause:

I Are we done?

I Pick last assigned literal: x5

I Incoming edge to x5:

I Resolve with current clause:

I Are we done?

I New conflict clause: x2 ∨ ¬x4 ∨ x10

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 28/46

Why is this correct?

I Why are the clauses obtained this way implied by formula?

I

I Unclear if there is a deep reason why this works well, but
seems effective in practice . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 29/46

Backtracking

I Recall: AnalyzeConflict has two goals.

I First goal: Deriving conflict clauses X

I Second goal: Figure out what level to backtrack to

I Backtrack to level d means delete all variable assignments
made after level d (but assignments at level d not deleted)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 30/46

5



Backtracking and Asserting Clauses

I A good strategy: We want to backtrack to a level that makes
conflict clause c an asserting clause in the next step

I Asserting clause is a clause with exactly one unassigned literal

I Hence, if we make c an asserting clause, BCP will force at
least one assignment

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 31/46

Choosing Backtracking Level

I Question: If we want to make conflict clause c an asserting
clause in the next step, what level should we backtrack to?

I Answer:

I Since conflict clause contains only one literal, say l ′, from the
first highest decision level, backtracking to d will assert l ′!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 32/46

Going Back to Example

C

First UIP

I Recall: We obtained the conflict clause x2 ∨ ¬x4

I What level do we backtrack to?

I What do we delete in the graph?

I After we add x2 ∨ ¬x4 to clause database, BCP implies:

I Different assignment than before!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 33/46

Recall: SAT Solver Architecture

Decide

SAT

BCP
no conflict

conflict

Analyze
Conflict

UNSAT

backtrack
if d > 0

I Decision heuristics for choosing variable order and truth
assignment

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 34/46

Decision Heuristics

I Important part of SAT solvers, but something of a black art

I Can come up with hundreds of heuristics with varying
tradeoffs

I We’ll only talk about two:

1. dynamic largest individual sum (DLIS)

2. variable state independent decaying sum (VSIDS)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 35/46

Dynamic Largest Individual Sum (DLIS)

I This heuristic chooses the literal that satisfies the largest
number of currently unsatisfied clauses.

I Example: (x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

I What assignment would DLIS pick for this formula?
(assuming no assignments so far)

I How is this heuristic is dynamic?

I Thus, overhead can be high and must be implemented
carefully to minimize bookkeeping

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 36/46

6



Variable State Independent Decaying Sum (VSIDS)

I Similar to DLIS, but tries to reduce overhead and favor literals
involved in conflicts (i.e. conflict-driven)

I Count number of clauses in which the literal appears, but
disregard if the clause it appears in is satisfied or not

I Specifically, initialize the score of each literal to the number of
clauses in which literal appears

I Every time we add a conflict clause involving literal l , increase
the score of that literal by 1

I Periodically divide scores of all literals by 2
⇒ decaying sum

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 37/46

Variable State Independent Decaying Sum (VSIDS), cont.

I Favors literals involved in conflicts

I If a literal doesn’t appear in recent conflict, its score will decay
over time

I On the other hand, if literal appears in recent conflict, its
score will be increased, so its score won’t decay as much

I Much cheaper compared to DLIS because we don’t need to
scan all clauses to figure out which ones are satisfied

I Introduced in the CHAFF SAT solver from Princeton, written
by undergrads!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 38/46

Implementation Tricks

I To build competitive SAT solvers, it is important to minimize
overhead of implementing Decide, BCP, and Analyze Conflict

I Very important because SAT solver might be searching
through hundreds of thousands of assignments!

I We’ll talk about two issues:

1. number of conflict clauses

2. trick to perform BCP fast: watch literals

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 39/46

Conflict Clauses

I Recall: After analyzing conflict, we add new conflict clause to
our clause database

I Pro: Conflict clauses quickly block bad assignments and
prevent future mistakes

I Con: More clauses = more overhead

⇒ Tradeoff between conflict prevention and minimizing overhead

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 40/46

Conflict Clauses, cont.

I For this reason, many SAT solvers do not keep all the conflict
clauses they derive

I For example, they put a limit on the number of conflict
clauses they derive

I Typically, keep most recent conflict clauses since they are
most relevant to current part of search space

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 41/46

Implementing BCP

I Implementing BCP efficiently is very important because SAT
solvers spend a lot of time doing BCP

I Naive implementation of BCP: Requires scanning all currently
unsatisfied clauses

I But industrial SAT contain hundreds of thousands of clauses,
so scanning all unsatisfied clauses too expensive!

I A more intelligent implementation: Keep mapping from each
literal to all clauses in which each literal appears (because we
perform unit resolution after each variable assignment)

I But this is still very expensive because typically each literals
appears in many clauses

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 42/46

7



The Trick: Watch Literals

I Modern SAT solvers use a much more clever trick to perform
BCP fast: watch literals

I Observe: Ultimate purpose of BCP is to figure out which
variable assignments imply which others

I Question: If we are performing unit resolution between l and
clause c = (¬l ∨ l1, . . . ∨ lk ), under what condition will a new
assignment be implied?

I Answer:

I Idea: Suffices to look at clauses that have at most two
unassigned literals!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 43/46

Watch Literals

I Select two unassigned literals in each unsatisfied clause as
watch literals

I If a watch literal is assigned and clause has other unassigned
literals, choose any unassigned literal in clause to be new
watch literal

I If a watch literal is assigned and there are no other unassigned
non-watch literals left, BCP implies an assignment to the only
remaining watch literal!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 44/46

Watch Literals, cont.

I Upshot: To determine if assignment l implies new
assignment, only look at those clauses in which ¬l appears as
a watch literal

I If ¬l does not appear, we can’t perform unit resolution

I If ¬l appears but is not a watch literal, then clause has more
than two unassigned literals ⇒ won’t imply new assignment!

I Yielded huge improvement in SAT solver performance!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 45/46

Practical SAT Solving Summary

I Modern SAT solvers extend DPLL in three ways:
non-chronological backtracking, conflict clause learning,
decision heuristics, engineering tricks (watch literals)

I Referred to as CDCL: conflict-driven clause learning

I Many competitive SAT solvers based on CDCL

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 3: Practical SAT solving 46/46

8


