
CS389L: Automated Logical Reasoning

Lecture 5: Binary Decision Diagrams

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 1/37

Motivation

I Previous lectures: How to determine satisfiability of
propositional formulas

I Sometimes need to efficiently represent all solutions (i.e.,
satisfying assignments) to the formula

I Binary decision diagrams (BDDs): compact representation of
all satisfying assignments of formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 2/37

Historical Context

I Invented by Randal Bryant from CMU; introduced in very
influential 1986 paper

I BDDs have many applications: hardware and software
verification, computer aided design of circuits, relational
databases, . . .

I Don Knuth: “One of the really fundamental data structures
that came out in the last 25 years”

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 3/37

Binary Decision Trees

I Before talking about BDDs, let us first consider a simpler data
structure called binary decision tree

I Binary decision tree: A tree data strcuture with two kinds of
vertices, terminal and non-terminal

I Terminal vertices: boolean constants >(1) and ⊥(0)

I Non-terminal vertex labeled v corresponds to boolean variable
v in propositional formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 4/37

Binary Decision Trees, cont.

I Each non-terminal vertex has two successors (i.e., edges)

I Low successor of non-terminal vertex v (labeled with dashed
edge) corresponds to assigning 0 to v

I High successor of vertex v (labeled with solid edge)
corresponds to assigning 1 to v

I Each path from root to a terminal node corresponds to an
interpretation for the formula

I Paths ending in 1 correspond to satisfying interpretations

I Paths ending in 0 correspond to falsifying interpretations

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 5/37

Example: Binary Decision Tree

I Binary decision tree for formula with variables x1, x2, x3:

I Question: Is interpretation x1 = ⊥, x2 = ⊥, x3 = > satisfying?

I Question: What about x1 = >, x2 = ⊥, x3 = >?

I This BDT is ordered: Any path from the root to a terminal
contains variables in the same order (order: x1 < x2 < x3)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 6/37

1

Binary Decision Tree vs. Truth Table

I Binary decision tree encodes all satisfying assignments, but
how does it compare to truth tables?

I

I Good news: Not as bad as it looks; there is a lot of
redundancy! (e.g., different subparts are isomorphic)

I Idea: Merge redundant subparts and compress BDT into a
much more space-efficient DAG representation!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 7/37

Reduced Ordered Binary Decision Diagram

I To create compact representation, start with a ordered binary
decision tree and apply a set of reduction rules

I The resulting data structure is called a reduced ordered binary
decision diagram (ROBDD)

I When we talk about BDDs, we really mean ROBDDs (and so
does everyone else)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 8/37

Reduction Rule #1

Reduction rule #1: Merge all terminal nodes 1 into one node, and
merge all terminal nodes 0 into one node.

⇒

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 9/37

Reduction Rule #2

I Reduction rule #2: Merge isomorphic subgraphs

I Two subgraphs are isomorphic if:

1. Their root represents the same variable

2. The subgraphs rooted at their low successors are isomorphic

3. The subgraphs rooted at their high successors are also
isomorphic

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 10/37

Example: Merging Isomorphic Subtrees

I Which subgraphs are isomorphic?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 11/37

Reduction Rule #3

I Reduction rule #3: Remove redundant nodes.

I Node v is redundant if its low and high successors are the
same.

I Why?

I Eliminating redundant node v : Remove v from the graph, and
redirect incoming edge to v to v ’s children

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 12/37

2

Example: Removing Redundant Nodes

I Which nodes are redundant?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 13/37

Exposing New Reductions

I Question: Can removing redundant nodes expose new
isomorphic subtrees? (i.e., do we need to apply reduction 2
again after reduction 3?)

I Example: Are there any isomorphic subparts in this graph?

x1

x2

x2

x3

0 1

⇒

x1

x2

x2

0 1

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 14/37

Exposing New Reductions, cont.

I Question: Can merging isomorphic subgraphs expose new
redundant nodes? (i.e., do we need to apply reduction 3 again
after reduction 2?)

I Example: Are there any redundant nodes in this graph?

x1

x2

x2

0 1

⇒

x1

x2

0 1

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 15/37

Applying Reductions

I As examples illustrate, need to apply reduction rules until
fixed point

I Resulting data structure after exhaustive application of
reduction rules is a ROBDD.

I ROBDD is more space efficient compared to the binary
decision tree because it eliminates redundancies.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 16/37

Building ROBDDs

I Starting with BDT and applying reduction rule useful way to
understand BDD invariants

I But no one builds BDDs this way. Why?

I

I Idea: Build the ROBDD for a formula directly without
building the binary decision tree!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 17/37

Building BDDs directly from Formulas

I Consider a formula φ of the form φ1 ? φ2 where ? is any
boolean connective

I To construct the ROBDD for φ, first recursively construct the
ROBDDs for φ1 and φ2

I Then, combine BDDs for φ1 and φ2 to form the BDD for φ

I To combine BDDs for φ1 and φ2, will use a technique called
Shannon’s decomposition

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 18/37

3

Cofactoring and Shannon’s Decomposition

I Shannon’s decomposition involves an operation called
cofactoring.

I Cofactoring a boolean formula restricts the formula to a
particular value of a variable.

I Example: What is the resulting formula when we restrict x1 to
> in x1 ∧ x2?

I The positive cofactor φ ↓ xi is the resulting formula when xi is
replaced by >

I The negative cofactor φ ↓ ¬xi is φ with xi replaced by ⊥

I Example: What is (x1 ∨ (¬x2 ∧ x3)) ↓ ¬x2?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 19/37

Cofactoring Using BDDs

I If we have a BDD for φ, it is easy to build BDD for positive
and negative cofactors of φ with respect to x

I Given BDD for φ, how do we build BDD for φ ↓ x?

I

I How do we build BDD for φ ↓ ¬x?

I

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 20/37

Cofactoring Example

What is the BDD representing φ ↓ ¬x2?

⇒

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 21/37

Shannon’s Decomposition

I Can now define Shannon’s decomposition using cofactors.

I Shannon’s decomposition:

φ ≡ (x ∧ φ ↓ x) ∨ (¬x ∧ φ ↓ ¬x)

I Basically a case analysis on x ’s truth value

I If x is >, then the positive cofactor must be true

I If x is ⊥, then the negative cofactor must be true

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 22/37

Using Shannon’s Decomposition to Build BDD

I Now, we can directly build BDD for a formula φ1 ? φ2 using
Shannon’s decomposition

I First, build BDD for subformulas φ1 and φ2

I Then, use recursive procedure called Apply to build BDD for φ
from BDDs for φ1 and φ2

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 23/37

The Base Case

I Suppose that the BDDs for φ1 and φ2 have root nodes x and
x ′ and both are boolean constants

I Then, what is the BDD for φ1 ? φ2?

I

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 24/37

4

Recursive Step

I Given root nodes x , x ′, suppose x precedes x ′ according to
variable order

I First do a case analysis on x using Shannon’s decomposition

I Using Shannon’s decomp., what is φ1 ? φ2 equivalent to?

I Cofactoring distributes over connectives, so rewrite as:

(x ∧ (φ1 ↓ x ? φ2 ↓ x) ∨ (¬x ∧ (φ1 ↓ ¬x ? φ2 ↓ ¬x))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 25/37

Recursive step, continued

I Thus, we need to build BDD for:

(x ∧ (φ1 ↓ x ? φ2 ↓ x) ∨ (¬x ∧ (φ1 ↓ ¬x ? φ2 ↓ ¬x))

I We know how to build BDDs for φi ↓ x and φi ↓ ¬x

I How do we build BDDs for (φ1 ↓ x ? φ2 ↓ x) and
(φ1 ↓ ¬x ? φ2 ↓ ¬x)?

I

I What is the progress/termination argument?

I

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 26/37

Recursive step, continued

I Now, assume we have the BDDs for (φ1 ↓ x ? φ2 ↓ x) and
(φ1 ↓ ¬x ? φ2 ↓ ¬x).

I Using these, how do we build BDD for the whole formula?

(x ∧ (φ1 ↓ x ? φ2 ↓ x) ∨ (¬x ∧ (φ1 ↓ ¬x ? φ2 ↓ ¬x))

1. Make a new non-terminal node for variable x

2. The low successor of this node is the BDD for the negative
cofactor (φ1 ↓ ¬x ? φ2 ↓ ¬x)

3. The high successor of this node is the BDD for the positive
cofactor (φ1 ↓ x ? φ2 ↓ x)

I Note: We still need to apply the three reduction rules to
ensure no redundancies.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 27/37

An Example

I Consider formula φ1 ∨ φ2 where φ1 is x1 ↔ x2, and φ2 is ¬x2

I Suppose x1 preceeds x2 in variable order

I Assume we have BDDs for φ1 and φ2:

I We want to use Apply to compute BDD for φ1 ∨ φ2

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 28/37

Example, continued

I Since x1 preeceds x2 in variable order, what do we perform
case split on?

I How do we decompose φ1 ∨ φ2 using Shannon’s
decomposition?

I Thus, we recursively compute BDDs for
(φ1 ↓ ¬x1 ∨ φ2 ↓ ¬x1) and (φ1 ↓ x1 ∨ φ2 ↓ x1).

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 29/37

Example, continued

I Assuming we computed the BDDs for negative and positive
cofactors, BDD for φ1 ∨ φ2 looks like:

 BDD for
negative cofactor

 BDD for
positive cofactor

I Here, the positive cofactor is just 1

I Negative cofactor is:

I What is the final BDD?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 30/37

5

Example, continued

Final BDD:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 31/37

Example 2

I Give the BDD representing the negation of the following BDD:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 32/37

Nice BDD Properties: Canonicity

I BDDs are a canonical representation of boolean formulas.

I Canonical means two equivalent formulas have same
representation

I Thus, if we construct BDDs for two equivalent formulas using
same variable order, resulting BDDs are the same!

I Are any of the normal forms we talked about (NNF, CNF,
DNF) canonical?

I Example:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 33/37

Consequences of Canonicity

I Corollary 1: Given BDDs for φ1 and φ2 constructed with same
variable order, equivalence of φ1 and φ2 just syntactic check

I Corollary 2: Given BDD for formula φ, φ is unsatisfiable if and
only if its BDD respresentation is the boolean constant 0.

I How does this corollary follow from canonicity?

I

I Corollary 3: Given BDD for formula φ, φ is valid if and only if
its BDD respresentation is the boolean constant 1.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 34/37

BDD Size and Variable Order

I Another important BDD property: Size of a BDD for a given
formula φ is very sensitive to variable order!

I For some variable orders, the size of the BDD may be only
polynomial in the number of variables

I For some other variable orders, the size of the BDD for same
formula may be exponential.

I Furthermore, there are boolean formulas for which any
variable order causes an exponential blow-up

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 35/37

Choosing Variable Order

I Since size of BDD is so sensitive to variable order, we would
like to construct BDD using a good variable order

I Unfortunately, NP-complete to decide whether a given order is
optimal

I Typically, heuristics are used to predict good variable order

I Heuristics for finding good variable order can be either static
(i.e., determined up-front) or dynamic (i.e., change as BDD
operations proceed)

I Dynamic orders typically yield more compact BDDs, but
slower

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 36/37

6

Summary

I BDDs can be used to compactly represent all satisfying
assignments to a boolean formula

I Pros:

+ Canonical representation ⇒ checking equivalence, validity,
satisfiability constant time operations once BDD is built

+ If we have good variable order, can yield a compact
representation of all satisfying assignments of formula

I Cons:

- Compactness very sensitive to variable order

- Can cause an exponential blow-up in the representation of the
formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams 37/37

7

