
CS389L: Automated Logical Reasoning

Lecture 8: Introduction to Theorem Proving

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 1/35

Review

I What are some decidable fragments of FOL?

I What is compactness?

I What is a property that cannot be expressed in FOL?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 2/35

First-Order Theorem Provers

I A first-order theorem prover is a computer program that
proves the validity of formulas in first-order logic.

I Since validity in FOL is only semi-decidable, first-order
theorem provers are not guaranteed to terminate

I Despite this limitation, many automated theorem provers exist
and are useful: Vampire, SPASS, Otter, . . .

I There are even annual competitions between these theorem
provers! (just Google ”CADE ATP competition”)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 3/35

Theorem Provers and Mathematical Theorems

I First-order theorem provers have been used to
prove some mathematical theorems not
previously proven by humans.

I Robbins conjecture (1933): Mathematician
Herbert Robbins conjectured that a group of
axioms he came up with are equivalent to
boolean algebra.

I Neither he nor anyone else could prove this for
decades.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 4/35

Robbins Conjecture and Automated Theorem Proving

I 1996: Conjecture eventually proven by
first-order theorem prover EQP after 8
days of search!

I That a computer can prove theorems
that humans could not was shocking

I The automated proof of Robbins
conjecture even appeared as New York
Times article!

I Not the only success story: Otter used
by mathematician Ken Kunnen to
prove results in quasi-group theory

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 5/35

Overview

I Today’s lecture and next lecture: Discuss basic principles
underlying first-order theorem provers

I The basis underlying all theorem provers today is the principle
of first-order resolution

I First-order theorem provers prove formulas unsatisfiable by
showing there is a resolution refutation for that formula

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 6/35

1

Recall: Propositional Resolution

I Recall: Resolution in propositional logic:

C1 : (l1 ∨ . . . p . . . ∨ lk) C2 : (l ′1 ∨ . . .¬p . . . ∨ l ′n)

I Propositional resolution: Deduction of a new clause C3, called
resolvent:

C3 : (l1 ∨ . . . ∨ lk ∨ l ′1 ∨ ∨ l ′n)

I First-order resolution is the same basic principle, but a little
bit more involved

I How to obtain clauses given FOL formula?

I How do we deal with predicates containing syntactically
different terms?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 7/35

First-Order Resolution Prerequisites

I To perform resolution in first-order logic, we need two new
ingredients:

1. Unification: Which expressions can be made identical?

2. Clausal form: A new normal form for FOL

I Start with unification; then talk about clausal form

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 8/35

Unification

I Unification: problem of determining if two expressions can be
made identical by appropriate substitutions for their variables

I Substitution: finite mapping from variables to terms

I Example: Can expressions p(x) and p(a) be unified?

I Can p(a) and p(b) be unified?

I We’ll write eσ to denote the application of substitution σ to
expression e

I What is p(x)[x 7→ a]?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 9/35

Unification

I A substitution is a unifier for two expressions e and e ′ if eσ is
syntactically identical to e ′σ

I Two expressions e and e ′ are unifiable iff they have a unifier;
otherwise non-unifiable.

I Example: Are p(x , y) and p(a, v) unifiable?

I A unifier:

I Example 2: Are p(x , x) and p(a, b) unifiable?

I Example 3: Are p(x) and p(f (x)) unifiable?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 10/35

Non-Uniqueness of Unifiers

I If two expressions are unifiable, they don’t necessarily have a
unique unifier.

I Example: p(x , y) and p(a, v)

I Unifier 1: [x 7→ a, y 7→ b, v 7→ b]

I Unifier 2: [x 7→ a, y 7→ v]

I Unifier 3: [x 7→ a, y 7→ f (b), v 7→ f (b)]

I But some unifiers are more desirable than others . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 11/35

Composing Substitutions

I To explain what it means for one unifier to be better than
another, we define the composition of substitutions.

I Composition of two substitutions σ and δ is written σδ = σ′

I The composition σδ of substitutions σ and δ is obtained by:

1. applying δ to the range of σ

2. add to σ all mappings x 7→ t from δ where x 6∈ dom(σ).

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 12/35

2

Composing Substitutions Examples

I What is [x 7→ a, y 7→ z][z 7→ b]?

I What is [x 7→ a, y 7→ f (z , g(w))][z 7→ 1,w 7→ 2]?

I Let
σ = [x 7→ a, y 7→ f (u), z 7→ v]

δ = [u 7→ d , v 7→ e, z 7→ g]

What is σδ?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 13/35

Generality of Unifiers

I We prefer unifiers that are as general as possible.

I A unifier σ is at least as general as unifier σ′ if there exists
another substitution δ such that σδ = σ′

I Intuition: σ more general than σ′ if σ′ can be obtained from σ
through another substitution

I We say σ more general than σ′ if σ is at least as general as σ′

but not the other way around

I Which unifier is more general? σ = [x 7→ a, y 7→ v] or
σ′ = [x 7→ a, y 7→ f (c), v 7→ f (c)]?

I Which unifier is more general? σ = [x 7→ a, y 7→ z] or
σ′ = [x 7→ a, y 7→ w]?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 14/35

Most General Unifiers

I σ is a most general unifier (mgu) of expressions e, e ′ iff σ is at
least as general as any other unifier of e and e ′.

I Intuition: A unifer is most general if it only contains mappings
necessary to unify, but nothing extra!

I Consider again p(x , y) and p(a, v).

I Is [x 7→ a, y 7→ b, v 7→ b] an mgu?

I Is [x 7→ a, y 7→ v] an mgu?

I Is [x 7→ a, y 7→ v , v 7→ y] an mgu?

I If two expressions e and e ′ are unifiable, then their mgu is
unique modulo variable renaming

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 15/35

Algorithm to Compute MGU

I We’ll now give an algorithm to find most general unifiers
(Robinson’s algorithm, 1965)

I Function find mgu(e, e′) takes expressions e, e ′ and returns
substitution σ that is mgu of e, e ′ or ⊥

I Case 1: e = e ′. Then σ = []

I Case 2: e is variable x . If e ′ does not contain x then
[x 7→ e ′], otherwise ⊥
I Containment check referred to as occurs check; disallows

infinite terms as a solution

I Case 3: e ′ is variable y ⇒ symmetric to case 2

I Case 4: e or e ′ is a constant. Return ⊥
Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 16/35

Algorithm to Compute MGU, continued
I Case 5: e = τ(e1, . . . , ek).

1. If e ′ 6= τ(e ′1, . . . , e
′
k), then ⊥

2. Otherwise result of unifying [e1 . . . ek] and [e ′1 . . . e
′
k]

I Case 6: e is expression list [h T].

1. If e ′ is not expression list of the form [h ′ T ′], return ⊥.

2. Let σ = find mgu(h, h ′).

3. Apply σ to T ,T ′

4. Recursively compute MGU σ′ for σT and σT ′

5. Return composition of σ and σ′

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 17/35

Example of Computing MGUs

I Apply algorithm to find mgu for p(f (x), f (x)) and p(y , f (a))

I Predicates match; unify the arguments.

I Unify first arguments f (x) and y

I Result:

I Apply unifier to second arguments f (x) and f (a) (unchanged)

I Then, unify f (x) and f (a):

I Compose [y 7→ f (x)] and [x 7→ a]

I Final result:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 18/35

3

Another Example

I Apply algorithm to find mgu for p(x , x) and p(y , f (y))

I Predicates match; unify the arguments.

I Unify first arguments x and y ; result:

I Apply unifier to second arguments x and f (y):

I Now unify y and f (y):

I Thus p(x , x) and p(y , f (y)) not unifiable

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 19/35

Complexity of unification

I Robinson’s algorithm has worst-case complexity, but only
triggered in “pathological” cases

I There are almost-linear time unification algorithms, but
Robinson’s algorithm still widely used

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 20/35

First-Order Resolution Ingredients

I Recall: Resolution in FOL requires two new ingredients:
unification and clausal form

I Next, we’ll define clausal form

I A formula in FOL in said to be in clausal form it obeys
following syntactic restrictions:

1. Formula should be of the form ∀x1, . . . , xk . F (x1, . . . xk) (i.e.,
only universally quantified variables)

2. The inner formula F (x1, . . . , xk) should be in CNF

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 21/35

The Bad and The Good News

I Bad News:
In general, if φ is the original formula, there may not be an
equivalent formula φ′ that is of this form

I Good News:
But we can always find an equi-satisfiable formula φ′′ that is
of this form

I Since we are trying to determine satisfiability of φ, this is
good enough . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 22/35

Converting Formulas to Equisatisfiable Clausal Form

Given formula φ, there are five steps to convert it to equisatisfiable
clausal form:

1. Make sure there are no free variables in φ

2. Convert resulting formula to Prenex normal form

3. Apply skolemization to remove existentially quantified
variables (resulting formula called Skolem Normal Form)

4. Since formula obtained after step 3 is of the form
∀x1, . . . , xk . F (x1, . . . xk), convert inner formula F to CNF

5. Since all variables are universally quantified, drop explicit
quantifiers and write formula as set of clauses

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 23/35

Step 1: Removing Free Variables

I Suppose a formula φ contains free variable x

I How can we construct a formula φ′ such that x is no longer
free and φ′ is equisatisfiable to φ?

I φ is satisfiable iff there exists some o ∈ U under which
U , I , {x 7→ o} |= φ

I But this is the same as saying φ is satisfiable iff U , I |= ∃x .φ
for some U , I

I Thus, to perform step 1 of transformation, existentially
quantify all free variables of φ

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 24/35

4

Prenex Normal Form

I A formula is in prenex normal form (PNF) if all of its
quantifiers appear at the beginning of formula:

Qx1, . . .Qxn . F (x1, . . . , xn)

where F is quantifier-free and Q ∈ {∀, ∃}

I Is ∀x .∃y .(p(x , y) → q(x)) in PNF?

I What about ∀x .((∃y .p(x , y)) → q(x)) in PNF?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 25/35

Step 2: Conversion to Prenex Normal Form

I Step2a: Convert to NNF.

I Conversion to NNF is just like in propositional logic, but need
new equivalences for distributing negation over quantifiers:

¬∀x .φ ⇔ ∃x .¬φ
¬∃x .φ ⇔ ∀x .¬φ

I Step 2b: Rename quantified variables as necessary so no two
quantified variables have the same name.

I Step 2c: Move quantifiers to front of formula
Q1x1, . . . ,Qnxn .F

′ such that if Qj is in the scope of
quantifier Qi , then i < j .

I Claim: Formula in PNF is equivalent to original formula.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 26/35

Conversion to PNF Example

I Convert formula to PNF:

∀x .¬(∃y .p(x , y) ∧ p(x , z)) ∨ ∃y .p(x , y)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 27/35

Step 3: Skolemization

I After converting formula to PNF, we want to remove all
existential quantifiers

I Skolemization produces equisatisfiable formula without
existential quantifiers

I Suppose an existentially quantified variable y appears in the
scope of quantifiers x1, . . . , xk

I Skolemization: replaces y with function term: f (x1, . . . , xn)
where f is a fresh function symbol

I This new function f called Skolem function

I What happens if y is not in scope of any quantifiers?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 28/35

Skolemization: Intuition I

I Consider formula ∃x .F

I We know there is some object for which F holds, but we
don’t want to make any assumptions about this object

I Thus, we replace x with a fresh object constant c in F

I The formula F [c/x] is equisatisfiable to ∃x .F , but not
equivalent

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 29/35

Skolemization: Intuition II

I However, if existential variable x is in scope of universally
quantified variables, we can’t replace it with object constant

I Consider formula: ∀x .∃y .hates(x , y)

I What does this formula say?

I Now, let’s replace y with object constant c: ∀x .hates(x , c)

I What does this formula say?

I Clearly, very different meaning!

I Want to capture that two people can hate different people ⇒
introduce function constant

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 30/35

5

Skolem Normal Form

I The formula after performing skolemization looks like this:

∀x1, . . . ,∀xn . F (x1, . . . , xn)

I This form is called Skolem Normal Form

I Resulting formula not equivalent to original formula, but
equisatisfiable

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 31/35

Conversion to Clausal Form Example

I Convert formula to clausal form:

∀y .(p(y) ∧ ¬(∀z .(r(z) → q(y , z ,w))))

I Step 1: Remove free variables:

∃w .∀y .(p(y) ∧ ¬(∀z .(r(z) → q(y , z ,w))))

I Step 2a: Convert to NNF (necessary for PNF):

∃w .∀y .(p(y) ∧ ¬(∀z .(¬r(z) ∨ q(y , z ,w)))) remove →
∃w .∀y .(p(y) ∧ (∃z .(r(z) ∧ ¬q(y , z ,w)))) push negations

I Step 2b: Move quantifiers out (necessary for PNF):

∃w .∀y .∃z .(p(y) ∧ ((r(z) ∧ ¬q(y , z ,w))))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 32/35

Conversion to Clausal Form Example, continued

I In Prenex Normal Form:

∃w .∀y .∃z .(p(y) ∧ ((r(z) ∧ ¬q(y , z ,w))))

I Step 3a: Now, skolemize w (easiest to start outside):

∀y .∃z .(p(y) ∧ ((r(z) ∧ ¬q(y , z , c))))

I Step 3b: Skolemize z :

∀y .(p(y) ∧ ((r(f (y)) ∧ ¬q(y , f (y), c))))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 33/35

Conversion to Clausal Form Example, continued

I In Skolem Normal Form:

∀y .(p(y) ∧ ((r(f (y)) ∧ ¬q(y , f (y), c))))

I Step 4: Convert inner formula to CNF (already in CNF)

I Step 5: Drop universal quantifiers:

(p(y) ∧ ((r(f (y)) ∧ ¬q(y , f (y), c))))

I Step 6: Finally, write formula as a set of clauses

{p(y)}, {(r(f (y))}, {q(y , f (y), c)}

I This formula is now in clausal form

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 34/35

Summary

I Today: Talked about two necessary ingredients for first-order
resolution:

1. Unification

2. Clausal form

I Next lecture: First-order resolution and theorem provers

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 8: Introduction to Theorem Proving 35/35

6

