
CS389L: Automated Logical Reasoning

Lecture 9: First-Order Resolution

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 1/41

Review

I What is a unifier?

I What is Prenex Normal Form?

I What is Skolem Normal Form?

I How do you convert formula to Clausal Normal Form?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 2/41

Clausal Normal Form Example

I Convert formula to clausal form:

∃w .∀x .((∃z .q(w , z )) → ∃y .(¬p(x , y) ∧ r(y)))

I Step 1,2a: No free variables, convert to NNF:

∃w .∀x .(¬(∃z .q(w , z )) ∨ ∃y .(¬p(x , y) ∧ r(y))) remove →
∃w .∀x .((∀z .¬q(w , z )) ∨ ∃y .(¬p(x , y) ∧ r(y))) push negations

I Step 2b: Move quantifiers out (necessary for PNF):

∃w .∀x .∃y .∀z .((¬q(w , z )) ∨ (¬p(x , y) ∧ r(y)))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 3/41

Example, cont

I In Prenex Normal Form:

∃w .∀x .∃y .∀z .((¬q(w , z )) ∨ (¬p(x , y) ∧ r(y)))

I Step 3a: Now, skolemize w :

∀x .∃y .∀z .((¬q(c, z )) ∨ (¬p(x , y) ∧ r(y)))

I Step 3b: Skolemize y :

∀x .∀z .((¬q(c, z )) ∨ (¬p(x , f (x )) ∧ r(f (x ))))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 4/41

Example, cont
I In Skolem Normal Form:

∀x .∀z .((¬q(c, z )) ∨ (¬p(x , f (x )) ∧ r(f (x ))))

I Step 4: Convert inner formula to CNF

∀x .∀z .(¬q(c, z ) ∨ ¬p(x , f (x ))) ∧ (¬q(c, z ) ∨ r(f (x )))

I Step 5: Drop universal quantifiers:

(¬q(c, z ) ∨ ¬p(x , f (x ))) ∧ (¬q(c, z ) ∨ r(f (x )))

I Step 6: Finally, write formula as a set of clauses

{¬q(c, z ),¬p(x , f (x ))}
{¬q(c, z ), r(f (x ))}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 5/41

A Word About Clausal Form

I Consider the clausal form {l1, l2, . . . lk}, . . . , {l ′1, l ′2, . . . , l ′n}

I Assuming clauses contain variables x1, . . . xn , what is the
meaning of this clausal form as a proper FOL formula?

I ∀x1, . . . , xn . (l1 ∨ l2 . . . ∨ lk ) ∧ . . . ∧ (l ′1 ∨ l ′2 . . . ∨ l ′n)

I Recall: Universal quantifiers distribute over conjuncts:

∀~x . F1 ∧ F2 ⇔ ∀~xF1 ∧ ∀~xF2

I Thus above formula is equivalent to:

∀x1, . . . , xn . (l1 ∨ l2 . . . ∨ lk ) . . .∧
∀x1, . . . , xn .(l ′1 ∨ l ′2 . . . ∨ l ′n)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 6/41

1



A Word About Clausal Form, cont.

∀x1, . . . , xn . (l1 ∨ l2 . . . ∨ lk ) . . .∧
∀x1, . . . , xn .(l ′1 ∨ l ′2 . . . ∨ l ′n)

I Recall: If we rename quantified variables, the resulting formula
is equivalent to original one

∀x .F ⇔ ∀y .F [y/x ]

I Hence, the above formula is equivalent to:

∀x1, . . . , xn . (l1 ∨ l2 . . . ∨ lk ) . . .∧
∀y1, . . . , yn .(l ′1 ∨ l ′2 . . . ∨ l ′n)[~y/~x ]

I Thus, if two different clauses C1 and C2 contain same variable
x , we can rename x to some other x ′ in one of C1 or C2

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 7/41

Clausal Form and Renaming Variables

I In rest of lecture, we assume that we rename variables in each
clause so different clauses contain different variables.

I This is necessary to ensure that we don’t get conflicting
names as we do resolution.

I For instance, if we have two clauses {p(a, x )} and {¬p(x , b)},
we assume they are renamed as {p(a, x )} and {¬p(z , b)}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 8/41

First Order Resolution

I To apply first-order resolution, convert formula to clausal form

I Rename variables to ensure each clause contains different
variables

I Resolution:

{A,B1, . . . ,Bk} {¬C ,D1, . . . ,Dn}
{B1, . . . ,Bk ,D1, . . . ,Dn}σ

(σ = mgu(A,C ))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 9/41

Example

Resolution:

{A,B1, . . . ,Bk} {¬C ,D1, . . . ,Dn}
{B1, . . . ,Bk ,D1, . . . ,Dn}σ

(σ = mgu(A,C ))

I What is the result of performing resolution on the following
clauses?

Clause 1 : {p(a, y), r(g(y))}
Clause 2 : {¬p(x , f (x )), q(g(x ))}

I Mgu for p(a, y) and p(x , f (x )):

I Resolvent:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 10/41

Intuition about First-Order Resolution

I Intuition: Consider two clauses: {happy(x ), sad(x )} and
{¬happy(joe), happy(sally)}

I The first clause says:

I This implies: happy(joe) ∨ sad(joe)

I The second clause says:

I Two possibilities: Either Joe is happy or not.

I If happy(joe), second clause implies happy(sally)

I If ¬happy(joe), then we have sad(joe)

I In either case, we have happy(sally) ∨ sad(joe)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 11/41

Intuition about First-Order Resolution, cont.

{A,B1, . . . ,Bk} {¬C ,D1, . . . ,Dk}
{B1, . . . ,Bk ,D1, . . . ,Dk}σ

(σ = mgu(A,C ))

I What happens if we apply resolution to {happy(x ), sad(x )}
and {¬happy(joe), happy(sally)} ?

I Instantiate resolution rule with our clauses:

{happy(x ), sad(x )} {¬happy(joe), happy(sally)}
{sad(x ), happy(sally)}[x 7→ joe]{sad(joe), happy(sally)}

I Same conclusion as before!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 12/41

2



Intuition about First-Order Resolution, summary

I Just like propositional resolution, first-order resolution
corresponds to a simple case analysis

I But more involved due to universal quantifiers

I To perform deduction, often need to instantiate universal
quantifier with something specific like joe

I The use of unifiers in resolution corresponds to instantiation
of universally quantifiers

I Quantifier instantiation is demand-driven; we only unify when
it is possible to perform deduction

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 13/41

Why Most General Unifiers?

I Why do we need most general unifiers, not just any unifier?

I

I Example: Consider clauses: {happy(x ), sad(x )} {¬sad(y)}

I Most general unifier:

I Resolvent:

I What does this mean in English?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 14/41

Why Most General Unifiers?

Clauses: {happy(x ), sad(x )} {¬sad(y)}

I Now, suppose we use a less general unifier, e.g.
[x 7→ joe, y 7→ joe]

I Resolvent:

I Since ”Everyone is happy” implies ”Joe is happy”, former
deduction is much better!

I Using most general unifiers ensures our deductions are as
general as possible

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 15/41

Incompleteness

I The inference rule for resolution so far is sound,but not
complete: there are valid deductions it cannot derive.

I Consider the following clauses:

Clause 1 :{p(x ), p(y)}
Clause 2 :{¬p(a),¬p(b)}

I What does the first clause say?

I Simpler way of saying the same thing:

I Clearly contradicts the second clause!

I So, we should derive the empty clause, i.e., contradiction

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 16/41

Incompleteness Example

I What can we deduce using resolution from these clauses?

Clause 1 :{p(x ), p(y)}
Clause 2 :{¬p(a),¬p(b)}

I Using mgu for p(x ) and p(a),

I Using mgu for p(x ) and p(b),

I Using mgu for p(y), p(a),

I Using mgu for p(y), p(b),

I More deductions possible using new clauses, but redundant

I Conclusion: Using inference rule for resolution alone, we
cannot derive the empty clause

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 17/41

Solution: Factoring

I To ensure we can deduce all valid facts, we need another
inference rule for factoring.

I Factorization:

{A,B ,C1 . . . ,Ck}
{A,C1, . . .Ck}σ

(σ = mgu(A,B))

I Soundness of factorization: For any clause C and any
substitution σ, Cσ is always a valid deduction

I Why?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 18/41

3



Revisiting the Example

I Consider again the problematic example:

Clause 1 :{p(x ), p(y)}
Clause 2 :{¬p(a),¬p(b)}

I Use factoring on first clause

I Mgu for p(x ) and p(y):

I Result of factoring:

I Now, do resolution between clause 2 and 3.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 19/41

Resolution with Implicit Factoring

I Can formulate resolution and factoring as single inference rule.

I Resolution with Implicit Factorization:

{A1, . . .An ,B1, . . . ,Bk}
{¬C ,D1, . . . ,Dk}

{B1, . . . ,Bk ,D1, . . . ,Dk}σ
(σ = mgu(A1, . . .An ,C ))

I From now on, by ”resolution”, we mean resolution with
implicit factorization

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 20/41

Resolution with Implicit Factoring Example

I Consider the example we looked at before:

{p(x ), p(y)}
{¬p(a),¬p(b)}

{¬p(b)} (? = mgu(p(x ), p(y), p(a)))

I Now, apply resolution with implicit factoring one more time:

{p(x ), p(y)}
{¬p(b)}

{} (? = mgu(p(x ), p(y), p(b)))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 21/41

Resolution Derivation

I A clause C is derivable from a set of clauses ∆ if there is a
sequence of clauses Ψ1, . . . ,Ψk terminating in C such that:

1. Ψi ∈ ∆, or

2. Ψi is resolvent of some Ψj and Ψk such that j < i ∧ k < i

I Example: Consider clauses

∆ = {happy(x ), sad(x )}, {¬sad(y)}

I Here, {happy(x )} is derivable from ∆

I If a clause C is derivable from ∆, we write ∆ ` C

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 22/41

Resolution Refutation

I The derivation of the empty clause from a set of clauses ∆ is
called resolution refutation of ∆

I Consider set of clauses ∆:

{happy(x ), sad(x )}
{¬sad(y)}
{¬happy(mother(joe))}

I Resolution refutation of ∆:

{happy(x ), sad(x )} {¬sad(y)}
{happy(x )} {¬happy(mother(joe))}

{ }

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 23/41

Refutational Soundness and Completeness

I Theorem: Resolution is sound, i.e., if ∆ ` C , then ∆ |= C

I Corollary: If there is a resolution refutation of ∆, ∆ is indeed
unsatisfiable

I In other words, we cannot conclude a satisfiable formula is
unsatisfiable using resolution

I Resolution with implicit factorization is also complete, i.e., if
∆ |= C , then ∆ ` C

I Corollary: If F is unsatisfiable, then there exists a resolution
refutation of F using only resolution with factorization.

I This is called the refutational completeness of resolution.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 24/41

4



Validity Proofs using Resolution

I How to prove validity FOL formula using resolution?

I Use duality of validity and unsatisfiability:

F is valid iff ¬F is unsatisfiable

I We will use resolution to show ¬F is unsatisfiable.

I First, convert ¬F to clausal form C .

I If there is a resolution refutation of C , then, by soundness, F
is valid.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 25/41

Example

I Everybody loves somebody. Everybody loves a lover. Prove
that everybody loves everybody.

I First sentence in FOL:

I Second sentence in FOL:

I Goal in FOL:

I Thus, want to prove validity of:

(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((∃v .loves(u, v)) → loves(w , u)))
→ ∀z .∀t .loves(z , t)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 26/41

Example, cont.
I Want to prove negation unsatisfiable:

¬((∀x .∃y .loves(x , y) ∧ ∀u.∀w .((∃v .loves(u, v)) → loves(w , u)))
→ ∀z .∀t .loves(z , t))

I Convert to PNF: in NNF, quantifiers in front

I Remove inner implication:

¬((∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
→ ∀z .∀t .loves(z , t))

I Remove outer implication:

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
∨∀z .∀t .loves(z , t))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 27/41

Example, cont.

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
∨∀z .∀t .loves(z , t))

I Push innermost negation in:

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .(¬loves(u, v) ∨ loves(w , u))
∨∀z .∀t .loves(z , t))

I Push outermost negation in:

(¬¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v)) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 28/41

Example, cont.

(¬¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))

I Eliminate double negation:

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))

I Push negation on second line in:

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧(∃z .∃t .¬loves(z , t)))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 29/41

Example, cont.

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .(¬loves(u, v) ∨ loves(w , u)))
∧(∃z .∃t .¬loves(z , t)))

I Now, move quantifiers to front. Restriction:

∃z .∃t .∀x .∃y .∀u.∀w .∀v .
loves(x , y) ∧ (¬loves(u, v) ∨ loves(w , u)) ∧ ¬loves(z , t)

I Next, skolemize existentially quantified variables:

∀u.∀w .∀v .∀x .
loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))

∧¬loves(joe, jane)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 30/41

5



Example, cont.

∀u.∀w .∀v .∀x .
loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))

∧¬loves(joe, jane)

I Now, drop quantifiers:

loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))
∧¬loves(joe, jane)

I Convert to CNF: already in CNF!

I In clausal form:

{loves(x , lover(x ))}
{¬loves(u, v), loves(w , u)}

{¬loves(joe, jane)}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 31/41

Example, cont.

I Finally, we can do resolution:

{loves(x , lover(x ))}
{¬loves(u, v), loves(w , u)}

{¬loves(joe, jane)}

I Resolve first and second clauses. MGU:

I Resolvent:

I Resolve new clause with third clause.

I Mgu:

I Resolvent: {}

I Thus, we have proven the formula valid.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 32/41

Example II

I Use resolution to prove validity of formula:

¬(∃y .∀z .(p(z , y) ↔ ¬∃x .(p(z , x ) ∧ p(x , z ))))

I Convert negation to clausal form:

∃y .∀z .(p(z , y) ↔ ¬∃x .(p(z , x ) ∧ p(x , z )))

I To convert to NNF, get rid of ↔:

∃y .∀z .(¬p(z , y) ∨ ¬∃x .(p(z , x ) ∧ p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 33/41

Example II, cont

∃y .∀z .(¬p(z , y) ∨ ¬∃x .(p(z , x ) ∧ p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))

I Push negations in:

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))

I Rename quantified variables:

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ ∃w .(p(z ,w) ∧ p(w , z )))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 34/41

Example II, cont.

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ ∃w .(p(z ,w) ∧ p(w , z )))

I In PNF:

∃y .∀z .∃w .∀x .(¬p(z , y) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ (p(z ,w) ∧ p(w , z )))

I Skolemize existentials:

∀z .∀x .(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ (p(z , f (z )) ∧ p(f (z ), z )))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 35/41

Example II, cont.

∀z .∀x .(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ (p(z , f (z )) ∧ p(f (z ), z )))

I Drop quantifiers and convert to CNF:

(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ p(z , f (z ))∧
p(z , a) ∨ p(f (z ), z ))

I In clausal form (with renamed variables):

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 36/41

6



Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}

I Resolve C1 and C2 using factoring.

I What is the MGU for p(z , a), p(z , x ), p(x , z ), p(y , a)?

I Resolvent:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 37/41

Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}

I Now, resolve C1 and C3 (using factoring).

I What is the MGU for p(z , a), p(z , x ), p(x , z ), p(w , a)?

I Resolvent:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 38/41

Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}
C5 : {p(f (a), a)}

I Resolve C1 and C5 (using factoring).

I What is the MGU of p(z , a), p(z , x ) and p(f (a), a)?

I Resolvent:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 39/41

Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}
C5 : {p(f (a), a)}
C6 : {¬p(a, f (a))}

I Finally, resolve C4 and C6.

I Resolvent: {}

I Thus, the original formula is valid.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 40/41

Summary

I First-order theorem provers work by converting to clausal form
and trying to find resolution refutation

I But there are no termination guarantees – may diverge if
formula is satisfiable

I Next lecture: First-order theories

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 41/41

7


