Property |
Value |
dbo:abstract
|
- En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou Gk,n(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». (fr)
- En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou Gk,n(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». (fr)
|
dbo:namedAfter
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8341 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:année
| |
prop-fr:auteur
| |
prop-fr:isbn
| |
prop-fr:numéroD'édition
| |
prop-fr:pagesTotales
| |
prop-fr:passage
| |
prop-fr:titre
|
- Géométrie (fr)
- Chirurgie des grassmanniennes (fr)
- Géométrie (fr)
- Chirurgie des grassmanniennes (fr)
|
prop-fr:wikiPageUsesTemplate
| |
prop-fr:éditeur
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou Gk,n(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». (fr)
- En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou Gk,n(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». (fr)
|
rdfs:label
|
- Grasmaniano (es)
- Grassmannienne (fr)
- 格拉斯曼流形 (zh)
- Grasmaniano (es)
- Grassmannienne (fr)
- 格拉斯曼流形 (zh)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |