http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103214397-B
Outgoing Links
Predicate | Object |
---|---|
assignee | http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a767f4998e53684ec68f4fdfbb8e4de7 |
classificationIPCInventive | http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07C263-10 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C07C265-14 |
filingDate | 2013-04-15^^<http://www.w3.org/2001/XMLSchema#date> |
grantDate | 2015-02-25^^<http://www.w3.org/2001/XMLSchema#date> |
inventor | http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9542fb872d0126512782d8a654edf815 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6bef8ec51a2cb82975489e20bd69affc http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7d9dade96e443adfd738b809997659b8 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_12ab0c37184347e92741821c70ea5e69 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ad644befa0efed3ab48514b69692cbf4 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_928a5c11c75ac6369e277a4a326d7f17 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_249842218f66afaab55956b14174e89b |
publicationDate | 2015-02-25^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber | CN-103214397-B |
titleOfInvention | Method for continuously preparing 1,5-naphthalene diisocyanate |
abstract | The invention discloses a method for continuously preparing 1,5-naphthalene diisocyanate, and the method comprises the following steps of: firstly mixing a 1,5-naphthalene diisocyanate solution and a di(trichloromethyl) carbonate solution into a reaction raw material, and then carrying out continuous charging; enabling the reaction raw material to firstly flow through a tubular reactor at the temperature of 25-100 DEG C and then flow through 3-8 stage series-connected combined slot type reactors, and enabling an obtained mixture to flow out of the last-stage reactor; and filtering, and then concentrating and crystallizing filter liquor to obtain the 1,5-naphthalene diisocyanate. The method disclosed by the invention has the advantages of high reaction yield, high product purity, short reaction time, high equipment utilization ratio, low production cost, no pollution, continuous production and industrialized application. |
priorityDate | 2013-04-15^^<http://www.w3.org/2001/XMLSchema#date> |
type | http://data.epo.org/linked-data/def/patent/Publication |
Incoming Links
Showing number of triples: 1 to 47 of 47.