http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103614483-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_30783f5e0439f26fb23d0089d47f0ea6
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6844
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-42
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-04
filingDate 2013-12-10^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-06-03^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ce8d2f4ede294cc68f82eab9ec28e393
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_aa124d354ed004628e7e80856e30f098
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9f48faa9968ca37303aceb1865c52c94
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d1fa70a9d3d53cd3a1b1148b7f54584e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0ab11d275529710b5f180fd42b3cbae7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d7490603f06aef29988c2b5401f7f5ef
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b01d353c8ad2ab0d7dd2e3459578513d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c9f3666d8b40d547bbefa5cbd06fc7fe
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e0478030799dd8544aa956be72a72022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b8d12a7da9853919e83142bf21b2d178
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5c84039431a2f8241f24a793228745e0
publicationDate 2015-06-03^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-103614483-B
titleOfInvention Method for detecting salmonella invA gene based on rolling circle amplification and gold nanoparticles
abstract The invention discloses a method for detecting salmonella invA gene based on rolling circle amplification and gold nanoparticles. The method comprises the following steps: dropwise adding a capture probe on a clean gold electrode, placing the gold electrode in a refrigerator overnight, taking out and sealing the gold electrode, dropwise adding a sample to be detected on the gold electrode, dropwise adding cyclic DNA after the reaction, reacting, carrying out rolling circle amplification, adding a gold nanoparticle probe, hybridizing and detecting a DPV signal. According to the method disclosed by the invention, the highly conserved invA gene of the salmonella is selected, the probe specifically combined with the invA gene is designed, and the salmonella invA gene is detected by an electrochemical technology in combination with rolling circle amplification and gold nanoparticle technology, so that the sensitivity is greatly perfected, the linear detection range is extended to 100 aM to 10 pM, and the sensitivity is 100 aM. The salmonella detection range in polluted milk is 20 to 6*10<8> CFU ml<-1>, and the lowest detectable limit is 20 CFU ml<-1>. A method for quickly and ultra-sensitively detecting salmonella is created in the invention to greatly improve the detection sensitivity, and the method has the advantages of being miniaturized in detection equipment, convenient, rapid and low in detection cost.
priorityDate 2013-12-10^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2012080871-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6284497-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ20EU8
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ05205
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP86348
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6224
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516892
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ06SH2
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451818717
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4873
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6503
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360315
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526964
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO60109
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP81800
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453034310
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1913
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7618
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP02701
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8113
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9TKU7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP00634
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21948
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2115
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452599334
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5018845
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID560126
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452899714
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397808
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP19147
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9989226
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409206349
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID517044
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453569306
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414855400
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ05700
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP83456
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425499957
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ1KVQ9
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557696
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523138
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413554014
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID19001
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426055094

Showing number of triples: 1 to 70 of 70.