http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108769001-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9083f8824b83211e2a0503686f35ca06
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H04L63-1416
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H04L63-145
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-23213
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06K9-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H04L29-06
filingDate 2018-05-24^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_079fb5098652bfa4b42f3d9abf894138
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f3c8c65769aa203b568a987072204a4f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d16448454e1ac171e9a2da9d984eec3f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0c468d7c654a14af8ec50f462ff28925
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3f49e3e2dcd22594c405faf37f87c3f4
publicationDate 2018-11-06^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-108769001-A
titleOfInvention Malicious code detection method based on cluster analysis of network behavior characteristics
abstract The invention provides a malicious code detection method based on cluster analysis of network behavior characteristics. Step 1 is mainly to analyze the characteristics of the network behavior of botnets and Trojans; Step 2 is to use the MFAM-NB framework to extract network features; Step 3 is to use the k-Means clustering algorithm based on adaptive weights to detect malicious code. This method can solve the problem that the malicious network can easily change the packet content and flow characteristics, thereby avoiding the detection of malicious codes, and can solve the problem of dependence of traditional malicious code detection methods on manual feature extraction. The adaptive weight-based k-Means malicious code detection algorithm adopted in this method can solve the problem of inaccurate detection of malicious code caused by the improper selection of the initialization center of the traditional k-Means algorithm, and can solve the problem that the k-Means algorithm handles large amounts of data. The problem of feature set being too time-consuming.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110022313-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110022313-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111865910-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110458187-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110458187-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113259402-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113259402-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110213227-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111770053-A
priorityDate 2018-04-11^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419534036
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5291

Showing number of triples: 1 to 29 of 29.